成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

《圓柱的體積》教案

時間:2023-01-02 12:12:44 教案 投訴 投稿

《圓柱的體積》教案15篇

  作為一位杰出的老師,往往需要進行教案編寫工作,教案有助于順利而有效地開展教學活動。怎樣寫教案才更能起到其作用呢?下面是小編為大家收集的《圓柱的體積》教案,僅供參考,歡迎大家閱讀。

《圓柱的體積》教案15篇

《圓柱的體積》教案1

  教學目標:

  1、通過教學,使學生經歷觀察、猜想、操作、驗證、交流和歸納等數學活動過程,探索并掌握圓柱的體積公式,初步學會應用公式計算圓柱的體積,并解決相關的簡單實際問題。

  2、使學生在活動中進一步體會“轉化”方法的價值,培養(yǎng)應用已有知識解決新問題的能力。

  3、培養(yǎng)學生初步的空間概念、動手能力、操作能力和邏輯思維推理能力。

  教學重點:掌握和運用圓柱體積計算公式進行正確計算。

  教學難點:理解圓柱體積計算公式的推導過程,體會“轉化”方法的價值。

  教學準備:用于演示把圓柱體積轉化成長方體體積的教具、幻燈片。

  教學過程:

  一、遷移引入。

  1、教師:前幾節(jié)課我們已經認識了圓柱體,學會了計算圓柱的側面積、底面積和表面積,今天這節(jié)課我們繼續(xù)來研究圓柱的體積。同學們回憶一下,什么叫體積?(指名回答,生:物體所占空間的大小叫做體積。)我們學會計算哪些立體圖形的體積呢?(指名學生回答,教師演示課件。根據學生的回答,板書:長方體的體積=底面積×高)

  2、教師:如果這個長方體和正方體的底面積相等,高也相等,那么它們的體積也相等嗎?為什么?

  3、教師:現在又有一個圓柱體,并且圓柱的底面積和長方體與正方體的底面積相等,高也與它們相等,大家猜猜看,圓柱的體積會與長方體和正方體的體積也相等嗎?(指名學生口答)用什么辦法來驗證呢?

  4、教師:在研究這個問題之前,我們先來復習一下,圓的面積是怎樣計算的呢?圓的面積計算公式是怎樣推導出來的?(學生:把一個圓,平均分成若干個扇形,拼成一個近似長方形,長方形的長相當于圓周長的一半,寬相當于圓的半徑。)根據學生的敘述,教師課件演示。

  二、學習新課。

  1、教師:那么今天我們要研究的圓柱的體積,能不能也像剛才圓的面積公式推導過程一樣,轉化成我們學過的立體圖形,推導出計算圓柱體積的公式呢?

  2、學生小組討論、交流。

  教師:同學們自己先在小組里討論一下。要求:

 。1)你準備把圓柱體轉化成什么立體圖形?

 。2)你是怎樣轉化成這個立體圖形的?

 。3)轉化以后的立體圖形和圓柱體之間有什么關系?

  3、推導圓柱體積公式。

  學生交流,教師動畫演示。

 。1)把圓柱體轉化成長方體。

 。2)怎樣轉化成長方體呢?(指名敘述:把圓柱體底面分成平均分成若干個扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。)你會操作嗎?(學生演示教具)

  (3)教師說明:底面扇形平均分的份數越多,拼成的立體圖形就越接近長方體。

 。4)教師:這個長方體與圓柱體比較一下,什么變了?什么沒變?(生:形狀變了,體積大小沒變。)

 。5)推導圓柱體積公式。

  討論:切拼成的長方體與圓柱體有什么關系?(學生回答:切拼成的長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱體的底面積,長方體的高相當于圓柱體的高。教師根據學生回答演示課件。)

  教師:圓柱的體積怎樣計算?用字母公式,怎樣表示?板書:

  圓柱的體積 = 底面積×高

  V =Sh

  三、利用公式進行計算。

  教師:根據圓柱體積的計算公式,如果要求圓柱的體積,你必須知道哪些條件就可以求?

 、僦缊A柱的底面積和高,可以求圓柱的體積。

  練習七的'第1題:填表。

  ②知道圓柱的底面半徑和高,可以求圓柱的體積。

  試一試。

 、壑缊A柱的底面積直徑和高,可以求圓柱的體積。

  練一練的第1題:計算下面各圓柱的體積。

 、苤缊A柱的底面周長和高,可以求圓柱的體積。

  一根圓柱形零件,底面周長是12.56厘米,長是10厘米,它的體積是多少?

  四、鞏固應用。

  1、判斷正誤,對的畫“√”,錯誤的畫“×”。

  2、計算下面各圓柱的體積。

  3、智慧屋:已知一個圓柱的側面積為37.68平方厘米,底面半徑為3厘米,求這個圓柱的體積。

  五、小結。

  教師:這節(jié)課我們一起學習了運用轉化的方法推導出圓柱體積的計算公式,并且能夠運用圓柱體積的計算公式解決一些實際問題。在今后的學習中,特別提醒大家一定正確計算出圓柱的體積,并且能靈活運用圓柱的體積計算公式。

《圓柱的體積》教案2

  教學內容:

  本內容是六年級下冊第8頁至第9頁。

  教材分析:

  本節(jié)內容是在學生了解了圓柱體的特征,掌握了圓柱表面積的計算方法基礎上進行教學的,是幾何知識的綜合運用,為后面學習圓錐的體積打下基礎,教材重視類比,轉化思想的滲透,引導學生經歷“類比猜想——驗證說明”的探索過程,掌握圓柱體積的計算方法。

  學生分析:

  學生已掌握了長方體和正方體體積的計算方法以及圓的面積計算公式的推導過程,在圓柱的體積這節(jié)課化的體現動手實踐,自主探索,合作交流,為突破重、難點。本節(jié)課在教法和學法上從以下幾方面著手:先利用教具通過直觀教學讓學生觀察,比較,動手操作,經歷知識產生的過程,發(fā)展學生思維能力;讓學生通過“類比猜想——驗證說明”的探索過程,主動學習,掌握知識形成技能,合作探究學習成為課堂的主要學習方式。

  學習目標:

  1、使學生理解和掌握圓柱體積的計算方法,在推導圓柱體積計算公式的過程中培養(yǎng)學生初步的空間觀念和動手操作的技能。

  2、使學生能夠通過觀察,大膽猜想和驗證獲得新知識在教學活動過程中發(fā)展學生的`推理能力,滲透轉化思想。

  3、引導學生積極參與數學學習活動,培養(yǎng)學生的數學意識和合作意識。

  教學過程:

  出示教學情境:一個杯子能裝多少水呢?

  想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?

  讓學生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出相關數據,就能求出水的體積;倒入量筒里直接得到水的體積。

 。ㄔO計意圖:讓學生根據自己已有的知識經驗,把圓柱形杯子里的水倒入長方體或正方體容器,使形狀轉化成自己熟悉的長方體或正方體,只要求出長方體或正方體的體積就知道水的體積。)

  出示第二情境:圓柱形的木柱子的體積是多少?用這種方法還行嗎?怎么辦?

 。ㄔO計意圖:創(chuàng)設問題情境,引起學生認知沖突,激起學生求知欲望,使學生帶著積極的思維參與到學習中去,從而產生認知的飛躍。)

  探究新知:怎樣計算圓柱的體積?(板書課題:計算圓柱的體積)

  大膽猜想:你覺得圓柱體積的大小和什么有關?圓柱的體積可能等于什么?(說說猜想依據)

  長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。

  (設計意圖:在新知識的探索中,合理的猜測能為探索問題,解決問題的思維方向起到導航和推進作用。)

  驗證:能否將圓柱轉化為學過的立體圖形?

