《比例的意義》教案(合集15篇)
作為一名專為他人授業(yè)解惑的人民教師,可能需要進行教案編寫工作,教案有助于學生理解并掌握系統(tǒng)的知識。來參考自己需要的教案吧!下面是小編整理的《比例的意義》教案,希望能夠幫助到大家。
《比例的意義》教案1
一、知識與技能
1.從現實情境和已有的知識、經驗出發(fā)、討論兩個變量之間的相依關系,加深對函數、函數概念的理解.
2.經歷抽象反比例函數概念的過程,領會反比例函數的意義,理解反比例函數的概念.
二、過程與方法
1、經歷對兩個變量之間相依關系的討論,培養(yǎng)學生的辨別唯物主義觀點.
2、經歷抽象反比例函數概念的過程,發(fā)展學生的抽象思維能力,提高數學化意識.
三、情感態(tài)度與價值觀
1、經歷抽象反比例函數概念的過程,體會數學學習的重要性,提高學生的學習數學的興趣.
2、通過分組討論,培養(yǎng)學生合作交流意識和探索精神.
教學重點:理解和領會反比例函數的概念.
教學難點:領悟反比例的概念.
教學過程:
一、創(chuàng)設情境,導入新課
活動1
問題:下列問題中,變量間的對應關系可用怎樣的函數關系式表示?這些函數有什么共同特點?
(1)京滬線鐵路全程為1463km,乘坐某次列車所用時間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;
(2)某住宅小區(qū)要種植一個面積為1000m2的矩形草坪,草坪的長為y隨寬x的變化;
(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.
師生行為:
先讓學生進行小組合作交流,再進行全班性的問答或交流.學生用自己的語言說明兩個變量間的關系為什么可以看著函數,了解所討論的函數的表達形式.
教師組織學生討論,提問學生,師生互動.
在此活動中老師應重點關注學生:
①能否積極主動地合作交流.
、谀芊裼谜Z言說明兩個變量間的關系.
、勰芊窳私馑懻摰暮瘮当磉_形式,形成反比例函數概念的具體形象.
分析及解答:(1)
;(2)
。唬3)
其中v是自變量,t是v的函數;x是自變量,y是x的函數;n是自變量,s是n的函數;
上面的函數關系式,都具有
的形式,其中k是常數.
二、聯系生活,豐富聯想
活動2
下列問題中,變量間的對應關系可用這樣的函數式表示?
(1)一個游泳池的容積為20xxm3,注滿游泳池所用的時間隨注水速度u的變化而變化;
。2)某立方體的體積為1000cm3,立方體的高h隨底面積S的變化而變化;
。3)一個物體重100牛頓,物體對地面的壓力p隨物體與地面的接觸面積S的變化而變化.
師生行為
學生先獨立思考,在進行全班交流.
教師操作課件,提出問題,關注學生思考的過程,在此活動中,教師應重點關注學生:
(1)能否從現實情境中抽象出兩個變量的函數關系;
(2)能否積極主動地參與小組活動;
(3)能否比較深刻地領會函數、反比例函數的概念.
分析及解答:(1)
;(2)
;(3)
概念:如果兩個變量x,y之間的關系可以表示成
的形式,那么y是x的反比例函數,反比例函數的自變量x不能為零.
活動3
做一做:
一個矩形的面積為20cm2, 相鄰的兩條邊長為xcm和ycm.那么變量y是變量x的函數嗎?是反比例函數嗎?為什么?
師生行為:
學生先進行獨立思考,再進行全班交流.教師提出問題,關注學生思考.此活動中教師應重點關注:
、偕芊窭斫夥幢壤瘮档囊饬x,理解反比例函數的概念;
、趯W生能否順利抽象反比例函數的模型;
③學生能否積極主動地合作、交流;
活動4
問題1:下列哪個等式中的y是x的反比例函數?
問題2:已知y是x的反比例函數,當x=2時,y=6
(1)寫出y與x的函數關系式:
(2)求當x=4時,y的`值.
師生行為:
學生獨立思考,然后小組合作交流.教師巡視,查看學生完成的情況,并給予及時引導.在此活動中教師應重點關注:
①學生能否領會反比例函數的意義,理解反比例函數的概念;
、趯W生能否積極主動地參與小組活動.
分析及解答:
1、只有xy=123是反比例函數.
2、分析:因為y是x的反比例函數,所以
,再把x=2和y=6代入上式就可求出常數k的值.
解:(1)設
,因為x=2時,y=6,所以有
解得k=12
因此
。2)把x=4代入
,得
三、鞏固提高
活動5
1、已知y是x的反比例函數,并且當x=3時,y=8.
(1)寫出y與x之間的函數關系式.
。2)求y=2時x的值.
2、y是x的反比例函數,下表給出了x與y的一些值:
。1)寫出這個反比例函數的表達式;
(2)根據函數表達式完成上表.
學生獨立練習,而后再與同桌交流,上講臺演示,教師要重點關注“學困生”.
四、課時小結
反比例函數概念形成的過程中,大家充分利用已有的生活經驗和背景知識,注意挖掘問題中變量的相依關系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認識到理發(fā)認識一旦建立概念,即已擺脫其原型成為數學對象.反比例函數具有豐富的數學含義,通過舉例、說理、討論等活動,感知數學眼光,審視某些實際現象.
《比例的意義》教案2
教學目標:
1、使學生理解正比例的意義,能根據正比例的意義判斷是不是成正比例。
2、培養(yǎng)學生概括能力和分析判斷能力。
3、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。
教學重點:
成正比例的量的特征及其判斷方法。
教學難點:
理解兩個變量之間的比例關系,發(fā)現思考兩種相關聯的量的變化規(guī)律.
教 法:
啟發(fā)引導法
學 法:
自主探究法
教 具:
課件
教學過程:
一、定向導學(5分)
1、已知路程和時間,求速度
2、已知總價和數量,求單價
3、已知工作總量和工作時間,求工作效率
4、導入課題
今天我們來學習成正比例的量。
5、出示學習目標
1、理解正比例的意義。
2、能根據正比例的.意義判斷兩種量是不是成正比例。
二、自主學習(8分)
自學內容:書上45頁例1
自學時間:8分鐘
自學方法:讀書法、自學法
自學思考:
1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?
2、正比例關系式是什么?
。1)兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。例如底面積一定,體積和高成正比例。
。2)構成正比例關系的兩種量,必須具備三個條件:一是必須是兩種相關聯的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定
。3)如果用x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?
y/x=k(一定)
。4)不計算,根據圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。
2、歸類提升
引導學生小結成正比例的量的意義和關系式。
三、合作交流(5分)
第46頁正比例圖像
1、正比例圖像是什么樣子的?
2、完成46頁做一做
3、各組的b1同學上臺講解
四、質疑探究(5分)
1、第49頁第1題
2、第49頁第2題
3、你還有什么問題?
五、小結檢測(8分)
1、什么是正比例關系?如何判斷是不是正比例關系?
2、檢測
1、49頁第3題。
六、堂清作業(yè)(9分)
練習九頁第4、5題。
板書設計:
成正比例的量
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。
關系式:
y/x=k
。ㄒ欢ǎ
《比例的意義》教案3
一、教學目標
知識與技能目標:在具體情境中,理解比例的意義和基本性質,會應用比例的意義和基本性質正確判斷兩個比能否組成比例。
過程與方法目標:在探索比例的意義和基本性質的過程中發(fā)展推理能力。
態(tài)度價值觀目標:通過自主學習,經歷探究的過程,體驗成功的快樂。
二、教學重點難點
重點: 理解比例的意義和基本性質。
難點:判斷兩個比是否成比例。
三、教學過程設計
(一)創(chuàng)設情境,提出問題
1. 復習導入:
(1)什么叫做比?
兩個數相除又叫做兩個數的比。
(2)什么叫做比值?
比的前項除以比的后項所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
談話:今天我們要學的知識也和比有著密切的關系。
2、創(chuàng)設情境,提出問題。
談話:同學們,你們知道青島都有哪些產品非常有名?(學生根據自己的了解回答)青島啤酒享譽世界各地,這節(jié)課,我們將一起去探索啤酒生產中的數學
出示課件:這是一輛貨車正在運輸啤酒的主要生產原料大麥芽。
這是它兩天的運輸情況:
一輛貨車運輸大麥芽情況
第一天 第二天
運輸次數 2 4
運輸量(噸) 16 32
根據這個表格,讓學生提出有關比的數學問題。同桌倆人,一個提問題,一個將問題的答案寫在本上,看哪對同桌合作得最好,提出的問題最多。
談話:誰來交流?跟大家說一下你的問題是什么?
