成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

二次根式教案

時間:2025-02-10 10:44:45 麗薇 教案 投訴 投稿

二次根式教案集合21篇

  作為一位杰出的教職工,通常需要用到教案來輔助教學(xué),借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。如何把教案做到重點突出呢?以下是小編幫大家整理的二次根式教案集合21篇,僅供參考,希望能夠幫助到大家。

二次根式教案集合21篇

  二次根式教案 1

  教學(xué)目的

  1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學(xué)重點

  最簡二次根式的定義。

  教學(xué)難點

  一個二次根式化成最簡二次根式的方法。

  教學(xué)過程

  一、復(fù)習引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習:

  下列各根式是否為最簡二次根式,不是最簡二次根式的`說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  二次根式教案 2

  1.教學(xué)目標

  (1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會進行簡單的二次根式的乘法運算;

  (2)會用公式化簡二次根式.

  2.目標解析

  (1)學(xué)生能通過計算發(fā)現(xiàn)規(guī)律并對其進行一般化的推廣,得出乘法法則的內(nèi)容;

  (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.

  教學(xué)問題診斷分析

  本節(jié)課的學(xué)習中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對于何時該選用何公式簡化運算感到困難.運算習慣的養(yǎng)成與符號意識的養(yǎng)成、運算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運算習慣.

  在教學(xué)時,通過實例運算,對于將一個二次根式化為最簡二次根式,一般有兩種情況:(1)如果被開方數(shù)是分數(shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(例見教科書例6解法2);(2)如果被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.

  本節(jié)課的教學(xué)難點為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.

  教學(xué)過程設(shè)計

  1.復(fù)習引入,探究新知

  我們前面已經(jīng)學(xué)習了二次根式的概念和性質(zhì),本節(jié)課開始我們要學(xué)習二次根式的乘除.本節(jié)課先學(xué)習二次根式的乘法.

  問題1 什么叫二次根式?二次根式有哪些性質(zhì)?

  師生活動 學(xué)生回答。

  【設(shè)計意圖】乘法運算和二次根式的化簡需要用到二次根式的性質(zhì).

  問題2 教材第6頁“探究”欄目,計算結(jié)果如何?有何規(guī)律?

  師生活動 學(xué)生計算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容.

  【設(shè)計意圖】學(xué)生在自主探究的過程中發(fā)現(xiàn)規(guī)律,運用類比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培養(yǎng)學(xué)生的符號意識.

  2.觀察比較,理解法則

  問題3 簡單的根式運算.

  師生活動 學(xué)生動手操作,教師檢驗.

  問題4 二次根式的乘除成立的條件是什么?等式反過來有什么價值?

  師生活動 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).

  【設(shè)計意圖】讓學(xué)生運用法則進行簡單的二次根式的乘法運算,以檢驗法則的掌握情況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個因數(shù)或因式的算術(shù)平方根的積,利用整式的運算法則、乘法公式等可以簡化二次根式,培養(yǎng)學(xué)生的運算能力.

  3.例題示范,學(xué)會應(yīng)用

  例1 化簡:(1)二次根式的乘除; (2)二次根式的乘除.

  師生活動 提問:你是怎么理解例(1)的?

  如果學(xué)生回答不完善,再追問:這個問題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認為本題怎樣才達到了化簡的效果?

  師生合作回答上述問題.對于根式運算的最后結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號外.

  再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?

  【設(shè)計意圖】通過運算,培養(yǎng)學(xué)生的運算能力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進行二次根式的化簡.

  例2 計算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除

  師生活動 學(xué)生計算,教師檢驗.

  (1)在被開方數(shù)相乘的'時候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫成二次根式的乘除再分解;

  (2)二次根式的乘法運算類似于整式的乘法運算,交換律、結(jié)合律都是適用的對于根號外有系數(shù)的根式在相乘時,可以將系數(shù)先相乘作為積的系數(shù),再對根式進行運算;

  (3)例(3)的運算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號下為字母的二次根式”的運算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號外.

  【設(shè)計意圖】引導(dǎo)學(xué)生及時總結(jié),強調(diào)利用運算律進行運算,利用乘法公式簡化運算.讓學(xué)生認識到,二次根式是一類特殊的實數(shù),因此滿足實數(shù)的運算律,關(guān)于整式運算的公式和方法也適用.

  教材中雖然指明,如未特別說明,本章中所有的字母都表示正數(shù),但仍應(yīng)強調(diào),看到根號就要注意被開方數(shù)的符號.可以根據(jù)二次根式的概念對字母的符號進行判斷,在移出根號時正確處理符號問題.

  4.鞏固概念,學(xué)以致用

  練習:教科書第7頁練習第1題. 第10頁習題16.2第1題.

  【設(shè)計意圖】鞏固性練習,同時檢驗乘法法則的掌握情況.

  5.歸納小結(jié),反思提高

  師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請學(xué)生回答以下問題:

  (1)你能說明二次根式的乘法法則是如何得出的嗎?

  (2)你能說明乘法法則逆用的意義嗎?

  (3)化簡二次根式的基本步驟是怎樣?一般對最后結(jié)果有何要求?