  讓學生利用學具動手操作來推導圓柱體積公式(小組合作探究:給學生提供充分的時間和空間),引導學生把圓柱體底面平均分成多個小扇形,沿著高切開,拼成一個近似的長方體。

  思考:圓柱體轉化成長方體為什么是近似的長方體?怎樣才能使轉化的立體圖形更接近長方體?

 。ㄔO計意圖:讓學生明確圓柱體的底面平均分成的扇形越多拼成的立體圖形就越接近于長方體,滲透“極限”的思想。)

  用課件展示切拼過程,讓學生觀察等分的份數越多越接近長方體,彌補直觀操作等分的份數太多不易操作的缺陷。

  學生討論交流:

  1、把圓柱拼成長方體后,什么變了,什么沒變?

  2、拼成的長方體與圓柱之間有什么聯(lián)系?

  3、通過觀察得到什么結論?

  得到:圓柱的體積=底面積×高

  V=Sh=πr2h

 。ㄔO計意圖:在數學活動中通過觀察比較培養(yǎng)學生抽象概括能力,及邏輯思維能力。)

  練習設計:

  1、計算下面各圓柱的體積。

  (1)S=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm

  2、算一算:已知一根柱子的底面半徑為0。4米,高為5米,你能算出它的體積嗎?

 。ㄔO計意圖:使學生達到舉一反三的效果,從而訓練學生的技能,靈活掌握本課重點。)

  3、試一試:

 。1)一個圓柱形水桶,從桶內量得底面直徑是3分米,高是4分米,這個桶的容積是多少升?

 。2)一根圓柱形鐵棒,底面周長是12。56厘米,長是100厘米,它的體積是多少?

 。ㄔO計意圖:運用圓柱的體積計算公式解決生活實際問題,切實體驗到數學源于生活,身邊處處是數學。)

  4、拓展練習:

 。1)填表:

  填表后觀察:你發(fā)現了什么?先獨立思考,再小組交流,最后匯報。

 。ㄔO計意圖:在教學時應找出知識間存在著的密切聯(lián)系,幫助學生建立一個較為完整的知識系統(tǒng),為以后“比例”的教學作了孕伏)

  (2)一個柱形容器的底面直徑是10厘米,把一塊鐵塊放入這個容器后,水面上升2厘米,這塊鐵塊的體積是多少?

 。ㄔO計意圖:體會測量不規(guī)則物體體積的方法,認識到數學的價值體驗,使學生的思維處于積極的狀態(tài),培養(yǎng)學生思維靈活性,提高學生創(chuàng)造性解決問題的能力。)

  課堂小結:談談這節(jié)課你有哪些收獲?

 。ㄔO計意圖:采用提問式小結,讓學生暢談本節(jié)課的收獲,包括知識,能力,方法,情感等,通過對本節(jié)課所學知識的總結與回顧,培養(yǎng)學生的歸納概括能力,使學生學到的知識系統(tǒng)化,完整化。)

  教學反思:

  本節(jié)課采用新的教學理念,創(chuàng)設情境導入滲透轉化思想,讓學生在興趣盎然中徑歷自主探究,獨立思考、合作交流從而獲得新知。

  情境導入滲透轉化思想激發(fā)學生的學習欲望,課的開始讓學生想方法測量出圓柱形水杯中水的體積,學生想出把水倒入長方體容器中轉化成長方體的體積來計算出水的體積,初步引導學生把圓柱體的體積轉化為長方體的體積。教會學生數學方法,注重讓學生在操作中探究,動手操作能展示學生個體的實踐活動,在動手過程中易于激發(fā)興趣,積累知識,發(fā)展思維,利于每一位學生自主,獨立,創(chuàng)造性的學習知識,發(fā)展他們的能力,課中讓學生經歷知識產生的過程,理解和掌握數學基礎知識,讓學生在體驗和探索過程中不斷積累知識,逐步發(fā)展其空間觀念,促進學生的思維發(fā)展。

《圓柱的體積》教案3

  新課程觀強調:

  教材是一種重要的課程資源,對于學校和教師來說,課程實施更多地應該是如何更好地用教材,而不是簡單地教教材。在實際教學中,如何落實這一理念?本人結合圓柱的體積一課談談自己的實踐與思考。

  ■ [片段一]

  ■ 師生共同探究出圓柱的體積計算公式后對公式加以應用。師出示教材例4(蘇教版第12冊P8):一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,它的體積是多少?

  ■ 由于課前學生已進行了預習,多數學生是按照教材介紹的解法來解答:

  ■ 1.5米=150厘米 201150=3000(立方厘米)

  ■ 師:這道題還有其他結果嗎?(學生又沉入了深思)不一會兒,另外兩種結果紛紛展現:

  ■ ①20平方厘米=0.002平方米 0.00211.5=0.003(立方米)

  ■ ②20平方厘米=0.2平方分米 1.5米=15分米 0.2115=3(立方分米)

  ■ 師:為什么會出現三種結果?

  ■ 經討論,學生才明白:從不同的角度去考慮問題,將得到不同的結果。

  ■ [片斷二]

  ■ 鞏固與應用階段,我將教材練習二中的一個填表題(表1)進行了加工組合呈現給學生這樣一個表格(表2)。

  ■ 表 1

  ■

  ■ 表2

  ■

  ■ 學生填表后,師:觀察前兩組數據,你想說什么?

  ■ 學生獨立思考后再小組交流,最后匯報。

  ■ 生1:兩個圓柱的高相等,底面積是幾倍的關系,體積也是幾倍的關系。

  ■ 生2:兩個圓柱的高相等,底面積越大,體積就越大。

  ■ 師:觀察后兩組數據,你想說什么?

  ■ 有了前面的基礎,學生很容易說出了后兩組的關系。

  ■ 學生的表述盡管不是很準確完美,但已說出了其中的規(guī)律,而這個規(guī)律正是解答練習二第17、18題的基礎,又為下一單元比例的教學作了提前孕伏。

  ■ [片段三]

  ■ 教材的練習中有這樣一題:量一個圓柱形茶杯的高和底面直徑,算出它可裝水多少克?

  ■ 學生動手測量自備的圓柱形茶杯的有關數據并計算它的體積。

  ■ 師:水的生命之源。人每天都要飲用一定量的水,請大家課后查閱相關資料,計算自己每天需要飲用幾杯水(自己的'杯子)才能保證健康,并把自己對水的想法寫下來,下節(jié)課我們再交流。

  ■ [教學反思]

  ■ 精心研究教材是用好教材的基礎

  ■ 教材作為教學的憑借與依據,只不過是編者對學科知識、國家要求與學生進行整和思考的結晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種枷鎖,而應作為跳板編者意圖與學生實際的跳板。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創(chuàng)造性地利用教材。

  ■ 1、挖掘訓練空白,及時補白教材。編者在編寫教材時,也考慮了地域、學科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓練空白,及時補白教材。[片段一] 中的例題教學,就挖掘出了教材中的訓練空白,并沒有把教學簡單地停留在一種解答方法上,而是在學生預習的基礎上引導學生深入思考,在解決問題的過程中體會從不同的角度去考慮問題,將得到不同的結果的道理,從而學會多角度考慮問題,提高解決問題的能力。

  ■ 2、找出知識聯(lián)系,大膽重組教材。數學知識具有一定的結構,知識間存在著密切的聯(lián)系,我們在教學時不能只著眼于本節(jié)課的教學,而應找出知識間的內在聯(lián)系,幫助學生建立一個較為完整知識系統(tǒng)。[片斷二]的表1僅幫助學生熟練掌握體積公式,此外無更多的教學價值,而重組后的表2不僅實現了編者的意圖,而且為比例的教學作了提前孕伏。走出了數學教學的只見樹木,不見森林的點教學的誤區(qū)。