學生可能出現以下的問題:
貨車第一天的運輸量與運輸次數的比是多少? (16 : 2)
貨車第二天的運輸量與運輸次數的比是多少?(32 :4)
貨車第二天的運輸量與第一天運輸量的比是多少?(32 :16)
。◣煾鶕䦟W生的回答,將答案一一貼或寫于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、認識比例及各部分名稱。
談話:學習數學,我們不僅要善于提問,還要善于觀察,F在就請你觀察這兩個比(16 :2;32 :4)看能發(fā)現什么?(學生會發(fā)現比值相等)
思考:這個比值所表示的實際意義是什么?(每次的運輸量)
既然它們的比值相等,那我們可以用什么符號將兩個比連接起來?
學生用等號連接,并請學生把這個式子讀一下。
試一試:剩下的這些比中,哪兩個也能用等于號連接?在你的練習本上寫寫看。(學生獨立完成)
介紹:像這樣表示兩個比相等的式子,數學上就把它叫做比例。我們知道,比有前項、后項,比例的各部分也有自己的名字。組成比例的四個數叫做比例的項,像16、4位于兩端的兩項叫做比例的外項,2、32位于中間的兩項叫做比例的內項。比例,也可以寫成分數形式。
學生先把2 :16=4 :32這個比例寫成分數形式,再同桌倆交流它的內項外項分別是誰。
自學提示:同學們表現得都特別棒,現在請你看課本自主練習第1題,能否根據剛才所學知識解決。(學生獨立完成)
2、比和比例有什么區(qū)別?
比
4︰6
比例
2︰3=4︰6
3.判斷下面兩個比能否組成比例?
6∶9 和 9∶12
總結方法:判斷兩個比能不能組成比例,要看它們的比值是否相等。
4.談話引入:剛才,你們是根據比例的意義先求出比值再判斷兩個比能否組成比例。我不是這樣想的,可能很快就判斷好了,想知道其中的秘密嗎?其實秘密就藏在比例的兩個內項和兩個外項之中,它們兩者之間可是存在著一種奇妙的關系,你想揭穿這個秘密嗎?
那就請你以16:2=32:4為例,通過看一看,想一想,算一算等方法,試試能不能發(fā)現這個關系!
5、學生先獨立思考,再小組交流,探究規(guī)律。
出示研究方案:
①觀察比例的.兩個內項與兩個外項,用算一算的方法,找同學說一說,你發(fā)現了什么。
、谑遣皇敲恳粋比例的兩個外項與兩個內項都具有這種規(guī)律,請你再舉出這樣的例子來。
、弁ㄟ^以上研究,你發(fā)現了什么?
6、全班交流。
。1)哪個小組愿意將你們的發(fā)現與大家分享?
。2)還有其他發(fā)現嗎?
。3)你們組所發(fā)現的是不是個偶然現象呢?咱們最好是怎么辦?
7、驗證發(fā)現,共享成功。
師:對,舉例驗證,這可是一種非常好的數學方法。那現在,咱們可以利用黑板上的比例,也可以自己組一個新的比例,驗證看看,是不是所有的比例都是兩個外項的積等于兩個內項的積。(學生獨立驗證)
8、利用一個比例通過課件形象的展示兩個外項的積等于兩個內項的積。
9、小結:不錯,看來同學們很會觀察,很會思考,很會驗證,自己發(fā)現了比例的一條規(guī)律。也就是,在比例里,兩個外項的積等于兩個內項的積。數學上我們把這條規(guī)律,叫做比例的基本性質。這也是我們在小學階段,在繼分數、比的基本性質之后學習的第三個基本性質。運用它,我們可以解決許多數學問題。
10、比例的基本性質的應用:
應用比例的基本性質,判斷下面兩個比能不能組成比例.
6∶3 和 8∶5
方法:a、先假設這兩個比能組成比例
b、說出寫出的比例的內項和外項分別是幾,再分別算出外項和內項的積。
c、根據比例的基本性質判斷組成的比例是否正確。
(二)自主練習,拓展提升
1、判斷下面每組中兩個比能否組成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
讓學生根據比例的意義進行判斷,教師結合回答板書:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、連線:自主練習第3題。
3、填空:自主練習第6題。
4、自主練習第10題:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四個數可以組成比例嗎?把組成的比例寫出來(能寫幾個寫幾個)。
2、3、4 和 6
因為 2 × 6 = 3 × 4 所以這四個數可以組成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
練習時,給學生充足的時間讓學生獨立完成,然后交流溝通。
(三)回顧總結
在這節(jié)課中你又有什么新的收獲?
《比例的意義》教案4
教學過程:
一、復習鋪墊
1、下面兩種量是不是成正比例?為什么?
購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知
1、導入新課:這節(jié)課我們繼續(xù)學習常見的數量關系中的另一種特征成反比例的量。
2、教學P42例3。
(1)引導學生觀察上表內數據,然后回答下面問題:
A、表中有哪兩種量?這兩種量相關聯嗎?為什么?
B、水的高度是否隨著底面積的變化而變化?怎樣變化的?
C、表中兩個相對應的數的比值各是多少?一定嗎?兩個相對應的數的積各是多少?你能從中發(fā)現什么規(guī)律嗎?
D、這個積表示什么?寫出表示它們之間的`數量關系式
。2)從中你發(fā)現了什么?這與復習題相比有什么不同?
A、學生討論交流。
B、引導學生回答:
。3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關系,高度和底面積叫做成反比例的量。
。4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:xy=k(一定)
三、鞏固練習
1、想一想:成反比例的量應具備什么條件?
2、判斷下面每題中的兩個量是不是成反比例,并說明理由。
。1)路程一定,速度和時間。
。2)小明從家到學校,每分走的速度和所需時間。
。3)平行四邊形面積一定,底和高。
。4)小林做10道數學題,已做的題和沒有做的題。
。5)小明拿一些錢買鉛筆,單價和購買的數量。
(6)你能舉一個反比例的例子嗎?
四、全課小節(jié)
這節(jié)課我們學習了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。
五、課堂練習
P45~46練習七第6~11題。
教學目的:
1、理解反比例的意義,能根據反比例的意義,正確的判斷兩種量是否成反比例。
2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯系和發(fā)展變化的規(guī)律。
3、初步滲透函數思想。
教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數積一定,進而抽象概括出成反比例的關系式。
教學難點:利用反比例的意義,正確判斷兩個量是否成反比例。
《比例的意義》教案5
教學目標:
1、使學生理解和掌握比例的意義和基本性質,認識比例各部分名稱,知道比和比例的區(qū)別,能應用比例的意義和比例的基本性質判斷兩個比能否組成比例。
2、激發(fā)學生的學習興趣,培養(yǎng)學生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維。
教學重點:
理解比例的意義基本性質。
教學難點:
應用比例的意義和性質判斷兩個比是否成比例。
教學過程
一、導入新課
1、什么叫比?
2、求出下面各比的比值(小黑板)
12:161/4:1/3和9:124.5:2.710:6
二、教學新課
1、教學比例的'意義
。1)出示例1:同學們能寫出多少個有意義的比?觀察這些比,哪此能用等號連接?把能用等號連接的比用等號連接起來。這些式子都是比例,你能用自己的語言說一說什么是比例嗎?
(2)歸納比例的意義
。3)2:5和80:200能組成比例嗎?你是怎樣判斷的?
。4)完成第45頁“做一做”
2、教學比例的基本性質
(1)在一個比例里,有四個數,這四個數分別叫什么名字?
(2)請同們分別找出80:2=200:5和2分之80=5分之200的內項和外項。
。3)你們任意找一個比例,把它們的內項和外項分別乘起來,雙可以發(fā)現什么?
。4)指導學生歸納后,在比例里,兩個外項的積等于兩個內項的積。這就是比例的基本性質。
。5)指導學生完成第一46頁“做一做”第1題。
三、鞏固練習
四、課堂小結
這節(jié)課你學到了哪些知識?
創(chuàng)意作業(yè):
有一房間,窗子的長是6分米,寬是4分米;門的長和寬分別是21分米和14分米,你能用已知的四個數組成多少個比例?比一比哪個同學組成的多。
《比例的意義》教案6
1、成正比例的量
教學內容:成正比例的量
教學目標:
1.使學生理解正比例的意義,會正確判斷成正比例的量。
2.使學生了解表示成正比例的量的圖像特征,并能根據圖像解決有關簡單問題。
教學重點:正比例的意義。
教學難點:正確判斷兩個量是否成正比例的關系。
教學過程:
一揭示課題
1.在現實生活中,我們常常遇到兩種相關聯的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?