  6.布置作業(yè):教科書第7頁第2、3題.習題16.2第1,6題.

  五、目標檢測設(shè)計

  1.下列各式中,一定能成立的是( )

  A.二次根式的乘除 B.二次根式的乘除

  C.二次根式的乘除 D.二次根式的乘除

  【設(shè)計意圖】考查二次根式的概念和性質(zhì),這是進行二次根式的乘法運算的基礎(chǔ).

  2.化簡二次根式的乘除 ______________________________。

  【設(shè)計意圖】二次根式是特殊的實數(shù),實數(shù)的相關(guān)運算法則也適用于二次根式.

  3.已知二次根式的乘除,化簡二次根式二次根式的乘除的結(jié)果是(  )

  A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除

  【設(shè)計意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡二次根式.

  二次根式教案 3

  教學(xué)設(shè)計思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。

  教學(xué)目標

  知識與技能

  1.知道什么是二次根式,并會用二次根式的意義解題;

  2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

  過程與方法

  通過二次根式的概念和性質(zhì)的'學(xué)習,培養(yǎng)邏輯思維能力;

  情感態(tài)度價值觀

  1.經(jīng)歷將現(xiàn)實問題符號化的過程,發(fā)展應(yīng)用的意識;

  2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

  教學(xué)重點和難點

  重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點:確定二次根式中字母的取值范圍。

  教學(xué)方法

  啟發(fā)式、講練結(jié)合

  教學(xué)媒體

  多媒體

  課時安排

  1課時

  二次根式教案 4

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學(xué)生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學(xué)解決實際問題的意識和能力。另外,通過本小節(jié)學(xué)習為后面學(xué)生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的.內(nèi)容是知識的延續(xù)和創(chuàng)新,學(xué)生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學(xué)生具有較扎實的知識和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達到教學(xué)目標,少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識性評價教學(xué)策略,給予個別關(guān)照、心理暗示以及適當?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習任務(wù)。

  設(shè)計理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習活動的設(shè)計者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習習慣,掌握學(xué)習策略,并根據(jù)活動中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學(xué)習。

  教學(xué)目標知識與技能目標:

  會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

  過程與方法目標:

  通過類比整式加減法運算體驗二次根式加減法運算的過程;學(xué)生經(jīng)歷由實際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價值觀:

  通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習的過程中來,使他們體驗到成功的樂趣.

  重點、難點:重點:

  合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

  難點:

  二次根式加減法的實際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵學(xué)生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習,歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實際問題導(dǎo)入二次根式加減運算;類比合并同類項合并同類二次根式。

  3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個別問題進行點撥指導(dǎo),實現(xiàn)全優(yōu)的教育效果。

  二次根式教案 5

  一、教學(xué)目標

  1。使學(xué)生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

  2。使學(xué)生掌握化簡一個二次根式成最簡二次根式的方法。

  3。使學(xué)生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

  二、教學(xué)重點和難點

  1。重點:能夠把所給的二次根式,化成最簡二次根式。

  2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

  三、教學(xué)方法

  通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的.方法。

  四、教學(xué)手段

  利用投影儀。

  五、教學(xué)過程

 。ㄒ唬┮胄抡n

  提出問題:如果一個正方形的面積是0.5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會給解決實際問題帶來方便。

 。ǘ┬抡n

  由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

  這兩個二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

  1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

  2。要提問學(xué)生

  問題,通過這個小題使學(xué)生明確如何使用化簡中的條件。

  通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。

  注意:

 、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

 、诋斠粋式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

 。ㄈ┬〗Y(jié)

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習題11.4;A組1;B組1。

  七、板書設(shè)計

  二次根式教案 6

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的概念.

  2.內(nèi)容解析

  本節(jié)課是在學(xué)生學(xué)習了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學(xué)習二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習二次根式的性質(zhì)和四則運算打基礎(chǔ).

  教材先設(shè)置了三個實際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.

  本節(jié)課的教學(xué)重點是:了解二次根式的概念;

  二、目標和目標解析

  1.教學(xué)目標

 。1)體會研究二次根式是實際的需要.

  (2)了解二次根式的概念.

  2. 教學(xué)目標解析

 。1)學(xué)生能用二次根式表示實際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

 。2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負數(shù)的理由,知道二次根式本身是一個非負數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

  三、教學(xué)問題診斷分析

  對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的'雙重非負性,”即被開方數(shù) ≥0是非負數(shù), 的算術(shù)平方根 ≥0也是非負數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實數(shù)一章所學(xué)習的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運用被開方數(shù)是非負數(shù)這一條件進行二次根式有意義的判斷.

  本節(jié)課的教學(xué)難點為:理解二次根式的雙重非負性.

  四、教學(xué)過程設(shè)計

  1.創(chuàng)設(shè)情境,提出問題

  問題1你能用帶有根號的的式子填空嗎?

  (1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

  (2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

  (3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

  師生活動:學(xué)生獨立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進行適當引導(dǎo)和評價.

  【設(shè)計意圖】讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

  師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負數(shù)(包括字母或式子表示的非負數(shù))的算術(shù)平方根.