  ■ 落實課標理念是用好教材的關鍵

  ■ 能否用好教材,關鍵在于我們的課堂教學是否落實了新課標的理念。關注人是新課程的核心理念。我們的數學教學不能再以學科為中心,而應以學生為出發(fā)點和歸宿。教材在編寫時不可能面面俱到,教師要心里裝著學生,使用教材前反復琢磨,怎樣的教學才能符合新理念。前兩個片段就突破了學科中心和知識中心,走向了學生中心。[片斷三]在教材關注學生的基礎上向深層發(fā)展不僅讓學生動手測量,動腦計算,而且讓學生在課外展開調查研究;不僅關注知識技能,而且關注了態(tài)度、情感和價值觀(對生命之源水的自我看法)這一片斷的教學,其價值就在于滲透了人文關愛。

  ■ 學生獲得發(fā)展是用好教材的標準

  ■ 有的教師在教學中常常脫離教材,片面追求新課程的形式,而忽略了實質一切為了每一位學生的發(fā)展。每個學生在一節(jié)課的40分鐘里獲得最大發(fā)展應作為我們用好教材組織教學的追求。本節(jié)課緊扣教材,以本為本,著眼學生的發(fā)展,無論是知識技能、過程與方法、數學思考還是情感態(tài)度價值觀,學生都獲得了最大發(fā)展。

《圓柱的體積》教案4

  第二課時

  教學目標

  1.經歷同桌合作,測量、計算圓柱形物體體積的過程。

  2.會測量圓柱形物體的有關數據,能根據圓柱的高及底面直徑或周長計算圓柱的體積。

  3.能與同伴合作尋找解決問題的有效方法,能表達解決問題的大致過程和結果。

  教學重點

  能根據學生自己測量的數據進行圓柱體積的計算。

  教學難點

  給出圓柱底面周長如何計算圓柱的體積。

  教具準備

  學生自備的茶葉筒或露露瓶。

  教學過程

  一、測量茶葉筒的體積

  1.師:同學們,我們要想計算這個茶葉筒的體積,應該首先知道哪些數據?

  生:茶葉筒的高,底面直徑或半徑。

  師:很好,那么我們就來親手量一量你們手里的圓柱體的各個數據,并計算出它們的體積。

  學生同桌合作測量并計算。

  2.交流測量數據的方法和計算的結果。

  3.剛才同學大部分都測量的是茶葉筒的高和直徑或半徑,有沒有測量茶葉筒的底面周長的?如果有,就說說是怎么測量和計算的。如果沒有,就提示大家,如果給出了圓柱底面周長,怎樣計算圓柱的體積呢?

  生:利用周長先求出半徑,再進行計算。

  師:你們會不會測量茶葉筒的底面周長呢?如果已經忘記,就進行一下提示:在圓柱的底面上做一標記,然后把圓柱體在直尺上進行滾動;蛴闷こ邷y量。請大家實際測量一下底面周長,并進行計算,看看和剛才計算的結果是否一致。

  二、鞏固練習

  1.一根圓柱形水泥柱子,它的底面周長是6.28分米,高200分米,求它的體積?

  2.獨立完成練一練的1-3題。

  三、家庭作業(yè)

  1.練一練的第4小題。

  2.①一個圓柱的'的體積是141.3立方厘米,底面半徑3厘米,它的高是多少厘米?

 、谝桓鶊A柱形鋼材,截下2米,量得它的橫截面的直徑是4厘米,如果每立方厘米鋼重7.8克,截下的這段鋼材重多少克?

  圓柱的體積

  第三課時 容積

  教學目標

  1.結合具體事例,經歷探索容積計算問題的過程。

  2.掌握計算容積的方法,能解決有關容積的簡單實際問題。

  3.在解決容積問題的過程中,體驗數學與日常生活的密切聯(lián)系。

  教學重點

  利用體積公式計算保溫杯的容積。

  教學難點

  計算容積所需要的數據是容器內壁的高、底面直徑或半徑,如何獲得這些數據。

  教學過程

  一、復習舊知

  1.求下列圓柱的體積(口答列式)。

  (1)底面積3平方分米,高4分米;

 。2)底面半徑2厘米,高2厘米;

 。3)底面直徑2分米,高3分米。

  追問:圓柱的體積是怎樣計算的?(板書:V=Sh)

  2.復習容積。

  提問:什么是容積?它與物體的體積有什么區(qū)別?我們是按什么方法計算容積的?

  3.引入新課。

  我們已經學習過圓柱的體積計算,知道了容積和容積的計算方法。這節(jié)課,就在計算圓柱體積的基礎上,學習圓柱的容積計算。(板書課題)

  二、教學新課

  1.教學例題。

  出示例題,讀題。提問:這道題求什么?你能計算它的容積嗎?請大家仔細看一下題目,解答這道題還要注意些什么?(統(tǒng)一單位或改寫體積單位,取近似數)指名學生板演,其余學生做在練習本上。集體訂正,說明每一步求的什么,怎樣求的。同時注意是怎樣統(tǒng)一單位和取近似值的。

  2.注意體積單位和容積單位的區(qū)別,以及它們之間的換算:

  1立方分米=1升 1立方厘米=1毫升

  3.注意保溫杯內壁的厚度應該減去幾個才是內壁的直徑,高應該減去幾個厚度才是內壁的高?

  4.學生獨立完成。然后進行全班交流。

  三、新課小結

  1.提問:求圓柱形容器的容積要怎樣計算?如果知道圓柱底面的半徑或直徑,怎樣求圓柱的體積?

  2.計算容積與計算體積有什么相同點和不同點?

  四、提高練習

  把6個這樣的保溫杯倒?jié)M水,大約需要多少千克水?

  注意大頭蛙的話:1毫升水重1克。

  五、鞏固練習

  1.拿一個水杯,量出它的內直徑和高,算一算這個水杯大約可以裝多少水?

  注意:如果給出水杯的外壁直徑、杯壁厚度和高,怎么計算?(內壁就減兩個厚度,高減一個厚度,因為水杯沒有蓋。)

  2.練一練1:求水杯的水有多少是求水杯的容積嗎?水杯的高度與計算容積有關嗎?需要用哪個數據來計算?(杯中水的高度)

  3.練一練第4小題。怎么鋼管的體積?

  1)鋼管體積=大圓柱體積-小圓柱體積

  2)鋼管體積=鋼管環(huán)形底面積高

《圓柱的體積》教案5

  目標:

  1、 理解圓柱體積公式的推導過程,掌握計算公式。

  2、 會運用公式計算圓柱的體積,提高學生知識遷移的能力。

  3、 在公式推導中滲透轉化的思想。

  重點:

  理解圓柱的體積公式的推導過程。

  難點:

  圓柱體積的計算。

  用具:

  課件、圓柱模型。

  過程:

  1、 教師提問。

 。1)什么叫物體的體積?怎樣求長方體的體積?

 。2)圓的面積公式是什么?

  (3)圓的面積公式是怎樣推導的?

  2、 教師:同學們,我們在研究圓的面積公式的推導時,是把它轉化成我們學過的長方形來解決的,那么,圓柱的體積怎樣計算呢?能不能也把它轉化成我們學過的立體圖形來計算呢?這節(jié)課,我們就來研究這個問題。(板書:圓柱的體積)

  1、 教學例5。

  講授圓柱體積公式的推導。(演示動畫“圓柱的體積”)

 。1)教師演示。

  把圓柱的底面分成16個相等的扇形,再按照這些扇形的形狀,沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。

 。2)學生利用學具操作。

  (3)啟發(fā)學生思考、討論:

 、賵A柱切開后可以拼成一個什么立體圖形?(近似的長方體)

 、谕ㄟ^剛才的實驗你發(fā)現了什么?

  A、拼成的這個近似長方體的立體圖形和圓柱相比,體積大小沒變,但形狀變了。

  B、拼成的這個近似長方體的立體圖形和圓柱相比,底面的形狀變了,由圓變成了近似長方形的立體圖形,而底面的面積大小沒有發(fā)生變化。

  C、這個近似長方體的立體圖形的高就是圓柱的高,高的長度沒有變化。

  (4)學生根據圓的面積公式的推導過程,進行猜想。

  ①如果把圓柱的底面平均分成32份,拼成的形狀是怎樣的?