在教師的此導下,學生會舉出一些簡單的例子,如:
。1)班級人數多了,課桌椅的數量也變多了;人數少了,課桌椅也少了。
。2)送來的牛奶包數多了,牛奶的總質量也多了;包數少了,總質量也少了。
。3)上學時,去的速度快了,時間用少了;速度慢了,時間用多了。
(4)排隊時,每行人數少了,行數就多了;每行人數多了。行數就少了。
2.這種變化的量有什么規(guī)律?存在什么關系呢?今天,我們首先來學習成正比例的.量。板書:成正比例的量
二探索新知
1.教學例1
。1)出示例題情境圖。
問:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。
。2)出示表格。
高度/㎝24681012
體積/㎝350100150200250300
底面積/㎝2
問:你有什么發(fā)現?
學生不難發(fā)現:杯子的底面積不變,是25㎝2。
板書:
教師:體積與高度的比值一定。
(2)說明正比例的意義。
、僭谶@一基礎上,教師明確說明正比例的意義。
因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。
板書出示:像這樣,兩種相關聯的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種理就叫做成正比例的量,它們的關系叫做正比例關系。
、趯W生讀一讀,說一說你是怎么理解正比例關系的。
要求學生把握三個要素:
第一,兩種相關聯的量;
第二,其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。
第三,兩個量的比值一定。
。3)用字母表示。
如果用字母X和Y表示兩種相關聯的量,用K表示它們的比值(一定),比例關系可以用正的式子表示:
。4)想一想:
師:生活中還有哪些成正比例的量?
學生舉例說明。如:
長方形的寬一定,面積和長成正比例。
每袋牛奶質量一定,牛奶袋數和總質量成正比例。
衣服的單價一不定期,購買衣服的數量和應付錢數成正比例。
地磚的面積一定,教室地板面積和地磚塊數成正比例。
2.教學例2。
。1)出示表格(見書)
。2)依據下表中的數據描點。(見書)
。3)從圖中你發(fā)現了什么?
這些點都在同一條直線上。
。4)看圖回答問題。
、偃绻兴母叨仁7㎝,那么水的體積是多少?
生:175㎝3。
、隗w積是225㎝3的水,杯里水面高度是多少?
生:9㎝。
、郾兴母叨仁14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?
生:水的體積是350㎝3,相對應的點一定在這條直線上。
(5)你還能提出什么問題?有什么體會?
通過交流使學生了解成正比例量的圖像特往。
3.做一做。
過程要求:
。1)讀一讀表中的數據,寫出幾組路程和時間的比,說一說比值表示什么?
比值表示每小時行駛多少千米。
。2)表中的路程和時間成正比例嗎?為什么?
成正比例。理由:
、俾烦屉S著時間的變化而變化;
、跁r間增加,路程也增加,時間減少,路程也隨著減少;
、鄯N程和時間的比值(速度)一定。
。3)在圖中描出表示路程和時間的點,并連接起來。有什么發(fā)現?所描的點在一條直線上。
。4)行駛120KM大約要用多少時間?
。5)你還能提出什么問題?
4.課堂小結
說一說成正比例關系的量的變化特征。
三鞏固練習
完成課文練習七第1~5題。
2、成反比例的量
教學內容:成反比例的量
教學目標:
1.經歷探索兩種相關聯的量的變化情況過程,發(fā)現規(guī)律,理解反比例的意義。
2.根據反比例的意義,正確判斷兩種量是否成反比例。
教學重點:反比例的意義。
教學難點:正確判斷兩種量是否成反比例。
教學過程:
一導入新課
1.讓學生說一說成正比例的兩種量的變化規(guī)律。
回答要點:
(1)兩種相關聯的量;
(2)一個量增加,另一個量也相應增加;一個量減少,另一個量也相應減少;
。3)兩個量的比值一定。
2.舉例說明。
如:每袋大米質量相同,大米的袋數與總質量成正比例。
理由:
。1)每袋大米質量一定,大米的總質量隨著袋數的變化而變化;
(2)大米的袋數增加,大米的總質量也相應增加,大米的袋數
減少,大米的總質量也相應減少;
。3)總質量與袋數的比值一定。
所以,大米的袋數與總質量成正比例。
板書:
3.揭示課題。
今天,我們一起來學習反比例。兩種量是什么樣的關系時,這兩種量成反比例呢?
板書課題:成反比例的量[ 內 容 結 束 ]
《比例的意義》教案7
教學內容:
教科書第22—24頁反比例的意義,練習六的第4—6題。
教學目的:
1.使學生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。
2.使學生進一步認識事物之間的相互聯系和發(fā)展變化規(guī)律。
3.初步滲透函數思想。
教具準備:
投影儀、投影片、小黑板。
教學過程:
一、復習
1.讓學生說說什么是成正比例的量:
2.用投影片出示下面的題:
。1)下面各題中哪兩種量成正比例?為什么?
、俟P記本單價一定,數量和總價:
⑨汽車行駛速度一定.行駛的路程和時間。
②工作效率一定.’工作時間和工作總量。
、僖淮竺椎闹亓恳欢ǎ粤说暮褪O碌。
。2)說出每小時加工零件數、加工時間和加工零件總數三者間的數量關系。在什么條件下,其中兩種量成正比例?
二、導入新課
教師:如果加工零件總數一定。每小時加工數和加工時間會成什么樣的變化.關系怎樣?就是我們這節(jié)課要學習的內容。
三、新課
1.教學例4。
出示例4;豐機械廠加工一批機器零件。每小時加工的數量和所需的加工時間如下表。
讓學生觀察這個表,然后每四人一組討論下面的問題:
。1)表中有哪兩種量?
。2)所需的加工時間怎樣隨著每小時加工的個數變化?
(3)每兩個相對應的數的乘積各是多少?
學生分組討論后集中發(fā)言。然后每個小組選代表回答上面的問題。隨著學生的回答,教師板書如下:每小時加工數加工時間
10×60=600。
30×20=600。
40×15=600,
“這個積600。實際上是什么?”在“加工時間”后面板書:零件總數
“積一定,就說明零件總數怎樣?”在零件總數后面板書:(一定)
“每小時加工數、加工時間和零件總數這三種量有什么關系呢?”
學生回答后,教師小結:通過剛才的觀察分析.我門可以看出。表中每小時加工零件數和所需的加工時間是兩種相關聯的量。所需的加工時間是隨著每小時加工數量的變化而變化的,每小時加工的數量擴大。所需的加工時間反而縮小3每小時加工的數量縮小,所需的加工的.時間反而擴大。它們擴大、縮小的規(guī)律是:每小時加工的零件的數量和所需的加工時間的積都等于600,即總是一定的:我們把這種關系寫成式子就是:每小時加工數×加工的時間=零件總數(一定)。
2.教學例5。
用小黑板出示例5用600頁紙裝訂成同樣的練習本,每本的頁數和裝訂的本數有什么關系呢?請你先填寫下表。
。1)理解題意,填寫裝訂本數。
“誰能說說表中第一欄數據的意思?”(用600頁紙裝訂練習本,如果每本練習本15頁,可以裝訂40本。)
“這40本是怎么計算出來的?”(用600÷15)
“如果每本練習本是20頁,你能計算出可以裝訂多少這樣的練習本嗎?如果每本是25頁呢?……請你把計算出來的本數填在教科書第23頁的表中。”教師把學生報出的數據填在黑板上的表中。
。2)觀察分析表中兩種量的變化規(guī)律。
讓學生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數裝訂的本數)
“裝訂的本數是怎樣隨著每本的頁數變化的?”隨著學生的回答,板書如下:每本的頁數裝訂的本數
1540
20xx
2524
一’然后讓學生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。
1,單價一定.數量和總價。
2,路程一定,速度和時間。
3,正方形的邊長和它的面積。
1.時間一定,工效和工作總量。
二、導入新課
教師:我們在前兩節(jié)課分別學習了成正比例的量和成反比例的量。初步學會判斷
兩種量是不是成正比例或反比例的關系,發(fā)現有些同學判斷時還不夠準確。這節(jié)課我
們要通過比較弄清成正比例的量和成反比例的量有什么相同點和不同點。
板書課題:正比例和反比例的比較
三、新課
1.教學例7。
出示例7的兩個表:
表1表2
讓學生觀察上面的兩個表,然后根據兩個表所提的問題,分別在教科書上填空。訂正時。指名說出自己是怎樣填的,教師板書:
在表l中:在表2中:
相關聯的量是路程和時間.路程隨著相關聯的量是速度路程隨時間變化,速度是和時間,速度隨著時間變化
一定。因此,路程和時間,路程是一定的。因此,速
成正比例關系。度和時間成反比例關系
然后提問:
(1)從表1,你怎樣發(fā)現速度是一定的?你根據什么判斷路程和時間成正比例/
(2)從表2,你怎樣發(fā)現路程是一定的?你根據什么判斷速度和時間成反比例?