  【設(shè)計意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問題3 你能用一個式子表示一個非負數(shù)的算術(shù)平方根嗎?

  師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

  【設(shè)計意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

  追問:在二次根式的概念中,為什么要強調(diào)“a≥0”?

  師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負數(shù)的理由.

  【設(shè)計意圖】進一步加深學(xué)生對二次根式被開方數(shù)必須是非負數(shù)的理解.

  3.辨析概念,應(yīng)用鞏固

  例1 當 時怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義?

  師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負數(shù)的理解.

  例2 當 是怎樣的實數(shù)時, 在實數(shù)范圍內(nèi)有意義? 呢?

  師生活動:先讓學(xué)生獨立思考,再追問.

  【設(shè)計意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負數(shù)的理解.

  問題4 你能比較 與0的大小嗎?

  師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強化學(xué)生對二次根式本身為非負數(shù)的理解,

  【設(shè)計意圖】通過這一活動的設(shè)計,提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.

  4.綜合運用,鞏固提高

  練習1 完成教科書第3頁的練習.

  練習2 當x 是什么實數(shù)時,下列各式有意義.

 。1) ;(2) ;(3) ;(4) .

  【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

  【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

  5.總結(jié)反思

  教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.

 。1)本節(jié)課你學(xué)到了哪一類新的式子?

 。2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

  (3)二次根式與算術(shù)平方根有什么關(guān)系?

  師生活動:教師引導(dǎo),學(xué)生小結(jié).

  【設(shè)計意圖】:學(xué)生共同總結(jié),互相取長補短,再一次突出本節(jié)課的學(xué)習重點,掌握解題方法.

  6.布置作業(yè):

  教科書習題16.1第1,3,5, 7,10題.

  五、目標檢測設(shè)計

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負數(shù).

  2. 當 時,二次根式 無意義.

  【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

  3.當 時,二次根式 有最小值,其最小值是 .

  【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負數(shù)的靈活運用.

  4.對于 ,小紅根據(jù)被開方數(shù)是非負數(shù),得 出的取值范圍是 ≥ .小慧認為還應(yīng)考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

  【設(shè)計意圖】考查二次根式的被開方數(shù)為非負數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

  二次根式教案 7

  教學(xué)目的:

  1、在二次根式的混合運算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

  2、會求二次根式的代數(shù)的值;

  3、進一步提高學(xué)生的綜合運算能力。

  教學(xué)重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

  教學(xué)難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值

  教學(xué)過程:

  一、二次根式的混合運算

  例1 計算:

  分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

  (2)題是含乘方、加、減和除法的混合運算,應(yīng)按運算的順序進行計算,先算括號內(nèi)的`式子,最后進行除法運算。注意的計算。

  練習1:P206 / 8--① P207 / 1①②

  例2 計算

  問:計算思路是什么?

  答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。

  二、求代數(shù)式的值。 注意兩點:

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽。

  例4 已知,求的值。

  觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

  3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

  二次根式教案 8

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的性質(zhì)。

  2.內(nèi)容解析

  本節(jié)教材是在學(xué)生學(xué)習二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

  對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點為:理解二次根式的性質(zhì).

  二、目標和目標解析

  1.教學(xué)目標

  (1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

 。2)會運用二次根式的性質(zhì)進行二次根式的化簡;

 。3)了解代數(shù)式的概念.

  2.目標解析

 。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

 。2)學(xué)生能靈活運用二次根式的性質(zhì)進行二次根式的化簡;

 。3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點,得出代數(shù)式的概念.

  三、教學(xué)問題診斷分析

  二次根式的性質(zhì)是二次根式化簡和運算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運用二次根式的性質(zhì)進行二次根式的化簡和解決一些綜合性較強的問題.由于學(xué)生初次學(xué)習二次根式的性質(zhì),對二次根式性質(zhì)的靈活運用存在一定的困難,突破這一難點需要教師精心設(shè)計好每一道習題,讓學(xué)生在練習中進一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運用的'能力.

  本節(jié)課的教學(xué)難點為:二次根式性質(zhì)的靈活運用.

  四、教學(xué)過程設(shè)計

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

  【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

  例2 計算

 。1) ;(2) .

  師生活動:學(xué)生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

  【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動 學(xué)生獨立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

  師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

  例3 計算

 。1) ;(2) .

  師生活動:學(xué)生獨立完成,集體訂正.

  【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動:學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

  【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

  4.綜合運用

 。1)算一算:

  【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

  (2)想一想: 中, 的取值范圍是什么?當 ≥0時, 等于多少?當 時, 又等于多少?

  【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

  (3)談一談你對 與 的認識.

  【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.

  5.總結(jié)反思

 。1)你知道了二次根式的哪些性質(zhì)?

 。2)運用二次根式性質(zhì)進行化簡需要注意什么?

 。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

 。4)想一想,到現(xiàn)在為止,你學(xué)習了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認識.

  6.布置作業(yè):教科書習題16.1第2,4題.

  五、目標檢測設(shè)計

  1. ; ; .

  【設(shè)計意圖】考查對二次根式性質(zhì)的理解.

  2.下列運算正確的是( )

  A. B. C. D.

  【設(shè)計意圖】考查學(xué)生運用二次根式的性質(zhì)進行化簡的能力.