  ②如果把圓柱的底面平均分成64份,拼成的形狀是怎樣的?

 、廴绻褕A柱的底面平均分成128份,拼成的形狀是怎樣的?

 。5)通過以上的觀察,啟發(fā)學生說出發(fā)現了什么。

 、倨骄值姆輸翟蕉,拼起來的形狀越接近長方體。

  ②平均分的份數越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個立體圖形的形狀就越接近長方體。

 。6)推導圓柱的體積公式。

 、賹W生分組討論:圓柱的體積怎樣計算?

 、趯W生匯報討論結果,并說明理由。

  教師:因為長方體的體積等于底面積乘高,(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積)近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)

 、塾米帜副硎緢A柱的體積公式。(板書:V=Sh)

  2、 教學例6。

  出示教材第26頁例6。

 。1)學生讀題,理解題意。

 。2)教師:要知道能否裝下這袋奶,首先要計算出什么?

  學生:杯子的容積。

 。3)指明要計算杯子的容積,學生在練習本上完成。

  杯子的底面積:3.14×(8÷2)2=50、24(cm2)

  杯子的容積:50、24×10=502、4(mL)

  答:因為502、4大于498,所以杯子能裝下這袋牛奶。

  3、 教學例7。

  師:看下面的問題你能解答嗎?遇到了什么問題?有什么辦法嗎?(課件出示:教材第27頁例7)

  生1:這個瓶子不是一個完整的圓柱,無法直接計算容積。

  生2:我們可以先轉化成圓柱,再計算瓶子的容積。

  師:怎樣轉化呢?說說你的`想法。

  學生可能會說:

  瓶子里的水的體積始終是不變的,即使瓶子倒置后,水的體積與原來還是一樣的,這樣就說明瓶子的容積其實就是水的體積加上18cm高的圓柱的體積。

  也就是把瓶子的容積轉化成了兩個圓柱的體積。

  ……

  師:嘗試自己解答一下。

  學生嘗試解答;教師巡視了解情況。

  組織學生交流匯報:

  瓶子的容積=3.14×(8÷2)2×7+3.14×(8÷2)2×18

  3.14×(8÷2)2×7+3.14×(8÷2)2×18

  =3.14×16×(7+18)

  =3.14×16×25

  =1256(cm3)

  =1256(mL)

  答:這個瓶子的容積是1256mL。

  只要學生解答正確就要給予肯定,不強求算法一致。

  【設計意圖:讓學生聯(lián)系實際,靈活地運用圓柱體積的計算方法解決實際問題,使學生體會到在生活中,數學知識應用的廣泛性】

  師:在本節(jié)課的學習中,你有哪些收獲?

  學生可能會說:

  利用“轉化”可以幫助我們解決問題。

  我們利用了體積不變的特性,把不規(guī)則圖形轉化成規(guī)則圖形來進行體積的計算。

  在五年級時,計算梨的體積也是用了轉化的方法。

  ……

  【設計意圖:既幫助學生梳理了所學知識,又及時總結了學習方法,滲透了數學思想】

  圓柱的體積

  長方體的體積=底面積×高

  ↓ ↓ ↓

  圓柱的體積=底面積×高

  V=

  A類

  1、填表。

  底面積S(平方米) 高h(米) 圓柱的體積V(立方米)

  15 3

  6.4 4

  2、一個圓柱形水池,底面半徑是10米,深1.5米。這個水池的占地面積是多少平方米?水池的容積是多少立方米?

  (考查知識點:圓柱的體積;能力要求:掌握圓柱體積的計算方法)

  B類

  兩個底面積相等的圓柱,一個圓柱的高為9分米,體積為162立方分米。另一個圓柱的高為3分米,體積是多少立方分米?

 。ǹ疾橹R點:圓柱的體積;能力要求:能運用圓柱體積計算的方法解決簡單的問題)

  課堂作業(yè)新設計

  A類:

  1、 45 25.6

  2、 314平方米 471立方米

  B類:

  54立方分米

  教材習題

  第25頁“做一做”

  1、 75×90=6750(cm3)

  2、 3.14×(1÷2)2×10=7.85(m3)

  第26頁“做一做”

  1、 3.14×(8÷2)2×15=753.6(cm3) 753.6cm3=0.7356L 0.75361 不夠。

  2、 3.14×(0.4÷2)2×5÷0.02≈31(張)

  第27頁“做一做”

  3.14×(6÷2)2×10=282.6(cm3) 282.6cm3=282.6mL

  第28頁“練習五”

  1、 3.14×52×2=157(cm3)

  3.14×(4÷2)2×12=150.72(cm3)

  3.14×(8÷2)2×8=401.92(cm3)

  2、 3.14×(60÷2)2×90=254340(cm3) 254340cm3=254340mL

  3、 3.14×(3÷2)2×0.5×2=7.065(m3)

  4、 80÷16=5(cm)

  5、 3.14×1.52×2×750=10597.5(千克) 10597.5千克=10.5975噸

  6、 表面積:3.14×6×12+3.14×(6÷2)2×2=282.6(cm2)

  體積:3.14×(6÷2)2×12=339.12(cm3)

  表面積20×10+20×15+15×10)×2=1300(cm2) 體積:20×10×15=3000(cm3)

  表面積:3.14×14×5+3.14×(14÷2)2×2=527.52(cm2)

  體積:3.14×(14÷2)2×5=769.3(cm3)

  7、 25cm=0.25m 35—3.14×(2÷2)2×0.25=34.215(立方米)

  8、 3.14×(6÷2)2×11×(2+1)=932.58(cm3) 932.58cm3=932.58mL

  932、58800 不夠

  9、 81÷4.5×3=54(dm3)

  10、 3.14×(10÷2)2×2=157(cm3)

  11、 3.14×(1.2÷2)2×20×50=1130.4(cm3) 1130.4cm3=1.1304L 1.13041 能裝滿。

  12、 3.14×(10÷2)2×80—3.14×(8÷2)2×80=2260.8(cm3)

  13、 30×10×4÷6=200(cm3)=200(mL)

  14、 3.14×102×20=6280(cm3) 3.14×202×10=12560(cm3)

  15、 第四個圓柱的體積最;第一個圓柱的體積最大。

  發(fā)現:同樣一張長方形紙可以圍成兩個不同的圓柱,且以長邊為圓柱的底面周長時圍成圓柱的體積最大。

《圓柱的體積》教案6

  教學目標:

  1、使學生能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學會用轉化的數學思想和方法,解決實際問題的能力

  4、滲透轉化思想,培養(yǎng)學生的自主探索意識。

  教學重點:掌握圓柱體積的計算公式。

  教學難點:靈活應用圓柱的體積公式解決實際問題。

  教學過程:

  一、復習

  1、復習圓柱體積的推導過程

  長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的'高。

  長方體的體積=底面積高,所以圓柱的體積=底面積高,即V=Sh。

  2、復習長方體的體積公式后,讓學生獨立完成練習三第6題,并指名板演。

  二、解決實際問題

  1、練習三第7題。

  學生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨立完成。

  2、練習三第5題。

  (1)指導學生變換公式:因為V=Sh,所以h=VS。也可以列方程解答。

 。2)學生選擇喜愛的方法解答這道題目。

  3、練習三第8題。

  (1)學生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。

  (2)在充分理解題意后學生獨立完成,集體訂正。

  4、練習三第9、10題

 。1)學生獨立審題,完成9、10兩題。

  (2)評講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)

  (3)指名說說解答第10題的思路:根據兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。

  三、布置作業(yè)