教師:路程、速度和時間這三個量中每兩個量之間有什么樣的比例關系?
板書:速度×時間=路程
教師:當速度一·定時,路程和時間成什么比例關系?
教師:當路程一定時,速度和時間成什么比例關系?
教師:當時間一定時。路程和速度成什么比例關系?
2.比較正比例和反比例關系。
教師:結合上面兩個例子,比較——下正比例關系和反比例關系,你能寫出它們的相同點和不同點嗎?試試看。組織討論,教師歸納并板書:
四、鞏固練習
1.做教科書第28頁“做一做”中的題目。
讓學生自己填,并說一說為什么。
2.做練習七的第1—2題。
教師巡視,個別輔導,最后訂正。
五、小結
教師:請同學們說說正比例和反比例關系有什么相同點和不同點?
《比例的意義》教案8
1.使學生初步認識正比例的意義、掌握正比例意義的變化規(guī)律。
2.學會判斷成正比例關系的量。
3.進一步培養(yǎng)學生觀察、分析、概括的能力。
教學重點和難點
理解正比例的意義,掌握正比例變化的規(guī)律。
教學過程設計
(一)復習準備
請同學口述三量關系:
(1)路程、速度、時間;(2)單價、總價、數量;(3)工作效率、時間、工作總量。
(學生口述關系式、老師板書。)
(二)學習新課
今天我們進一步研究這些數量關系中的一些特征,請同學們回答老師的問題。
幻燈出示:
一列火車1小時行60千米,2小時行多少千米?3小時、4小時、5小時……各行多少千米?
生:60千米、120干米、180千米……
師:根據剛才口答的問題,整理一個表格。
出示例1。(小黑板)
例1一列火車行駛的時間和所行的路程如下表。
師:(看著表格)回答下面的問題。表中有幾種量?是什么?
生:表中有兩種量,時間和路程。
師:路程是怎樣隨著時間變化的?
生:時間1小時,路程是60千米;2小時,路程為120千米;3小時,路程為180千米……
師:像這樣一種量變化,另一種量也隨著變化,這兩種量就叫做兩種相關聯的量。
(板書:兩種相關聯的量)
師:表中誰和誰是兩種相關聯的量?
生:時間和路程是兩種相關聯的量。
師:我們看一看他們之間是怎樣變化的?
生:時間由1小時變2小時,路程由60千米變?yōu)?20千米……時間擴大了,路程也隨著擴大,路程隨著時間的變化而變化。
師:現在我們從后往前看,時間由8小時變?yōu)?小時、6小時、4小時……路程又是如何變化的?
生:路程由480千米變?yōu)?20千米、360千米……
師:從上面變化的情況,你發(fā)現了什么樣的規(guī)律?(同桌進行討論。)
生:時間從小到大,路程也隨著從小到大變化;時間從大到小,路程也隨著從大到小變化。
師:我們對比一下老師提出的兩個問題,互相討論一下,這兩種變化的原因是什么?
(分組討論)
師:請同學發(fā)表意見。
生:第一題時間擴大了,行的路程也隨著擴大;第二題時間縮小了,所行的路程也隨著縮短了。
師:我們對這種變化規(guī)律簡稱為“同擴同縮”。(板書)讓我們再看一看,它們擴大縮小的'變化規(guī)律是什么?
師:根據時間和路程可以求出什么?
生:可以求出速度。
師:這個速度是誰與誰的比?它們的結果又叫什么?
生:這個速度是路程和時間的比,它們的結果是比值。
師:這個60實際是什么?變化了嗎?
生:這個60是火車的速度,是路程和時間的比值,也是路程和時間的商,速度不變。
駛多少千米,速度都是60千米,這個速度是一定的,是固定不變的量,我們簡稱為定量。
師:誰是定量時,兩種相關聯的量同擴同縮?
生:速度一定時,時間和路程同擴同縮。
師:對。這兩種相關聯的量的商,也就是比值一定時,它們同擴同縮。我們看著表再算一算表中路程與時間相對應的商是不是一定。
(學生口算驗證。)
生:都是60千米,速度不變,符合變化的規(guī)律,同擴同縮。
師:同學們總結得很好。時間和路程是兩種相關聯的量,路程是隨著時間的變化而變化的:時間擴大,路程也隨著擴大;時間縮小,路程也隨著縮小。擴大和縮小的規(guī)律是:路程和時間的比的比值總是一樣的。
師:誰能像老師這樣敘述一遍?
(看黑板引導學生口述。)
師:我們再看一題,研究一下它的變化規(guī)律。
出示例2。(小黑板)
例2某種花布的米數和總價如下表:
(板書)
按題目要求回答下列問題。(幻燈)
(1)表中有哪兩種量?
(2)誰和誰是相關聯的量?關系式是什么?
(3)總價是怎樣隨著米數變化的?
(4)相對應的總價和米數的比各是多少?
(5)誰是定量?
(6)它們的變化規(guī)律是什么?
生:(答略)
師:比較一下兩個例題,它們有什么共同點?
生:都有兩種相關聯的量,一種量變化,另一種量也隨著變化。
師:對。兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。這就是今天我們學習的新內容。(板書課題:正比例的意義)
師:你能按照老師說的敘述一下例1中兩個相關聯的量之間的關系嗎?
生:路程隨著時間的變化而變化,它們的比值(也就是速度)一定,所以路程和時間是成正比例的量,它們的關系是正比例關系。
師:想一想例2,你能敘述它們是不是成正比例的量?為什么?(兩人互相試說。)
師:很好。請打開書,看書上是怎樣總結的?
(生看書,并畫出重點,讀一遍意義。)
師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關聯的量與定量的關系?
師:你能舉出日常生活中成正比例關系的兩種相關聯的量的例子嗎?
生:(答略)
師:日常生活和生產中有很多相關聯的量,有的成正比例關系,有的是相關聯,但不成比例關系。所以判斷兩種相關聯的量是否成正比例關系,要抓住相對應的兩個量是否商(比值)一定,只有商(比值)一定時,才能成正比例關系。
(三)鞏固反饋
1.課本上的“做一做”。
2.幻燈出示題,并說明理由。
(1)蘋果的單價一定,買蘋果的數量和總價()。
(2)每小時織布米數一定,織布總米數和時間()。
(3)小明的年齡和體重()。
(四)課堂總結
師:今天主要講的是什么內容?你是如何理解的?
(生自己總結,舉手發(fā)言。)
師:打開書,并說出正比例的意義。有什么不明白的地方提出來。
(五)布置作業(yè)
(略)
課堂教學設計說明
第一部分:復習三量關系,為本節(jié)內容引路。
第二部分:新課從創(chuàng)設正比例表象入手,引導學生主動、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關聯的兩個量、商一定展開思路,結合例題中的數據整理知識,發(fā)現規(guī)律,由討論表象到抽象概念,使知識得到深化。
第三部分:鞏固練習。幫助學生鞏固新知識,由此驗證學生對知識的理解和掌握情況,幫助學生掌握判斷方法。最后指導學生看書,抓住本節(jié)重點,突破難點。安排適當的練習題,在反復的練習中,加強概念的理解,牢牢掌握住判斷的方法。合理安排作業(yè),進一步鞏固所學知識。
總之,在設計教案的過程中,力爭體現教師為主導,學生為主體的精神,使學生認識結構不斷發(fā)展,認識水平不斷提高,做到在加強雙基的同時發(fā)展智力,培養(yǎng)能力,并為以后學習打下良好的基礎。
板書設計
《比例的意義》教案9
教學目標:
1、理解比例的意義,認識比例各部分名稱,初步了解比和比例的區(qū)別;理解比例的基本性質。
2、能根據比例的意義和基本性質,正確判斷兩個比能否組成比例。
3、在自主探究、觀察比較中,培養(yǎng)學生分析、概括能力和勇于探索的精神。
4、通過自主學習,讓學生經經歷探究的過程,體驗成功的快樂。
教學重、難點:
重點:理解比例的意義和基本性質,能正確判斷兩個比能否組成比例。
難點:自主探究比例的基本性質。
教學準備:CAI課件
教學過程:
一、復習、導入
1、談話:同學們,我們已經學過了比的有關知識,說說你對比已經有了哪些了解?(生答:比的意義、各部分名稱、基本性質等。)
還記得怎樣求比值嗎?