  3.若 ,則 的取值范圍是 .

  【設(shè)計意圖】考查學(xué)生對一個數(shù)非負數(shù)的算術(shù)平方根的理解.

  4.計算: .

  【設(shè)計意圖】考查二次根式性質(zhì)的靈活運用.

  二次根式教案 9

  教學(xué)目標

  課標要求:學(xué)生要學(xué)會學(xué)習、自主學(xué)習,要為學(xué)生終生學(xué)習打下堅實的基礎(chǔ),根據(jù)教學(xué)大綱和新課標的要求,根據(jù)教材內(nèi)容和學(xué)生的特點我確定了本節(jié)課的教學(xué)目標 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學(xué)生的歸納概括能力。 3、通過對二次根式的概念和性質(zhì)的探究,提高數(shù)學(xué)探究能力和歸納表達能力。 4、學(xué)生經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應(yīng)用的意識。

  教學(xué)重點:二次根式的概念和基本性質(zhì)

  教學(xué)難點:二次根式的基本性質(zhì)的靈活運用

  教法和學(xué)法

  教學(xué)活動的本質(zhì)是一種合作,一種交流。學(xué)生是數(shù)學(xué)學(xué)習的主人,教師是數(shù)學(xué)學(xué)習的組織者、引導(dǎo)者與合作者,本節(jié)課主要采用自主學(xué)習,合作探究,引領(lǐng)提升的方式展開教學(xué)。依據(jù)學(xué)生的年齡特點和已有的知識基礎(chǔ),本節(jié)課注重加強知識間的縱向聯(lián)系,拓展學(xué)生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學(xué)習打下堅實的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學(xué)生養(yǎng)成聯(lián)系和發(fā)展的觀點學(xué)習數(shù)學(xué)的習慣。

  教學(xué)過程

  活動一:根據(jù)學(xué)生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設(shè)置問題情境,讓學(xué)生感受到研究二次根式來源于生活又服務(wù)于生活。 思考:用帶有根號的式子填空,看看寫出的結(jié)果有什么特點? (1)要做一個兩條直角邊的.長分別為7cm和4cm的三角尺,斜邊的長應(yīng)為 cm

  (2)面積為S的正方形的邊長為

  (3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

  (4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學(xué)生發(fā)現(xiàn)所填結(jié)果都表示一個數(shù)的算術(shù)平方根,教師引導(dǎo)學(xué)生用一個式子表示這些有共同特點的式子。學(xué)生表示為,此時教師啟發(fā)學(xué)生回憶已學(xué)平方根的性質(zhì)讓學(xué)生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓(xùn)練,讓學(xué)生體會二次根式概念的初步應(yīng)用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉(zhuǎn)化的思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

  活動二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學(xué)生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質(zhì):雙重非負性。培養(yǎng)學(xué)生的分類討論和概括能力。例2:,則變式:,

  活動三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質(zhì),首先讓學(xué)生通過探究活動感受這條結(jié)論,然后再從算術(shù)平方根的意義出發(fā),結(jié)合具體例子對這條結(jié)論進行分析,引導(dǎo)學(xué)生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運算與平方運算的關(guān)系,培養(yǎng)學(xué)生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學(xué)生口述教師板書,后面的兩題由學(xué)生板演引導(dǎo)學(xué)生分析(2)(4)實質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內(nèi)分解因式

  活動四:探究二次根式的性質(zhì)3 3.探究 在活動三的基礎(chǔ)上出示課本第4頁的探究: 引導(dǎo)學(xué)生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學(xué)生歸納出二次根式的又一個性質(zhì)。培養(yǎng)學(xué)生觀察、對比的能力和意識。 此時引導(dǎo)學(xué)生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結(jié)果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結(jié)果看:()2=a(a),(a為任意數(shù)

  二次根式教案 10

  教學(xué)目標

  1.使學(xué)生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

  2.熟練地進行二次根式的加、減、乘、除混合運算.

  教學(xué)重點和難點

  重點:含二次根式的式子的混合運算.

  難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

  教學(xué)過程設(shè)計

  一、復(fù)習

  1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結(jié)果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的.兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結(jié)

  1.本節(jié)課復(fù)習的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

  4.通過例題的討論,要學(xué)會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡二次根式:

  二次根式教案 11

  一、素質(zhì)教育目標

  (一)知識教學(xué)點

  1.使學(xué)生了解最簡二次根式的概念和同類二次根式的概念.

  2.能判斷二次根式中的同類二次根式.

  3.會用同類二次根式進行二次根式的加減.

 。ǘ┠芰τ(xùn)練點

  通過本節(jié)的學(xué)習,培養(yǎng)學(xué)生的思維能力并提高學(xué)生的運算能力.

 。ㄈ┑掠凉B透點

  從簡單的同類二次根式的合并,層層深入,從解題的過程中,讓學(xué)生體會轉(zhuǎn)化的思維,滲透辯證唯物主義思想.

 。ㄋ模┟烙凉B透點

  通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美.