  完成一課三練的相關練習。

《圓柱的體積》教案7

  教學內容:教材第12頁例3、練一練,練習二第6~11題。

  教學要求:使學生進一步認識體積的計算方法,能根據不同的條件求圓柱的體積,學會計算套管體積的計算方法,井能應用于實際求出物體的重量。

  教學重點:計算套管體積的計算方法。

  教學難點:根據不同的'條件求圓柱的體積。

  教學過程:

  一、鋪墊孕伏:

  1.求下列圓柱的體積(口答列式)。

  (1)底面積3平方分米,高4分米;

  (2)底面半徑2厘米,高2厘米;

  (3)底面直徑2分米,高3分米。

  追問:圓柱的體積是怎樣計算的?(板書:V=Sh)

  2.復習環(huán)形面積的計算公式。

  提問:怎樣計算環(huán)形面積?你能舉例和同學們說一說嗎?小組交流。

  3.引入新課。

  我們已經學習過圓柱的體積計算。這節(jié)課,就在計算圓柱體積的基礎上,學習套管體積的計算。(板書課題)

  二、自主探究:

  1.教學例3。

  出示例3,讀題。提問:這道題求什么?要求鋼管的質量先要求什么?怎樣求鋼管的體積?小組討論。解答這道題還要注意些什么?(單位,取近似數)指名學生板演,其余學生做在練習本上。集體訂正,說明每一步求的什么,怎樣求的。

  2.新課小結。

  提問:怎樣計算套管體積?如果知道套管的內周長和外周長幾套管的長,怎樣求套管的體積?

  三、鞏固練習

  1.做練一練第1題。

  指名兩人板演,其余學生分兩組,每組-題做在練習本上。集體訂正。

  2.做練習二第6題。

  讓學生在練習本上完成。指名學生口答算式,老師板書。結合讓學生說一說是怎樣想的。

  四、布置作業(yè)

  練習二第7、8題及數訓。

《圓柱的體積》教案8

  一、教學目標

  【知識與技能】

  掌握圓柱的體積計算公式,能夠正確計算圓柱的體積。

  【過程與方法】

  通過觀察、類比、分析的過程,提高分析問題、解決問題的能力,發(fā)展空間觀念。

  【情感態(tài)度價值觀】

  感受數學與生活的聯(lián)系,激發(fā)學習興趣,提高學習數學的自信心。

  二、教學重難點

  【教學重點】

  圓柱的體積公式。

  【教學難點】

  圓柱體積公式的推導過程。

  三、教學過程

  (一)引入新課

  提問:長方體和正方體的體積公式是什么?

  預設:長方體的體積=長×寬×高,正方體體積=棱長×棱長×棱長,兩者共有的體積公式:長方體

  (正方體)體積=底面積×高。今天我們再來研究另一個熟悉的幾何圖形,圓柱的體積公式。從而引出本節(jié)課題《圓柱的體積》。

  (二)探索新知

  1.圓柱體積公式的猜想

  在大屏幕出示底面積和高都相等的長方體、正方體和圓柱。

  提問:長方體和正方體的體積相等嗎?

  預設:根據長方體(正方體)體積=底面積×高,所以長方體和正方體體積相等。

  追問:類比之前學過的體積公式,圓柱的體積可能和哪些因素有關?圓柱的體積公式可能是什么?

  預設:圓柱的體積和底面積、高有關,圓柱的'體積公式=底面積×高。

  2.圓柱體積公式的推導

  回憶圓的面積是通過轉化為長方形,從而推導出圓的面積公式。提問:圓柱可以轉化成已知體積公式的哪個圖形呢?

  預設:可以把圓柱轉換成長方體。

  讓學生根據提前下發(fā)的能自動等份分割的圓柱體學具,同桌之間相互交流:如何把圓柱轉化為長方體呢?

  預設:學生分一分,拼一拼,組合成近似長方體的圖形。此時教師應借助多媒體設備展示把圓柱等份分成32份,64份甚至更多份的情境,隨著等份分割的份數越多,拼成的圖形就越接近長方體。

  組織學生進行小組討論:觀察拼成的長方體和原來的圓柱具有怎樣的關系?5分鐘后請小組代表進行回答。

  預設:長方體的底面積、高和體積分別等于原來圓柱的底面積、高和體積。

  3.圓柱體積公式的推出

  提問:圓柱的體積公式是什么?

  預設:圓柱的體積=底面積×高

  用大寫字母V表示圓柱的體積,S表示底面積,h表示圓柱的高,用字母表示圓柱的體積公式。

  預設:V=Sh

  教師強調字母V、S是大寫,h是小寫。

  追問:回顧探究圓柱體積公式的過程,有哪些心得體會?

  預設1:可以用長方體體積公式推導出圓柱體體積公式;

  預設2:把圓柱轉化成長方體,與探索圓面積的方法類似;

  預設3:計算長方體、正方體、圓柱的體積都可以用底面積乘高。

  (三)課堂練習

  試一試

  一個圓柱形零件,底面半徑是5厘米,高是8厘米。這個零件的體積是多少立方厘米?

  (四)小結作業(yè)

  提問:通過本節(jié)課的學習有什么收獲?

  課后作業(yè):找找生活當中的圓柱物體,量一量底面積和高,算一算物體體積。

  四、板書設計

《圓柱的體積》教案9

  教學目標:

  1、使學生能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學會用轉化的數學思想和方法,解決實際問題的能力

  3、滲透轉化思想,培養(yǎng)學生的自主探索意識。

  教學重點:

  掌握圓柱體積的計算公式。

  教學難點:

  靈活應用圓柱的體積公式解決實際問題。

  教學過程:

  一、復習

  1、復習圓柱體積的推導過程

  長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

  長方體的體積=底面積×高,所以圓柱的體積=底面積×高,即V=Sh。

  2、復習長方體、正方體的體積公式后,讓學生獨立完成練習三第6題求體積部分,并指名板演。

  二、解決實際問題

  1、練習三第4題。

  學生獨立練習,強調選取有用信息,培養(yǎng)認真審題習慣。

  2、練習三第5題。

  (1)指導學生變換公式:因為V=Sh,所以h=V÷S。也可以列方程解答。

 。2)學生選擇喜愛的方法解答這道題目。

  3、練習三第10題。

  指名說說解答第10題的思路:根據兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。

  4、練習三第8題。

 。1)學生讀題后,指名說說對題意的理解:求減少的土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。

 。2)在充分理解題意后學生獨立完成,集體訂正。

  4、練習三第9題

 。1)學生獨立審題后完成。

  評講:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)

  5、練習三第11題。

  此題既可以用外圓柱體積減內圓柱的體積,也可以用圓環(huán)的面積乘高。

 。3)三、布置作業(yè)

  完成練習中未做完的習題

  教學反思

  第五課時特別關注

  練習三第4題,在教學中必須應該特別關注。

  關注理由:

  1、有多余條件,是培養(yǎng)學生收集有用信息的契機。

  這道題中出現兩個圓柱體的高,分別是花壇的高0.8米和花壇里面填土的高0 .5米。學生該如何合理做出選擇呢,關鍵要通過問題來思考。因為問題是求“花壇中共需要填土多少方”,所以應該選用“填土的.高度是0.5米”這條數學信息。

  在課堂中,我還要求學生思考,如果要用上“0.8米”這個條件下,可以怎么改變問題。有的學生說“可以問花壇的體積是多少立方米”,還有的同學說“可以求花壇中空間的體積是多少立方米”。通過這樣的訓練,能夠有效培養(yǎng)學生收集、處理信息的能力,同時提升他們綜合分析問題的能力。

  2、有容易忽視的條件,是培養(yǎng)學生認真審題的契機。

  一般習題中的數據是用阿拉伯數字呈現,可這道題的問題是求“兩個花壇中共需要填土多少方”,這里隱含著一個極易被學生忽視的數據“兩個”。其實,配套的插圖中也明顯繪制出了2個花壇,但在做題中許多學生仍舊會出錯。所以,應抓住此題,培養(yǎng)學生良好審題的習慣。如在做這類習題時,建議首先將單位圈出來,以確保列式時單位統(tǒng)一。還可以將問題劃橫線,以提醒自己將生活問題轉化為數學問題等。

  學生巧解

  ——巧求削去部分的體積

  今天,全班同學做這樣一題:一塊長方體木塊體積是20立方分米,它的底面為正方形,邊長為2分米。現在,將它削成一個的圓柱體,求削去的部分是多少立方分米?