2、課件顯示:算出下面每組中兩個比的比值
、3:518:30⑵0.4:0.21.8:0.9
、5/8:1/47.5:3⑷2:89:27
[評析:從學生已有的知識經驗入手,方便快捷,為新課做好準備。]
二、認識比例的意義
。ㄒ唬┱J識意義
1、指名口答上題每組中兩個比的比值,課件依次顯示答案。
師問:口算完了,你們有什么發(fā)現嗎?(3組比值相等,1組不等)
2、是啊,生活中確實有很多像這樣的比值相等的例子,這種現象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:3:5=18:30。
。ㄕn件顯示:“3:5”與“18:30”先同時閃爍,接著兩個比下面的比值隱去,再用等號連接)
最后一組能用等號連接嗎?為什么?(課件顯示:最后一組數據隱去)
數學中規(guī)定,像這樣的一些式子就叫做比例。(板書:比例)
[評析:通過口算求比值,發(fā)現有3組比值相等,1組不等,自然流暢地引出比例。有效的課堂教學,就需要像這樣做好已有經驗與新知識的銜接。]
3、今天這節(jié)課我們就一起來研究比例,你想研究哪些內容呢?
。ㄉ穑合胙芯勘壤囊饬x,學比例有什么用?比例有什么特點……)
5、那好,我們就先來研究比例的意義,到底什么是比例呢?觀察這些式子,你能說出什么叫比例嗎?
。ǜ鶕䦟W生的回答,教師抓住關鍵點板書:兩個比比值相等)
同學們說的比例的意義都正確,不過數學中還可以說得更簡潔些。
課件顯示:表示兩個比相等的式子叫做比例。
學生讀一讀,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。
[評析:比例的意義其實是一種規(guī)定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養(yǎng)。在總結得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導學生讀一讀,從正反兩方面進一步認識比例,加深了學生對比例的內涵的理解。]
。ǘ┚毩
1、出示例1根據下表,先分別寫出兩次買練習本的錢數和本數的比,再判斷這兩個比能否組成比例。
第一次
第二次
買練習本的錢數(元)
1.2
2
買的本數
3
5
。1)學生獨立完成。
。2)集體交流,明確:根據比例的意義可以判斷兩個比能否組成比例。
2、完成練習紙第一題。
一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。
、欧謩e寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?
⑵分別寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?
[評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。練習1其實是對例題的巧妙補充。]
3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?
。ㄒ龑W生歸納出:比例由兩個比組成,有四個數;比是一個比,有兩個數)
4、教學比例各部分的名稱
。1)課件出示:3:5
前項后項
(2)課件出示:3:5=18:30
內項
外項
。3)如果把比例寫成分數的形式,你能指出它的內、外項嗎?
課件出示:3/5=18/30
[評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]
5、小結、過渡:
剛才我們已經研究了比例的意義、各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質,有興趣嗎?
三、探究比例的基本性質
1、課件先出示一組數:3、5、10、6
再出示:運用這四個數,你能組成幾個等式?(等號兩邊各兩個數)
2、獨立思考,并在作業(yè)本上寫一寫。
學生組成的等式可能有:10÷5=6÷3或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根據學生回答板書:3×10=5×63:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、引導發(fā)現規(guī)律
。1)還有不同的乘法算式嗎?(沒有,交換因數的位置還是一樣)
乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不同,因為比值各不相同)
。2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細觀察,你能發(fā)現比例的性質或規(guī)律嗎?
。3)學生先獨立思考,再小組交流,探究規(guī)律。
。ò鍟簝蓚外項的積等于兩個內項的積。)
[評析:“運用這四個數,你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學生的思考都變成有用的教學資源?紤]到直接探究比例的.基本性質學生會有困難,教師作了適當的引導,通過乘法算式和比例式的橫向聯系,讓學生在變中尋不變,從而探究出性質。]
4、驗證:是不是任意一個比例都有這樣的規(guī)律?
、耪n件顯示復習題(4組),學生驗證。
⑵學生任意寫一個比例并驗證。
⑶完整板書:在比例里,兩個外項的積等于兩個內項的積。這就是比例的基本性質。
[評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]
5、思考3/5=18/30是那些數的乘積相等。課件顯示:交叉相乘。
6、小結:剛才我們是怎樣發(fā)現比例的基本性質的?(寫了一些比例式,觀察比較,發(fā)現規(guī)律,再驗證)
四、綜合練習
完成練習紙2、3、4
附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。
14:21和6:9
1.4:2和5:10
3、判斷下面哪一個比能與1/5:4組成比例。
、5:4②20:1
③1:20④5:1/4
4、在()里填上合適的數。
1.5:3=():4
=
12:()=():5
[評析:習題的安排旨在對比例的意義和基本性質進行進一步的鞏固和應用,最后一道開放題答案不唯一,意在進一步讓學生體驗和感悟數學的“變”與“不變”的美妙與統(tǒng)一。]
五、全課總結(略)
《比例的意義》教案10
教學目標:
1、理解比例的意義,認識比例各部分名稱,能通過觀察、猜想、驗證等方法得出分數的基本性質。
2、能根據比例的意義和基本性質,正確判斷兩個比能否組成比例。
3、培養(yǎng)學生猜想與驗證、觀察與概括的能力。
4、讓學生經經歷探究的過程,體驗成功的快樂,收獲數學學習的興趣和信心。
教學重點:理解比例的意義和基本性質,能正確判斷兩個比能否組成比例。
教學難點:自主探究比例的基本性質。
教學準備:投影片、練習紙
三案設計:
學案
一、自學質疑
[探究任務一] 比例的意義
1、投影出示幾組比,讓學生寫出各組的比值,
二、比例的基本性質
教案
一、回顧舊知、孕伏新知:
1、談話:同學們,我們已經學過了比的許多知識,說說你已經知道了比的哪些知識?
。ㄉ穑罕鹊囊饬x、各部分名稱、基本性質等。)
還記得怎樣求比值嗎?能很快算出下面每組中兩個比的比值嗎?
2、 師板書題目:
(1)4:5 20:25 (2)0.6:0.3 1.8:0.9
。3)1/4: 5/8 3:7.5 (4)3:8 9:27
[評析:開門見山,從學生已有的知識經驗入手,方便快捷,循序漸進,為新課做好準備。因為這些題目還要用到,所以不惜費時板書——有效的呈現方式]
二、絲絲入扣,深挖比例的意義
。ㄒ唬┱J識意義
1、 指名口答每組中兩個比的比值,在比例下方寫上比值。
師問:你們有什么發(fā)現嗎?(三組比值相等,一組不等)
2、是啊,這種現象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:4:5=20:25
師:最后一組能用等號連接嗎?為什么?
數學中規(guī)定,像這樣的一些式子就叫做比例,今天這節(jié)課我們就一起來研究比例(板書:比例)
[評析:通過口算求比值,不經意間學生就有了發(fā)現,有三組式子比值相等,一組不等,如行云流水般引出比例。有效的課堂教學,就需要像這樣做好新舊知識的完美銜接。]
3、同學們想研究比例的哪些內容呢?
。ㄉ穑合胙芯勘壤囊饬x,學比例有什么用?比例有什么特點……)
4、那好,我們就先來研究比例的意義,到底什么是比例呢?觀察黑板上這些式子,你能說出什么叫比例嗎?
。ǜ鶕䦟W生的回答,教師抓住關鍵點板書:兩個比 比值相等)
同學們說的比例的意義都正確,不過數學中還可以說得更簡潔些。
板演:表示兩個比相等的式子叫做比例。
學生議一議,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。
5、質疑:有三個比,他們的比值相等,能組成比例嗎?
[評析:比例的意義其實是一種規(guī)定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養(yǎng)。在總結得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導學生議一議,從正反兩方面進一步認識比例,加深了學生對比例的內涵的理解。讓學生像一個數學家一樣真正經歷知識探索和形成的全過程,無時無刻不享受成功的快樂!]
。ǘ┚毩
1、投影出示例1,根據下表,先分別寫出兩次買練習本的錢數和本數的比,再判斷這兩個比能否組成比例。
(1)學生獨立完成。
(2)集體交流,明確:根據比例的意義可以判斷兩個比能否組成比例。
2、完成練習紙第1題。
一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。
(1)分別寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?
(2)分別寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?
[評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。這一環(huán)節(jié),一學生對于“為什么”設計到了正反比例的知識,教師也不失時機予以評價,不但使該生興致勃勃,也引得其他學生投來艷羨的目光,生成地精彩!]