  二、學(xué)法引導(dǎo)

  1.教師教法引導(dǎo)法、比較法、剖析法,在比較和剖析中,不斷糾正錯誤,從而樹立牢固的計算方法.

  2.學(xué)生學(xué)法通過不斷的練習,從中體會、比較、二次根式加減法中,正確的方法使用,并注重小結(jié)出二次根式加減法的法則.

  三、重點·難點·疑點及解決辦法

  1.教學(xué)重點二次根式的加減法運算.

  2.教學(xué)難點二次根式的化簡.

  3.疑點及解決辦法二次根式的加減法的關(guān)鍵在于二次根式的化簡,在適當復(fù)習二次根的化簡后進行一步引入幾個整式加減法的,以引起學(xué)生的求知欲與興趣,從而最后引入同類二次根式的加減法,可進行階梯式教學(xué),由淺到深、由簡單到復(fù)雜的教學(xué)方法,以利于學(xué)生的理解、掌握和運用,通過具體例題的計算,可由教師引導(dǎo),由學(xué)生總結(jié)出計算的步驟和注意的問題,還可以通過反例,讓學(xué)生去偽存真,這種比較法的教學(xué)可使學(xué)生對概念的理解、法則的運用更加準確和熟練,并能提高學(xué)生的學(xué)習興趣,以達到更好的學(xué)習效果.

  四、課時安排

  2課時

  五、教具學(xué)具準備

  投影片

  六、師生互動活動設(shè)計

  1.復(fù)習最簡二根式整式及的加減運算,引入二次根式的加減運算,盡量讓學(xué)生回答問題.

  2.教師通過例題的示范讓學(xué)生了解什么是二次根式的加減法,并引入同類的二次根式的定義.

  3.再通過較復(fù)雜的二次根式的加減法計算,引導(dǎo)學(xué)生小結(jié)歸納出二次根式的加減法的`法則.

  4.通過學(xué)生的反復(fù)訓(xùn)練,發(fā)現(xiàn)問題及時糾正,并引導(dǎo)學(xué)生從解題過程中體會理解二次根式加減法的實質(zhì)及解決的方法.

  七、教學(xué)步驟

 。ㄒ唬┟鞔_目標

  學(xué)習二次根式化簡的目的是為了能將一些最終能化為同類二次根式項相合并,從而達到化繁為簡的目的,本節(jié)課就是研究二次根式的加減法.

 。ǘ┱w感知

  同類二次根式的概念應(yīng)分二層含義去理解(1)化簡后(2)被開方數(shù)還相同.通過正確理解二次根式加減法的法則來準確地實施二次根式加減法的運算,應(yīng)特別注意合并同類二次根式時僅將它們的系數(shù)相加減,根式一定要保持不變,并可對比整式的加減法則以增加對合并同類二次根式的理解,增強綜合運算的能力.

  二次根式教案 12

  一、學(xué)習目標:

  1.多項式除以單項式的運算法則及其應(yīng)用.

  2.多項式除以單項式的運算算理.

  二、重點難點:

  重點:多項式除以單項式的運算法則及其應(yīng)用

  難點:探索多項式與單項式相除的運算法則的過程

  三、合作學(xué)習:

  (一)回顧單項式除以單項式法則

  (二)學(xué)生動手,探究新課

  1.計算下列各式:

  (1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

  2.提問:①說說你是怎樣計算的②還有什么發(fā)現(xiàn)嗎?

  (三) 總結(jié)法則

  1.多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

  2.本質(zhì):把多項式除以單項式轉(zhuǎn)化成______________

  四、精講精練

  例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

  (3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

  隨堂練習:教科書練習

  五、小結(jié)

  1、單項式的除法法則

  2、應(yīng)用單項式除法法則應(yīng)注意:

  A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運算過程中注意單項式的系數(shù)飽含它前面的符號

  B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

  C、被除式單獨有的字母及其指數(shù),作為商的一個因式,不要遺漏;

  D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

  E、多項式除以單項式法則

  第三十四學(xué)時:14.2.1平方差公式

  一、學(xué)習目標:

  1.經(jīng)歷探索平方差公式的.過程.

  2.會推導(dǎo)平方差公式,并能運用公式進行簡單的運算.

  二、重點難點

  重點:平方差公式的推導(dǎo)和應(yīng)用

  難點:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式.

  三、合作學(xué)習

  你能用簡便方法計算下列各題嗎?

  (1)2001×1999 (2)998×1002

  導(dǎo)入新課:計算下列多項式的積.

  (1)(x+1)(x-1) (2)(m+2)(m-2)

  (3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

  結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差.

  即:(a+b)(a-b)=a2-b2

  四、精講精練

  例1:運用平方差公式計算:

  (1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

  例2:計算:

  (1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

  隨堂練習

  二次根式教案 13

  一、教學(xué)目標

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過程

  (一)復(fù)習提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的意義,并計算:

  通過練習使學(xué)生進一步理解平方根、算術(shù)平方根的`概念.

  觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

  例3 當字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術(shù)平方根的表達式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習和作業(yè)

  練習:

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習題11.1;A組1;B組1.