  我因為做得既對又快,最終獲得全班第一名的成績。通過對比,我發(fā)現自己的方法比同學們巧妙。

  同學們的解法是先求長方體的高(即圓柱體的高),用20÷(2×2)=5分米,然后求圓柱體的體積,列式為3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的體積是20—15.7=4.3平方分米。

  而我在做這一題時,想起上學期在正方形中畫的圓,圓的面積占正方形面積的157/200的結論。因為直柱體的體積都可以寫成底面直徑乘高,而長方體和削成的圓柱體高相等,所以削成的圓柱體體積也應該是長方體體積的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。

《圓柱的體積》教案10

  教學內容:

  教材第10~12頁圓柱的體積公式,例1、例2和練一練,練習二第1~5題。

  教學要求:

  1.使學生理解和掌握圓柱的體積計算公式,并能根據題里的條件正確地求出圓柱的體積。

  2.培養(yǎng)學生初步的空間觀念和思維能力;讓學生認識轉化的思考方法。

  教具準備:

  圓柱體積演示教具。

  教學重點:

  理解和掌握圓柱的體積計算公式。

  教學難點:

  圓柱體積計算公式的推導。

  教學過程:

  一、鋪墊孕伏:

  1.求下面各圓的面積(回答)。

  (1)r=1厘米;(2)d=4分米;(3)C=6.28米。

  要求說出解題思路。

  2.想一想:學習計算圓的面積時,是怎樣得出圓的面積計算公式的?指出:把一個圓等分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。

  3.提問:什么叫體積?常用的`體積單位有哪些?

  4.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積高)

  二、自主研究:

  1.根據學過的體積概念,說說什么是圓柱的體積。(板書課題)

  2.怎樣計算圓柱的體積呢?我們能不能根據圓柱的底面可以像上面說的轉化成一個長方形,通過切、拼的方法,把圓柱轉化為已學過的立體圖形來計算呢,現在我們大家一起來討論。

  3.公式推導。(可分小組進行)

  (1)請同學指出圓柱體的底面積和高。

  (2)回顧圓面積公式的推導。(切拼轉化)

  (3)探索求圓柱體積的公式。

  根據圓面積剪、拼轉化成長方形的思路,我們也可以運用切拼轉化的方法把圓柱體變成學過的幾何形體來推導出圓柱的體積計算公式。你能想出怎樣切、拼轉化嗎?請同學們仔細觀察以下實驗,邊觀察邊思考圓柱的體積、底面積、高與拼成的幾何形體之間的關系。教師演示圓柱體積公式推導演示教具:把圓柱的底面分成許多相等的扇形(數量一般為16個),然后把圓柱切開,照下圖拼起來,(圖見教材)就近似于一個長方體。可以想象,分成的扇形越多,拼成的立體圖形就越接近于長方體。

  (4)討論并得出結果。

  你能根據這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉化成近似的體。這個長方體的底面積與圓柱體的底面積,這個長方體的高與圓柱體的高。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是:。(板書:圓柱的體積=底面積高)用字母表示:。(板書:V=Sh)

  (5)小結。

  圓柱的體積是怎樣推導出來的?計算圓柱的體積必須知道哪些條件?

  4.教學例1。

  出示例1,審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據是什么?應注意哪些問題?(單位統(tǒng)一,最后結果用體積單位)

  0.9米=90厘米2490=2160(立方厘米)

  5.做練習二第1題。

  讓學生做在課本上。指名口答,集體訂正。追問:圓柱的體積是怎樣算的?

  6.教學試一試一個圓柱的底面半徑是2分米,高是8米,求它的體積。指名一人板演,其余學生做在練習本上。評講試一試小結:求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。

  7.教學例2。

  出示例2,審題。小組討論計算方法,然后學生做在練習本上。集體訂正:列式依據是什么?應注意哪些問題?(單位統(tǒng)一,最后結果用體積單位,結果保留整數。)

  三、鞏固練習

  第12頁,練一練。

  四、課堂小結

  這節(jié)課學習了什么內容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉化,把圓柱體切拼轉化成長方體,(在課題下板書:圓柱些長方體)得出了圓柱體的體積計算公式V=Sh。

  五、布置作業(yè)

  練習二第2,3,4,5題及數訓。

  六、板書設計:

  圓柱的體積

  長方體的體積=底面積高

  圓柱的體積=底面積高

  V=Sh

《圓柱的體積》教案11

  教學目標:

  1、理解圓柱體積公式的推導過程。

  2、能夠初步地學會運用體積公式解決簡單的實際問題。

  3、進一步提高學生解決問題的能力。

  教學重、難點:

  1、理解圓柱體積公式的推導過程。

  2、能夠初步地學會運用體積公式解決簡單的實際問題。

  3、理解圓柱體積公式的推導過程。

  教學準備:

  圓柱切割組合模具、小黑板。

  教學過程:

  一、創(chuàng)設情境,生成問題

  1、什么是體積?(物體所占空間的大小叫做物體的體積。)

  2、長方體的體積該怎樣計算?歸納到底面積乘高上來。

  3、圓的面積怎樣計算?

  二、探索交流,解決問題

  1、計算圓的面積時,是把圓面積轉化成我們學過的長方形進行計算的,能不能把圓柱轉化成我們學過的立體圖形來計算它的體積?

  (啟發(fā)學生思考。)

  2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導學生進行觀察。

  3、思考:

  (1)圓柱切開后可以拼成一個什么形體?(長方體)

  (2)通過實驗你發(fā)現了什么?小組討論:實驗前后,什么變了?什么沒變?討論后,整理出來,再進行匯報。

  (拼成的近似長方體體積大小沒變,形狀變了,拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)

  4、推導圓柱體積公式

  小組討論:怎樣計算圓柱的體積?

  學生匯報討論結果。

  長方體的體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。

  師:圓柱的.體積怎樣計算?用字母公式,怎樣表示?

  板書:V=Sh

  5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?

  三、鞏固應用練習。

  1、一個圓柱形水桶,從桶內量得底面直徑是3分米,高是4分米,這個水桶的容積是多少升?說明:求水桶的容積,就是求水桶的體積。想一想先求什么?

  2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?先求底面半徑再求底面積,最后求體積。已知底面周長對解決問題有什么幫助嗎?必須先求出什么?

  四:課堂小結:

  通過這節(jié)課你學會了哪些知識,有什么收獲?

  五:課后作業(yè):

  教材第9頁,練一練第1、3、4、題

《圓柱的體積》教案12

  教學目標

  1.使學生初步理解和掌握圓柱的體積計算公式。會用公式計算圓柱的體積,并能應用分式解答一些實際問題。

  2.在充分展示體積公式推導過程的基礎上,培養(yǎng)學生推理歸納能力和自學能力。

  教學重點和難點

  圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。

  教學過程設計

  我們已經認識了圓柱體,學會了圓柱體側面積和表面積的計算,今天研究圓柱的體積。(板書:圓柱的體積)

  (一)復習準備

  1.什么叫體積?(指名回答)

  生:物體所占空間的大小叫做體積。

  師:你學過哪些體積的計算公式?(指名回答)

  根據學生的回答,板書:

  長方體體積=底面積×高

  2.圓面積公式是怎樣推導出來的?