3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?
。ㄒ龑W生歸納出:比例由兩個比組成,有四個數;比是一個比,有兩個數)
4、認識比例各部分的'名稱
。1)板書出示: 4 : 5
前項 后項
。2)板書出示:4 : 5 = 20 : 25
。3)如果把比例寫成分數的形式,你能指出它的內、外項嗎?
課件出示:4/5=20/25
[評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]
5、小結、過渡:
剛才我們已經研究了比例的意義及其各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質,大家有興趣嗎?
三、探究比例的基本性質
1、投影出示:
你能運用3、5、10、6這四個數,組成幾個等式嗎?(等號兩邊各兩個數)
2、 獨立思考,并在作業(yè)本上寫一寫。
學生組成的等式可能有:10÷5=6÷3
或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根據學生回答,師相機引導并板書: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6: 3=10:5……
3、 引導發(fā)現規(guī)律
。1)還有不同的乘法算式嗎?(沒有,交換因數的位置還是一樣)
乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不一樣,因為比值各不相同)
。2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細觀察,你能發(fā)現比例的性質或規(guī)律嗎?
(3)學生先獨立思考,再小組交流,探究規(guī)律。
。ò鍟簝蓚外項的積等于兩個內項的積。)
[評析:“運用這四個數,你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學生的思考都變成有用的教學資源?紤]到直接探究比例的基本性質學生會有困難,教師作了適當的引導,通過乘法算式和比例式的橫向聯系,讓學生在變中尋不變,從而探究出性質。]
4、驗證猜想:
師:這是你的猜想,有了猜想還必須驗證。
。1)請看黑板上這幾個比例的內項的積與外項的積是不是相等?(學生進行驗證,紛紛表示內項積等于外項積)
。2)學生任意寫一個比例并驗證。師巡視指導。
師:有一位同學也寫了一個比例,他認為這個比例的內項積與外項積是不相等的,大家看看是什么原因?
板書:1/2 ∶1/8 = 2∶ 8
眾生沉思片刻,紛紛發(fā)現等式不成立。
生:1/2∶1/8 = 4,而 2∶8 =1/4,這兩個比不能組成比例。
師:看來剛才發(fā)現的規(guī)律前要加一個條件——在比例里(板書),這個規(guī)律叫做比例的基本性質。
[評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]
5、思考4/5=20/25是那些數的乘積相等。課件顯示:交叉相乘。
6、小結:剛才我們是怎樣發(fā)現比例的基本性質的?(寫了一些比例式,觀察比較,發(fā)現規(guī)律,再驗證)
[及時總結評價,不但可以幫助學生理清知識脈絡,而且可以讓他們感受創(chuàng)造的快樂,樹立學習的信心。尤其是教師的評價:科學家也是這樣研究問題的!更給了學生無上的榮耀!]
四、反饋提升
完成練習紙2、3、4
附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。
14 :21 和 6 :9 1.4 :2 和 5 :10
讓學生明確可以通過比例的意義和基本性質兩個途徑判斷兩個比能否組成比例。
3、判斷下面哪一個比能與 1/5:4組成比例。
①5:4 ②20:1
、1:20 ④5:1/4
4、在( )里填上合適的數。
、1.5:3=( ):4
12:( )=( ):5
[評析:習題的安排旨在對比例的意義和基本性質進行進一步的鞏固和應用,第4題中第②題屬于開放題,答案不唯一,意在進一步讓學生體驗和感悟數學的“變”與“不變”的美妙與統(tǒng)一。]
五、課后留白
同一時間、同一地點,人高1.5米,影長2米;樹高3米,影長4米。
(1)人高和影長的比是( )
樹高和影長的比是( )
。2)人高和樹高的比是( )
人影長和樹影長的比是( )
你有什么發(fā)現?
為什么同一時間、同一地點兩個不同物體高度與其影長的比可以組成比例?請大家課后查找有關資料。
[設計意圖:數學服務于生活,在生活中能更好地檢驗數學學習的成色!“帶著問題離開教室”是新課程的理念,沒有完美的課堂,缺憾不失為一種美!]
六、全課總結:這節(jié)課你有什么收獲?
。ㄗ詈蟮臋C會仍然給學生,學生通過清晰的板書總結的很到位)
《比例的意義》教案11
教學目標
1.使學生理解并掌握比例的意義和基本性質.
2.認識比例的各部分的名稱.
教學重點
比例的意義和基本性質.
教學難點
應用比例的意義或基本性質判斷兩個比能否組成比例,并能正確地組成比例.
教學過程
一、復習準備.
(一)教師提問復習.
1.什么叫做比?
2.什么叫做比值?
。ǘ┣笙旅娓鞅鹊谋戎担
12∶16 4.5∶2.7 10∶6
教師提問:上面哪些比的比值相等?
。ㄈ┙處熜〗Y
4.5∶2.7和10∶6這兩個比的比值相等,也就是說兩個比是相等的,因此它們可以
用等號連接.
教師板書:4.5∶2.7=10∶6
二、新授教學.
(一)比例的意義(課件演示:比例的意義)
例1.一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米.列表如下:
時間(時)
2
5
路程(千米)
80
200
1.教師提問:從上表中可以看到,這輛汽車,
第一次所行駛的路程和時間的比是幾比幾?
第二次所行駛的路程和時間的比是幾比幾?
這兩個比的比值各是多少?它們有什么關系?(兩個比的比值都是40,相等)
2.教師明確:兩個比的比值都是40,所以這兩個比相等.因此可以寫成這樣的等式
80∶2=200∶5或 .
3.揭示意義:像4.5∶2.7=10∶6、80∶2=200∶5這樣的等式,都是表示兩個比相等的式子,我們把它叫做比例.(板書課題:比例的意義)
教師提問:什么叫做比例?組成比例的關鍵是什么?
板書:表示兩個比相等的式子叫做比例.
關鍵:兩個比相等
4.練習
下面哪組中的兩個比可以組成比例?把組成的比例寫出來.
(1)6∶10和9∶15 (2)20∶5和1∶4
。3) 和 (4)0.6∶0.2和
5.填空
(1)如果兩個比的比值相等,那么這兩個比就( )比例.
(2)一個比例,等號左邊的比和等號右邊的比一定是( )的.
(二)比例的基本性質(課件演示:比例的基本性質)
1.教師以80∶2=200∶5為例說明:組成比例的'四個數,叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項.(板書)
2.練習:指出下面比例的外項和內項.
4.5∶2.7=10∶6 6∶10=9∶15
3.計算上面每一個比例中的外項積和內項積,并討論它們存在什么關系?
以80∶2=200∶5為例,指名來說明.
外項積是:80×5=400
內項積是:2×200=400
80×5=2×200
4.學生自己任選兩三個比例,計算出它的外項積和內項積.
5.教師明確:在比例里,兩個外項的積等于兩個內項的積.這叫做比例的基本性質
板書課題:加上“和基本性質”,使課題完整.
6.思考:如果把比例寫成分數形式,等號兩端的分子和分母分別交叉相乘的積有什么關系?為什么?
教師板書:
7.練習
應用比例的基本性質,判斷下面哪一組中的兩個比可以組成比例.
6∶3和8∶5 0.2∶2.5和4∶50
三、課堂小結.
這節(jié)課我們學習了比例的意義和基本性質,并學會了應用比例的意義和基本性質組成比例.
四、鞏固練習.
(一)說一說比和比例有什么區(qū)別.
。ǘ┨羁眨
在6∶5=30∶25這個比例中,外項是( )和( ),內項是( )和( ).
根據比例的基本性質可以寫成( )×( )=( )×( ).
。ㄈ└鶕壤囊饬x或者基本性質,判斷下面哪組中的兩個比可以組成比例.
1.6∶9和9∶12 2.1.4∶2和7∶10
3.0.5∶0.2和 4. 和7.5∶1
(四)下面的四個數可以組成比例嗎?把組成的比例寫出來.(能組幾個就組幾個)
2、3、4和6
五、課后作業(yè).
根據3×4=2×6寫出比例.
六、板書設計.
省略
第一課時
教學內容:P32~34 比例的意義和基本性質
教學目的:1、使同學理解比例的意義和基本性質,能正確判斷兩個比是否能組成比例。
2、通過引導探究、概括歸納、討論、合作學習,培養(yǎng)同學籠統(tǒng)概括能力。
3、使同學初步感知事物間是相互聯系、變化發(fā)展的。
教學重點;比例的意義和基本性質
教學難點:應用比的基本性質判段兩個數能否成比例,并正確的組成比例。
教學過程:
一、回顧舊知,復習鋪墊
1、請同學們回憶一下上學期我們學過的比的知識,誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。
教師把同學舉的例子板書出來,并注明比的各局部的名稱。
2、我們知道了比的前后項相除所得的商叫做比值,你們會求比值嗎?教師板書出下面幾組比,讓同學求出它們的比值。
12:16 : 4.5:2.7 10:6
同學求出各比的比值后,再提問:哪兩個比的比值相等?