  六、板書設(shè)計

  二次根式教案 14

  一、復(fù)習引入

  學(xué)生活動:請同學(xué)們完成下列各題:

  1.計算

 。1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

  二、探索新知

  如果把上面的x、y、z改寫成二次根式呢?以上的運算規(guī)律是否仍成立呢?仍成立.

  整式運算中的x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規(guī)律也適用于二次根式.

  例1.計算:

 。1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運算規(guī)律,所以直接可用整式的運算規(guī)律.

  解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

  (1)(+6)(3-)(2)(+)(-)

  分析:剛才已經(jīng)分析,二次根式的'多項式乘以多項式運算在乘法公式運算中仍然成立.

  解:(1)(+6)(3-)

  =3-()2+18-6=13-3(2)(+)(-)=()2-()2

  =10-7=3

  三、鞏固練習

  課本P20練習1、2.

  四、應(yīng)用拓展

  例3.已知=2-,其中a、b是實數(shù),且a+b≠0,

  化簡+,并求值.

  分析:由于(+)(-)=1,因此對代數(shù)式的化簡,可先將分母有理化,再通過解含有字母系數(shù)的一元一次方程得到x的值,代入化簡得結(jié)果即可?

  二次根式教案 15

  【教學(xué)目標】

  1.運用法則

  進行二次根式的乘除運算;

  2.會用公式

  化簡二次根式。

  【教學(xué)重點】

  運用

  進行化簡或計算

  【教學(xué)難點】

  經(jīng)歷二次根式的乘除法則的探究過程

  【教學(xué)過程】

  一、情境創(chuàng)設(shè):

  1.復(fù)習舊知:什么是二次根式?已學(xué)過二次根式的哪些性質(zhì)?

  2.計算:

  二、探索活動:

  1.學(xué)生計算;

  2.觀察上式及其運算結(jié)果,看看其中有什么規(guī)律?

  3.概括:

  得出:二次根式相乘,實際上就是把被開方數(shù)相乘,而根號不變。

  將上面的`公式逆向運用可得:

  積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。

  三、例題講解:

  1.計算:

  2.化簡:

  小結(jié):如何化簡二次根式?

  1.(關(guān)鍵)將被開方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;

  2.P62結(jié)果中,被開方數(shù)應(yīng)不含能開得盡方的因數(shù)或因式。

  四、課堂練習:

  (一).P62 練習1、2

  其中2中(5)

  注意:

  不是積的形式,要因數(shù)分解為36×16=242.

  (二).P67 3 計算 (2)(4)

  補充練習:

  1.(x>0,y>0)

  2.拓展與提高:

  化簡:1).(a>0,b>0)

  2).(y

  2.若,求m的取值范圍。

  ☆3.已知:,求的值。

  五、本課小結(jié)與作業(yè):

  小結(jié):二次根式的乘法法則

  作業(yè):

  1).課課練P9-10

  2).補充習題

  二次根式教案 16

  一、教學(xué)目標。

  1、理解分母有理化與除法的關(guān)系、。

  2、通過學(xué)習分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想。

  二、教學(xué)設(shè)計。

  小結(jié)、歸納、提高。

  三、重點、難點解決辦法。

  1、教學(xué)重點:分母有理化、。

  2、教學(xué)難點:分母有理化的.技巧、。

  四、課時安排。

  1課時。

  五、教具學(xué)具準備。

  投影儀、膠片、多媒體。

  六、師生互動活動設(shè)計。

  復(fù)習小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主。

  七、教學(xué)過程()。

  【復(fù)習提問】。

  例1說出下列算式的運算步驟和順序:

 。1)(先乘除,后加減)、。

 。2)(有括號,先去括號;不宜先進行括號內(nèi)的運算)、。

 。3)辨別有理化因式:

  有理化因式:與,與,與…。

  不是有理化因式:與,與…。

  例如,、、等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

  引入新課題、。

  【引入新課】。

  例2把下列各式的分母有理化:

 。1);(2);(3)。

  解:略、。

 。ǘ╇S堂練習。

  1、把下列各式的分母有理化:

 。1);(2);

  (3);(4)、。

  解:(1)、。

  (2)、。

  另解:、。

 。3)。

  、

  另解:、。

  通過以上例題和練習題,可以看出,有關(guān)二次根式的除法,可先寫成分式的形式,然后通過分母有理化進行運算,例如:

  現(xiàn)將分母有理化就可以了、。

  學(xué)生易發(fā)生如下錯誤將式子變形為而正確的做法是、。

  2、計算:

 。1);

  (2);

  (3)、。

  解:(1)。

  、

 。2)。

  、

 。3)。

  、

  (三)小結(jié)。

  2、注意對有理化因式的概括并尋找出它的規(guī)律、。

  (2)練習:教材p202中1、2、。

 。ㄋ模┎贾米鳂I(yè)。

  教材p205中4、5、。

  (五)板書設(shè)計。

  標題。

  1、復(fù)習內(nèi)容3、練習題一。

  2、例44、練習題二。

  二次根式教案 17

  一、教學(xué)內(nèi)容

  1、教學(xué)內(nèi)容分析:二次根式是在數(shù)的開方的基礎(chǔ)上展開的,是算術(shù)平方根的抽象與擴展,同時又為勾股定理和解一元二次方程打下基礎(chǔ).