  生:把一個圓,平均分成數個扇形,拼成一個近似長方形,長方形的長相當于圓周長的一半,寬相當于圓的半徑,(根據學生的敘述,邊用幻燈片演示。)得到圓面積公式S=πr2。

  (二)學習新課

  1.動腦筋想一想,圓柱的'體積,能不能轉化成你學過的形體,推導出計算圓柱體積的公式?

  2.看書自學。

  (1)圓柱體是怎樣變成近似長方體的?

  (2)切拼成的長方體與圓柱體有什么關系?

  (3)怎樣計算切拼成的長方體體積?

  3.推導圓柱體積公式。

  (1)討論自學題(1)。圓柱體是怎樣變成長方體的?(指名敘述)再看看書和你敘述的一樣嗎?

  把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數越多,拼成的立體圖形越接近長方體。)

  (2)動手操作切拼,將圓柱體轉化成長方體。

  出示兩個等底等高圓柱體,讓學生比一比,底面積大小一樣,高相等,使學生確信,兩個圓柱體的體積相等。

  請兩名同學按照你們的敘述,把圓柱體切拼成長方體。(如有條件,每四人一個學具,人人動手切拼,充分展示切拼過程和公式推導過程。)

  現在討論自學題(2)。

  師:這個長方體與圓柱體比較一下,什么變了?什么沒變?

  生:形狀變了,體積大小沒變。

  (3)推導圓柱體積公式。

  討論:切拼成的長方體與圓柱體有什么關系?(引導學生有順序的進行敘述,分小組討論,讓學生充分發(fā)言。)

  小結:切拼成的長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱體的底面積,長方體的高相當于圓柱體的高。

  師:圓柱的體積怎樣計算?用字母公式,怎樣表示?

  板書: V=Sh

  (4)利用公式進行計算。

  例1 一根圓柱形鋼材,底面積是50平方厘米,高2。1米,它的體積是多少?

  引導學生審題,說出題目中的已知條件和問題。做這道題還要注意什么?

  生:已知圓柱體底面積和高,求圓柱的體積,注意統(tǒng)一單位名稱。

  2。1米=210厘米 (①用字母表示已知條件)

  S=50 h=210 (②寫出字母公式)

  V=Sh (③列式計算)

  =50×210 (④寫出答題)

  =10500

  答:它的體積是10500立方厘米。

  引導學生總結出做題步驟。

  小結:要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,會求出底面積)和高。注意統(tǒng)一單位名稱。

  (三)鞏固反饋

  1.圓柱體的底面積3。14平方分米,高40厘米。它的體積是多少?

  2.求下面圓柱體的體積。(單位:厘米)

  3.填表:

  4.一個圓柱形容器,底面半徑是25厘米,高8分米。它的容積是多少立方分米?

  5.一個圓柱形糧囤,從里面量,底面周長是6。28米,高20分米。它的容積是多少立方米?

  (四)課堂總結

  這節(jié)課,你學會了什么?還有什么問題?

  生:學會了圓柱體的體積計算公式,并會用公式解答實際問題。

  思考題:

  一張長方形的紙長6。28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計算一下。

  課堂教學設計說明

  本節(jié)教案分三個層次。

  第一層次是復習。

  第二層次,推導圓柱體的計算公式。在學生自學的基礎上,親自動手切拼,把圓柱體轉化成近似的長方體,找出近似長方體與原圓柱體各部分相對應部分,從而推出圓柱體積計算公式。用知識遷移法,把舊知識發(fā)展重新構建轉化為新知識,使學生認識到形變質沒變的辯證關系,培養(yǎng)學生自學能力,動手能力,觀察分析和歸納能力。

  第二層次,針對本節(jié)所學知識內容,安排適度練習,由易到難,由淺入深,使學生當堂掌握所學的新知識,并通過練習達到一定技能。

  本節(jié)教案特點:充分體現以教師為主導,學生為主體,讓學生動手、動腦、參與教學全過程,較好地處理教與學,練與學的關系。寓教于玩中學會新知識,使學生愛學、會學,培養(yǎng)了學生動手操作能力、口頭表達能力和邏輯思維能力,讓學生充分體驗成功的喜悅。

《圓柱的體積》教案13

  教學內容:

  人教版小學數學六年級下冊《圓柱的體積》P25-26。

  教學目標:

  1.經歷探究和推導圓柱的體積公式的過程。

  2.知道并能記住圓柱的體積公式,并能運用公式進行計算。

  3.在自主探究圓柱的體積公式的過程中,體驗、感悟數學規(guī)律的來龍去脈,知道長方體與圓柱體底面和高各部分間的對應關系。發(fā)展學生的觀察能力和分析、綜合、歸納推理能力。

  4.激發(fā)學生的學習興趣,讓學生體驗成功的快樂。

  5.培養(yǎng)學生的轉化思想,滲透辯證法和極限的思想。

  教學重點:掌握和運用圓柱體積計算公式

  教學難點:圓柱體積公式的推導過程

  教具學具準備:教學課件、圓柱體。

  教學過程:

  一、復習導入

  1.同學們想一想,我們已經學習了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?

  2.回憶一下圓面積的計算公式是如何推導出來的?

 。ńY合課件演示)這是一個圓,我們把它平均分割,再拼合就變成了一個近似的平行四邊形。我們還可以往下繼續(xù)分割,無限分割就變成了一個長方形。長方形的長相當于圓周長的一半,可以用πR表示,長方形的寬就當于圓的半徑,用R表示。所以用周長的一半×半徑就可以求出圓的面積,所以推導出圓的面積公式是S=πR。

  3.課件出示一個圓柱體

  我們把圓轉化成了近似的長方形,同學們猜想一下圓柱可以轉化成什么圖形呢?

  二、探索體驗

  1.學生猜想可以把圓柱轉化成什么圖形?

  2.課件演示:把圓柱體轉化成長方體

 、偈窃鯓悠闯傻'?

 、谟^察是不是標準的長方體?

 、垩菔32等份、64等份拼成的長方體,比較一下發(fā)現了什么?引出課題并板書。

  3.借鑒圓的面積公式的推導過程試著推導圓柱的體積公式。

  課件出示要求:

 、倨闯傻拈L方體與原來的圓柱體比較什么變了?什么沒變?

  ②推導出圓柱體的體積公式。

  學生結合老師提出的問題自己試著推導。

  4.交流展示

  小組討論,交流匯報。

  生匯報師結合講解板書。

  圓柱體積=底面積×高

  ‖ ‖ ‖

  長方體體積=底面積×高

  用字母公式怎樣表示呢? v、s、h各表示什么?

  5.知道哪些條件可以求出圓柱的體積?

  6.計算下面圓柱的體積。

 、俚酌娣e24平方厘米,高12厘米

 、诘酌姘霃2厘米,高5厘米

 、壑睆10厘米,高4厘米

 、苤荛L18.84厘米,高12厘米

  三、課堂檢測

  1.判斷

 、賵A柱體、長方體和正方體的體積都可以用底面積乘高的方法來計算。( )

 、趫A柱的底面積擴大3倍,體積也擴大3倍。( )

 、垡粋長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。( )

 、軋A柱體的底面直徑和高可以相等。( )

  ⑤兩個圓柱體的底面積相等,體積也一定相等。( )

  ⑥一個圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。( )

  2.聯(lián)系生活實際解決實際問題。

  下面的這個杯子能不能裝下這袋奶?

 。ū拥臄祿䦶睦锩媪康玫街睆8cm,高10cm;牛奶498ml)

  學生獨立思考回答后自己做在練習本上。

  3.一個壓路機的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?

  4.生活中的數學

  一個用塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓。

 、俑采w在這個大棚上的塑料薄膜約有多少平方米?

  ②大棚內的空間大約有多大?

  獨立思考后小組討論,兩生板演。

  四、全課總結

  這節(jié)課你有什么收獲?

  五、課后延伸

  如果要測量圓柱形柱子的體積,測量哪些數據比較方便?試一試吧?