。4.5:2.7的比值和10:6的比值相等。)
教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什么呢?這就是這節(jié)課我們要學習的內容。(板書課題:比例的意義)
二、引導探究,學習新知
1、教學比例的意義。
。1)出示P32例1。
每面國旗的長和寬的比分別是多少?指名分別算出一面國旗長和寬的比。
5: 2.4:1.6 60:40 15:10
每面國旗長和寬的比值有什么關系?(都相等)
5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40
象這樣表示兩個比相等的式子叫做比例。
比例也可以寫成:
(2)我們也學過不同的兩個量也可以組成一個比,如:
一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。列表如下:
時間(時) 2 5
路程(千米) 80 200
指名同學讀題。
教師:這道題涉和到時間和路程兩個量的關系,我們用表格把它們表示出來。表格的第一欄表示時間,單位“時”,第二欄表示路程,單位“千米”。 這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問 邊填寫表格。)
“你能根據這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?”教師根據同學的回答,板書:
第一次所行駛的路程和時間的比是80:2
第二次所行駛的路程和時間的比是200:5
讓同學算出這兩個比的比值。指名同學回答,教師板書:80:2=40,200:5=40。讓同學觀察這兩個比的比值。再提問:你們發(fā)現了什么?”(這兩個比的比值都是40,這兩個比相等。)
教師說明:因為這兩個比相等,所以可以把它們用等號連起來組成比例。(板書:80:2=200:5)像這樣表示兩個比相等的式子叫做比例。
指著比例式4.5:2.7=10:6提問: “誰能說說什么叫做比例?”引導同學觀察是表示兩個比相等。然后板書:表示兩個比相等的式子叫做比例。并讓同學齊讀一遍。
“從比例的意義我們可以知道,比例是由幾個比組成的?這兩個比必需具備什么條件?因此判斷兩個比能不能組成比例,關鍵是看什么?假如不能一眼看出兩個比是不是相等的,怎么辦?”
根據同學的回答,教師小結:通過上面的學習,我們知道了比例是由兩個相等的比組成的。在判斷兩個比能不能組成比例時,關鍵是看這兩個比是不是相等。假如不能一眼看出兩個比是不是相等,可以先分別把兩個比化簡以后再看。例如判斷10:12和35: 42這兩個比能不能組成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上舉例邊說邊板書。)
(3)比較“比”和“比例”兩個概念。
教師:上學期我們學習了“比”,現在又知道了“比例”的意義,那么“比”和“比例”有什么區(qū)別呢?
引導同學從意義上、項數上進行對比,最后教師歸納:比是表示兩個數相除,有兩項;比例是一個等式,表示兩個比相等,有四項。
。4)鞏固練習。
、儆檬謩菖袛嘞旅婵ㄆ系膬蓚比能不能組成比例。(能,就用張開拇指和食指表示;不能就用兩手的食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6
同學判斷后,指名說出判斷的根據。
、谧鯬33“做一做”。
讓同學看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們說說是怎樣做的,看看自身做得對不對。
、劢o出2、3、4、6四個數,讓同學組成不同的比例(不要求舉全)。
、躊36練習六的第1~2題。
對于能組成比例的四個數,把能組成的比例寫出來。組成的比例只要能成立就可以。
第4小題,給出的四個數都是分數,在寫比例式時,也要讓同學寫成分數形式。
《比例的意義》教案12
教學內容
教科書第48~50頁例1、例2,課堂活動及練習十一1,2題。
教學目標
1.理解比例的意義,認識比例各部分的名稱。
2.讓學生經歷探討兩內項之積等于兩外項之積的過程,使之更好理解并掌握比例的基本性質。并能運用比例的意義和比例的基本性質,判斷兩個比能否組成比例,會組比例。
3.培養(yǎng)學生自主參與的意識、主動探究的精神;培養(yǎng)學生進行初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學生思維,能夠在解決問題的過程中體驗到學習數學的愉悅。
教學重點
理解比例的意義和基本性質。
教學難點
應用比例的意義和基本性質判斷兩個比能否組成比例,并能正確地組成比例。
教學準備
課件,撲克牌10張(2~10以及A),圓規(guī)一個。
教學過程
一、復習準備
。1)一輛汽車4時行160km,路程和時間的比是多少?這個比表示什么?
。2)求下面各比的比值,你發(fā)現了什么?
12∶1634∶184.5∶2.710∶6
教師:同學們發(fā)現4.5∶2.7和10∶6的結果是一樣的,說明了什么?(這兩個比相等。)這兩個比你能用等號連接起來嗎?(能。)請同學們用等號把這兩個比用等號連接起來。
二、探究新知
1.提出問題
這節(jié)課我們在比的知識基礎上,進一步學習新知識。
揭示課題--比例的意義和基本性質。板書:比例的意義和基本性質
2.探究比例的意義
課件出示例1:兩組同學同時在操場探討竹竿長與影子長之間的規(guī)律。列表如下:
竹竿長26
影子長39
教師:觀察上表,你能寫出多少個有意義的比?并求出比值。把這些比都寫出來。
學生討論并寫出比,完成后抽幾個學生的作業(yè)在視頻展示臺上展示,教師選幾個有代表性的比在黑板上板書。
教師:觀察這些比,哪些能用等號連接?把能用等號連接的'比用等號連接起來。
學生口答,教師板書:3∶2=9∶6,6∶2=9∶332=96,62=93
教師:這些都是比例。你能用自己的語言說一說什么是比例嗎?
引導學生用自己的語言歸納比例的意義。(板書:比例的意義)
教師:2∶9和3∶6能組成比例嗎?你是怎么知道的?
指導學生說出判斷兩個比能不能組成比例,要看他們的比值是否相等。再判斷2∶5和80∶200能否組成比例?并說明理由。
組織并指導學生完成書上第50頁的課堂活動。
3.認識比例的各部分
教師:在一個比例里,有四個數,這四個數分別叫什么名字?同學們看看書就明白了。
指導學生看書后匯報。
教師:請同學們分別找出3∶2=9∶6和6/2=9/3的內項和外項。
學生找出后,隨學生的匯報教師板書:
要求學生找出剛才自己說的幾個比例的內項和外項,然后引導學生分析歸納出:在比例里,靠近等號的兩個數是內項,剩下的兩個數是外項;如果寫成分數形式,那么可以用交叉的方法找出比例的內項和外項。
4.教學比例的基本性質
教師:前面我們已經探究發(fā)現了比例的一個秘密,就是組成比例的兩個比的比值相等,比例還有一個秘密,你們愿意去尋找嗎?(愿意)你們任意找一個比例,把它們的內項和外項分別乘起來,又可以發(fā)現什么?
學生初步發(fā)現兩個內項的積等于兩個外項的積后,教師提醒學生:是不是每個比例都有這個規(guī)律,多找?guī)讉比例試一試,如果把這個比例寫成分數形式,它是不是也有這樣的規(guī)律呢?
教師:同學們通過多個比例的探究,發(fā)現它們都有這個規(guī)律。你能用你自己的語言歸納這個規(guī)律嗎?
指導學生歸納后,教師板書:在比例里,兩個內項的積等于兩個外項的積,并且告訴學生,這就是比例的基本性質。
5.運用比例的基本性質判斷兩個比是否能組成比例
教師:用比例的基本性質,也可以判斷兩個比能不能組成比例。請同學們用比例的基本性質判斷一下,0.4∶25能否和1.2∶75組成比例?為什么?