  2、學(xué)生情況分析:本節(jié)課是二次根式的第一課時,是在學(xué)生學(xué)方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運算的基礎(chǔ)上,來學(xué)習二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習二次根式的性質(zhì)和四則運算打基礎(chǔ).對此班級中已初步形成合作交流、敢于探索與實踐的良好學(xué)風,學(xué)生間互相提問的互動氣氛較濃.

  二、教學(xué)設(shè)計理念

  根據(jù)基礎(chǔ)教育課程改革的具體目標,結(jié)合我校初二學(xué)生的實際情況,改變課程過于注重知識傳授的傾向,強調(diào)形成積極主動的學(xué)習態(tài)度,關(guān)注學(xué)生的學(xué)習興趣和體驗,實施“三學(xué)六步”課堂改革教學(xué)模式.

  三、教學(xué)目標

  1、知識與技能:

 。1)了解二次根式的概念,理解二次根式有意義的條件,并會求二次根式中所含字母的取值范圍;

  (2)理解二次根式的非負性.

  2、過程與方法:通過對學(xué)、群學(xué)等方式培養(yǎng)學(xué)生分析、概括等能力.

  情感態(tài)度與價值觀:培養(yǎng)學(xué)生認真參與、積極交流的主體意識和樂于探索、積極鉆研的科學(xué)精神、合作精神,激發(fā)學(xué)生學(xué)習數(shù)學(xué)的興趣.

  四、教學(xué)重點、難點

  1、教學(xué)重點:了解二次根式的概念,二次根式有意義的條件,并會求二次根式中所含字母的取值范圍

  2、教學(xué)難點:理解二次根式的雙重非負性

  五、教學(xué)方法、手段

  1、教學(xué)方法:探究法、討論法、發(fā)現(xiàn)法

  2、教學(xué)手段:課件(ppt)

  六、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  問題1 你能用帶有根號的.的式子填空嗎?

 。1)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系,如果用含有h 的式子表示 t ,則t= _____.

  (2)下球體過球心的橫截面面積為S,則橫截面圓形的半徑r為 .

  (3)面積為3 的正方形的邊長為_____,面積為S 的正方形的邊長為_____.

  【師生互動】:學(xué)生獨立思考,用算術(shù)平方根表示結(jié)果,教師適當引導(dǎo)和評價.

  【設(shè)計意圖】:讓學(xué)生在填空過程中初步感知二次根式與實際生活的緊密聯(lián)系,體會研究二次根式的必要性.

  探究新知,講授新課

  1.抽象概括,形成概念

  問題2 上面所得的代數(shù)式:,它們的共同特點是什么?

  【師生互動】:學(xué)生獨立思考并積極發(fā)言,教師歸納總結(jié).

  【設(shè)計意圖】:通過歸納總結(jié)引出二次根式的概念.

  問題3 根據(jù)以前所學(xué)知識,理解二次根式的定義,并且要注意什么.

  【師生互動】:學(xué)生小組討論并且小組長做好記錄,老師歸納總結(jié).

  【設(shè)計意圖】:加深對二次根式的理解.

  2.辨析概念,應(yīng)用鞏固

  問題4 (辯一辯) 判斷給出式子是不是二次根式:①;

 、;③;④;⑤;⑥

  【師生互動】:學(xué)生獨立思考并積極發(fā)言,并對于他們的答案做出正確地評價,給予必要的鼓勵.

  【設(shè)計意圖】:該題是利用搶答來調(diào)動課堂氣氛,理解二次根式的定義.

  問題5 根據(jù)要求編寫二次根式:

 。1)請寫出一個你喜歡的二次根式;

  請寫出一個被開方數(shù)含x的二次根式.;

  請你寫出一個被開方數(shù)含x,且當x為任何實數(shù)的二次根式.

  【師生互動】:學(xué)生獨立思考并積極發(fā)言,其他同學(xué)來檢驗是否編寫正確.

  【設(shè)計意圖】:設(shè)計開放性題開拓學(xué)生思維,進一步加深對二次根式的理解.

  靈活運用,鞏固提高

  問題6 當x是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義:

  【師生互動】:

  (1)學(xué)生口答,老師板書規(guī)范解題格式,(2)(3)學(xué)生演板.學(xué)生完成之后小組討論結(jié)果的正確性,同時對演板的同學(xué)做出評價,老師再適時補充,(2)(3)評價增加一道變式,讓學(xué)生能靈活運用知識.最后再歸納這類式子有意義要注意:

  (1)二次根式的被開方數(shù)為非負數(shù);

 。2)分母中含有字母時,要保證分母不為0.

  【設(shè)計意圖】:本題強化學(xué)生對二次根式被開方數(shù)為非負數(shù)的理解,同時考查學(xué)生的靈活運用的能力,訓(xùn)練學(xué)生的思維.

  發(fā)散思維,拓展延伸

  問題7 已知實數(shù)x,y滿足,求:

  (1)x的取值范圍;

  (2)以x,y的值為兩邊長的等腰三角形的周長.