  六、板書設計

  圓柱體積= 底面積×高

  長方體體積=底面積×高

《圓柱的體積》教案14

  一、教學目標:

  1.結合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

  2.讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究的方法。

  3.通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰(zhàn)性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。

  二、教學重難點:

  掌握和運用圓柱體積計算公式, 圓柱體積公式的推導過程。

  三、教學方法:

  從生活情境入手,通過組織猜測、操作、交流等數學活動,使學生經歷“做數學”的過程,鼓勵學生獨立思考,引導學生自主探索、合作交流,讓學生根據已有的知識經驗創(chuàng)造性地建構圓柱體積計算公式,鼓勵解決問題策略的多樣化,讓學生的思維得到發(fā)展,創(chuàng)新精神、實踐能力得到提高。

  四、教學步驟

  (一)創(chuàng)設情景 提出問題情境引入:

  某玩具廠廠長,他們廠新近開發(fā)了一種積木玩具,這三個積木的底面積和高都相等,他想比較一下這三個積木的體積的大小,同學們有什么方法?

  (二)動手實驗, 探索公式

  1.觀察、比較,建立猜想引導生觀察例4中的三個幾何體,提問:

 。1)長方體、正方體的體積相等嗎?為什么?

 。ò鍟洪L方體的體積=底面積×高)

 。2)圓柱的體積與長方體、正方體的體積可能相等嗎?這三個幾何體的底面積和高都相等,它們的體積有什么關系?

  2.實驗操作,驗證猜想讓學生自主探究(材料:圓柱體插拼教學具、師準備課件),想辦法驗證圓柱的體積與長方體、正方體的體積相等。

  教師提示:你能想辦法把圓柱轉化成長方體嗎?圓是如何轉化成長方形的?可以模仿這樣的方法來轉化。

  (1)小組合作研究怎樣將圓柱體轉化成一個長方體

 。2)小組代表匯報,全班交流

 。▽W生按照自己的方式來轉化,會有多種轉化方法,教師適時加以鼓勵)

  演示操作

  a請一名學生演示用切插拼的方法把圓柱體轉化成長方體。其他學生模仿操作。

  b思考:這是一個標準的長方體嗎?為什么?如果分割得份數越多,你會有什么發(fā)現?

  c電腦演示圓柱體轉化成長方體的過程(從16等份到32等份再到64等份)

  3.觀察比較,推導公式

  a圓柱體轉化成長方體后,什么變了,什么沒有變?

  b 根據學生的觀察、分析、推想,老師完成板書:

  長方體的體積=底面積×高

  圓柱的體積 = 底面積×高

  d小結:要想求出一個圓柱的體積,需要知道什么條件? e學生自學第8頁例4上面的一段話:用字母表示公式。

  學生反饋自學情況,師板書公式:v=sh

  (三)鞏固練習, 拓展應用

  1.出示第26頁試一試,學生理解題意,獨立完成。集體訂正,說一說每一步列式的根據是什么?使學生明確應用體積公式求圓柱的體積一般需要兩個條件,即底面積和高。

  2.完成第26頁的“練一練”的'第1題。

  先看圖說說每個圓柱中的已知條件,再各自計算,計算后,說一說計算的過程,強調:計算圓柱體的體積要先算出底面積。

  3.完成第26頁的“練一練”的第2題。

  讀題后強調說說為什么電飯煲要從里面量底面直徑和高,然后列式解答。

  4、把直尺繞著它的一條邊旋轉一圈得到了一個什么圖形?它的體積你會計算嗎?

  (四)總結回顧 評價反思

  這節(jié)課你學會了什么?你是怎樣學會的?

  五、板書設計:

  圓柱的體積

  切拼成的長方體的體積等于圓柱的體積,長方體的底面積就相當于圓柱的底面積,長方體的高就相當于圓柱的高。

  長方體的體積=底面積×高

  圓柱的體積=底面積×高

  字母表示:V=Sh=πrh2

《圓柱的體積》教案15

  本節(jié)課的設計思考:

  一、讓學生在現實情境中體驗和理解數學

  《課程標準》指出:要創(chuàng)設與學生生活環(huán)境、知識背景密切相關的、又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中體會數學知識的產生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數學的力量,同時掌握必要的基礎知識與基本技能。在本節(jié)課中,我給學生創(chuàng)設了生活情景(裝在杯子中的水的體積你會求嗎?)學生聽到教師提的問題訓在身邊的生活中,頗感興趣。學生經過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,能用剛才同學們想出來的辦法嗎?這一問題情境的創(chuàng)設,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。

  二、鼓勵學生獨立思考,引導學生自主探索、合作交流

  數學學習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導的數學學習的主要方式。在本節(jié)課提示課題后,我先引導學生獨立思考要解決圓柱的體積問題,可以怎么

  辦?學生通過思考很快確定打算把圓柱轉化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同學們有了圓面積計算公式推導的經驗,經過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎上,小組拿出學具進行了動手操作,拼成了一個近似的長方體。同學們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識——公式)。 不足之處:

  在學生們動手操作時,我處理的有點急,沒有給學生充分的思考和探究的時間。在今后的教學中我要特別關注學生的學習過程,優(yōu)化課堂教學,對教材進行適當的加工處理。數學知識的教學,必須抓住各部分內容之間的內在聯(lián)系,遵循教材特點和學生的認知規(guī)律。圓柱體積的教學,要借助于學生已經學過的長方體體積的計算方法,通過分析、推導、演示,發(fā)現新知識。推導出圓柱體積的'計算公式,實現教學目的。圓柱的體積這部分知識是學生在有了圓柱、圓和長方體的相關知識基礎上進行教學的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯(lián)系,通過想象、實際操作,從經歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設情境,解決問題,體現數學知識“從生活中來到生活中去”的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探究。在新的課改形勢下,死記硬背這種膚淺的、教條的、機械的學習方式已經完全不適應教學改革的需要,不利于學生健康的成長發(fā)展的需要,教師要重視引導學生去探索,思考,發(fā)現規(guī)律,培養(yǎng)學生分析問題和解決問題的能力。反思本節(jié)課的教學,覺得在練習設計上還可以下一番功夫。比如可以設計開放性習題:給一個圓柱形積木,讓學生先測量相關數據再計算體積等等。

  二、教師的語言非常貧乏

  在課堂教學中,評價語言是非常重要,它總是伴隨在教學的始終,貫穿于整個課堂,缺乏激勵的課堂就會像一潭死水,毫無生機。而精妙的評價語言就像是催化劑,能使課堂掀起層層波瀾,讓學生思維的火花時刻被點燃。教師準確,生動,親切的評價語言大大調動了學生學習的主動性和積極性,讓學生在激勵中學、自信中學、快樂中學,讓教師與學生零距離地接觸,我想學生的心理更能感覺到更大的鼓舞。

  蘇霍姆林斯基指出:“教育的藝術首先包括談話的藝術!苯處煹慕虒W效果,很大程度上取決于他的語言表達能力。數學課堂教學過程就是數學知識的傳遞過程。在整個課堂教學過程中,數學知識的傳遞、學生接受知識情況的反饋,師生間的情感交流等,都必須依靠數學語言。教師的語言表達方式和質量直接影響著學生對知識的接受,教師語言的情感引發(fā)著學生的情感,所以說教師的語言藝術是課堂教學藝術的核心。我這節(jié)課最大的失誤是語言沒有發(fā)揮出調控課堂駕馭課堂的作用。

【《圓柱的體積》教案】相關文章:

圓柱的體積教案03-19

《圓柱的體積》教案09-01

《圓柱的體積》教案(15篇)01-02

《圓柱的體積》數學教案12-18

《圓柱的體積》教案通用15篇01-27

實用的《圓柱的體積》教案3篇06-07

實用的《圓柱的體積》教案4篇06-28

《圓柱的體積》教案(匯編15篇)04-01

《圓柱的體積》教案(集合15篇)04-01