學生討論后回答:因為0.475=251.2,所以0.4∶25和1.2∶75能組成比例。
三、鞏固提高
。1)說一說比和比例有什么區(qū)別。
討論后指名說:比是表示兩個數相除的關系,有兩項;比例是一個等式,表示兩個比相等的關系,有四項。
。2)在6∶5=30∶25這個比例中,外項是()和(),內項是()和()。根據比例的基本性質可以寫成()()=()()。
。3)下面的四個數可以組成比例嗎?把組成的比例寫出來(能組幾個就組幾個)。2,3,4和6
四、全課總結
先讓學生總結本課所學內容,談感想說收獲,教師再進行全課總結。
五、課堂作業(yè)
。1)指導學生完成練習十一的第1題。
要求:第(1)小題用比的意義來判斷,第(2)小題用比例的基本性質判斷,第(3),(4)小題學生自由選擇方法判斷。
。2)學生獨立完成練習十一的第2題,教師訂正。
《比例的意義》教案13
教學目標
知識目標:理解比例的意義。
技能目標:能正確判斷兩個比是否能組成比例,培養(yǎng)學生抽象概括能力。
情感目標:使學生初步感知事物間是相互聯系、變化發(fā)展的。
教學重難點
重點:理解比例的意義。
難點:判斷兩個比能否組成比例。
教學工具
多媒體課件
教學過程
一、新課導入
請同學們回憶一下比的知識,比的前項、后項和比值。
二、教學過程
1.比例的意義
(1)出示P40例1
操場上和教室里兩面國旗的長和寬的.比值有什么關系?
2.4∶1.6=3∶2
60∶40=3∶2
2.4∶1.6=60∶40
象這樣表示兩個比相等的式子叫做比例。
比例也可以寫成:=
做一做
1、下面那組中的兩個比可以組成比例?把組成的比例寫出來。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) ∶和6∶4 (4)0.6∶0.2和∶
答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2
(4)0.6∶0.2=3∶2 ∶ =3∶1
所以,只有第一組可以組成比例為6∶10=9∶15
2、用圖中4個數據可以組成多少比例?
答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5
全課小結
通過這節(jié)課,我們學到了什么知識?什么是比例?
拓展延伸
用8、12四個數分別作為比例的項,你能組成幾個比例?
課后小結
通過這節(jié)課,我們學到了什么知識?什么是比例?
課后習題
一、填空
1、( )叫做比例。
2、兩個比的( )相等,這兩個比就相等。
3、把6×8=24×2改寫成四個比例。
4、把7m=8n改寫成四個比例。
5、根據8×9=3×24,寫出比例( )
6、如果7a=6b,那么a:b=( ):( )。
7、如果9a=5b,那么b:a=( ):( )。
二、選擇
1、下面的比中能與3∶8組成比例的是( )。
A.3.5∶6 B.1.5∶4 C.6∶1.5
2、甲數除乙數的商是1.8,那么甲數與乙數的比是( )。
A.9:5 B.5:9 C.1:8
3、下面的數中,能與6、9、10組成比例的是( )。
A.7 B.5.4 C.1.5
板書
表示兩個比相等的式子叫做比例。
《比例的意義》教案14
教學內容:比例的意義、基本性質,比例各部分名稱,組比例。
教學目標:
1.使學生理解比例的意義,認識比例各部分的名稱。
2.能運用比例的意義判斷兩個比能否組成比例,并會組比例。理解并掌握比例的基本性質。
教學重點:比例的意義和基本性質。
教學難點:理解比例的基本性質。
教學過程:
一、復習
。、提問:什么是比?一輛汽車4小時行160千米,說出路程和時間的比。
。、求下面各比的比值,哪些比的比值相等?
12:16:4.5:2.710:6
二、新授
提示課題:這節(jié)課我們在過去學過比的知識的基礎上,學一個的知識:比例的意義和基本性質。
。、比例的意義
出示例1:一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。列表如下:
時間(時)25
路程(千米)80200
從上不中可以看到,這輛汽車:
第一次所行臺的路程和時間的比是____;
第二次所行駛的路程和時間的比是____;
這兩個比的比值各是多少?它們有什么關系?
。ǎ保└鶕䦟W生回答,師板書結果后,師指出:這兩個比的比值都是40,所以這兩個比是相等的,可以用等號將兩個比連起來寫成下面的等式。
板書:80:2=200:5或=
師:這樣的式子,我們給它一個名字叫做比例。
。ǎ玻┛诖
。、把復習第2題中兩個比值相等的比用等號連起來。
。、用等號連接起來的式子叫做什么?
。、根據剛才的回答,你能說出什么叫比例嗎?
。ǎ常┬〗Y。
。、表示兩個比相等的式子叫做比例,兩個比的比值相等也就是這兩個比相等。
。隆⒁袛鄡蓚比能否組成比例,可以看這兩個比的比值是否相等。比值相等的兩個比可以組成比例,比值不相等的'兩個比就不能組成比例。
。ǎ矗┚毩,課本第10頁做一做。
2、比例的基本性質。
。ǎ保┍壤鞑糠值拿Q。
引導學生觀察黑板上的例題:80:2=200:5
并自學課本
提問:什么叫做比例的項?什么叫前項?什么叫后項?什么叫內項?什么叫外項?這四項分別在等號的什么位置?
(2)說出下面各比例的外項和內項?
6:10=9:158:3=3.2:1.21/3:1/6=16:8
(3)計算:上面比例中的外項積與內項積。
。ǎ矗┮龑W生觀察每個比例中的計算結果,發(fā)現這兩個乘積有怎樣的關系?
師:想一想,如果把比例寫成分數形式,等號兩端的分子分母交叉相乘的積有什么關系?
(5)你能得出什么結論?
三、鞏固練習
。薄⑼瓿傻2頁的做一做。
。、完成第3頁的做一做第1題。
四、總結
。、比例的意義和基本性質是什么?
2、怎樣判斷兩個比能否組成比例?
五、作業(yè)
。薄⑼瓿删毩曀牡牡冢保愁}。
《比例的意義》教案15
教學目標
知識目標:理解比例的意義,掌握組成比例的關鍵條件。
能力目標:能正確的判斷兩個比能否組成比例。
情感目標:通過動手、動腦、觀察、計算、討論等方式,使學生自主獲取知識,全面參與教學活動。
重點解比例的意義,掌握組成比例的關鍵條件。
難點正確的判斷兩個比能否組成比例。
教學過程教學預設個性修改。
目標導學復習激趣目標導學自主合作匯報交流變式訓練。
創(chuàng)境激疑
一、創(chuàng)設情境,導入新課
師:同學們,每周一的早上我們學校都要舉行莊嚴的升國旗儀式,那么,你們對國旗都有哪些了解呢?(生自由回答)
師:同學們都說出了自己的想法,說明你們都很熱愛我們的國家,希望你們以后一定要好好學習,做一個有用的人,把我們的國家建設的更加美好!五星紅旗是莊嚴而美麗的,并且它與我們數學也有著密切的聯系,這也就是我們今天所要研究的內容:比例(板書課題:比例)
合作探究
二、新授(課件出示不同大小的國旗圖案)
師:畫面上出現了四幅不同大小的國旗,請同學們任選兩面國旗來算一算它們各自長與寬的比值是多少?然后觀察結果,你能發(fā)現什么?
。ò逖,觀察到比值相等,教師板書:兩個比相等)
師:那我們就可以將這兩個比用等號連接。(教師板書生匯報的兩個相等的比)
教師邊指著這組相等的`比一邊說:好,像這樣表示兩個比相等的式子就叫做比例。(把定義補充完整)。這就是比例的意義(把課題板書完整)請同學們齊讀。
請同學們再默讀一遍比例的意義,思考:想要組成比例必須要具備哪些條件?(生回答,等式;有兩個相等的比)
。ń處熢購娬{:一定是比值相等的兩個比才能組成比例。)
師:你還能從四面國旗中找出哪些比例?
(寫在練習本上,然后匯報。教師板書)
師:我們在學習比的時候,可以把比寫成分數的形式,比如:60:40=60/40,那比例也能寫成分數的形式嗎?怎么寫?(口答)
師:我們剛才一直在強調比和比例的聯系,那么比就是比例嗎?
從形式上區(qū)分:比由兩個數組成;比例由四個數組成。
從意義上區(qū)分:比表示兩個數之間的倍數關系;比例表示兩個比相等的式子。
拓展應用下面哪些組的兩個比可以組成比例?如果能,在()打對號。
10:2和35:42()0.6:0.2和):4和3:():和12:8()
總結小強3分鐘走了180米,小剛1小時走了3.6千米。小強說他們各自所走的路程和時間的比能組成比例,小剛說不能組成比例。請問:誰說的對?
作業(yè)布置做一做。
板書設計比例的意義
2.4:1.6=60:40=
2.4:1.6=60:40
(或)=
【《比例的意義》教案】相關文章:
《比例的意義》教案12-24
《比例的意義》教案(精選21篇)12-30
《比例的意義》教案15篇12-30
《比例的意義》教案19篇01-12
《比例的意義》教案(15篇)01-04
《比例的意義》教案(精選24篇)01-06
《比例的意義》教案精選15篇02-28
反比例的意義教案04-01
《正比例的意義》教案02-17
《比例的意義》教案(精選15篇)02-10