  【師生互動】:學(xué)生先獨立思考,再小組合作,將答案寫在白板上,并請小組兩位成員上臺展示,其他同學(xué)提出質(zhì)疑,補充,老師適當引導(dǎo)點評.

  【設(shè)計意圖】:本題第一問進一步加深學(xué)生對二次根式被開方數(shù)為非負數(shù)的理解;第二問滲透分類思想,通過小組合作,上臺展示體現(xiàn)學(xué)生為主體,發(fā)揮學(xué)生的能動性.

  問題8 (走進中考)已知,則 p(x,y)是第 象限.

  【師生互動】:學(xué)生先獨立思考講解思路,老師適當點評.

  【設(shè)計意圖】:本題主要考察

  課堂小結(jié),盤點收獲

  一路下來,我們結(jié)識了很多新知識,你能談?wù)勛约旱氖斋@嗎?說一說,讓大家一起來分享.

  【師生互動】:學(xué)生舉手發(fā)言,老師點評并鼓勵.

  【設(shè)計意圖】:學(xué)生總結(jié),互相取長補短,再一次突出本節(jié)課的學(xué)習重點,幫助學(xué)生把握知識要點,理清知識脈絡(luò),體會數(shù)學(xué)中的分類思想.

  作業(yè)設(shè)計,鞏固提高

  必做題:1.下列各式中:①;②;③;④;⑤ ,其中是二次根式的有 .(寫序號)

  代數(shù)式有意義,則字母x的取值范圍是 .

  3.代數(shù)式的值為0,則a= .

  選做題:1.已知,則的值為 .

  2.若式子 有意義,則P(a,b)在第 象限.

  小組合作題:

  1.已知m,n滿足 ,求:(1)m,n的值.

 。2)將m,n的值 代入并化簡:

  (3)請選一個你喜歡的x的值代入求值.

  【設(shè)計意圖】:氣氛通過分層作業(yè),教師能及時了解學(xué)生對本節(jié)知識的掌握情況.必做題和選做題如果上課有時間打算用砸金蛋的形式調(diào)動課堂.

 。┌鍟O(shè)計

  16.1.1 二次根式 定義:形如 的式子叫做 二次根式 注:(雙重非負性) (老師板書) (學(xué)生演板)

  二次根式教案 18

  一、教學(xué)目標

  1.理解分母有理化與除法的關(guān)系.

  2.掌握二次根式的分母有理化.

  3.通過二次根式的分母有理化,培養(yǎng)學(xué)生的運算能力.

  4.通過學(xué)習分母有理化與除法的關(guān)系,向?qū)W生滲透轉(zhuǎn)化的數(shù)學(xué)思想

  二、教學(xué)設(shè)計

  小結(jié)、歸納、提高

  三、重點、難點解決辦法

  1.教學(xué)重點:分母有理化.

  2.教學(xué)難點:分母有理化的技巧.

  四、課時安排

  1課時

  五、教具學(xué)具準備

  投影儀、膠片、多媒體

  六、師生互動活動設(shè)計

  復(fù)習小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

  七、教學(xué)過程

  【復(fù)習提問】

  二次根式混合運算的步驟、運算順序、互為有理化因式.

  例1 說出下列算式的運算步驟和順序:

 。1) (先乘除,后加減).

 。2) (有括號,先去括號;不宜先進行括號內(nèi)的運算).

 。3)辨別有理化因式:

  有理化因式: 與 , 與 , 與 …

  不是有理化因式: 與 , 與 …

  化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據(jù)分式的基本性質(zhì)).

  例如:等式子的化簡,如果分母是兩個二次根式的和,應(yīng)該怎樣化簡?

  引入新課題.

  【引入新課】

  化簡式子 ,乘以什么樣的式子,分母中的根式符號可去掉,結(jié)論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

  例2 把下列各式的`分母有理化:

 。1) ; (2) ; (3)

  解:略.

  注:通過例題的講解,使學(xué)生理解和掌握化簡的步驟、關(guān)鍵問題、化簡的依據(jù).式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

  二次根式教案 19

  一、教學(xué)目標:

  (一)知識與技能:

  1.了解二次根式的概念,會確定二次根式成立的條件。

  2.會用二次根式性質(zhì)進行有關(guān)計算。

  3.

  了解逆用公式在實數(shù)范圍內(nèi)因式分解。

 。ǘ┻^程與方法:體驗性質(zhì)的推導(dǎo)過程,感受由特殊到一般的方法。

 。ㄈ┣楦袘B(tài)度:激發(fā)對數(shù)學(xué)的興趣。

  二、教學(xué)重點:

  二次根式成立的條件,雙重非負性;

  用性質(zhì)進行計算。

  三、教學(xué)難點

  性質(zhì)的逆用。

  四、教學(xué)準備:課件

  五、教學(xué)過程

  (一)復(fù)習提問

  1.什么叫二次根式?

  2.下列各式是二次根式,求式子中的字母所滿足的條件:

  (3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數(shù).

  (二)二次根式的簡單性質(zhì)

  上節(jié)課我們已經(jīng)學(xué)習了二次根式的定義,并了解了第一個簡單性質(zhì)

  我們知道,正數(shù)a有兩個平方根,分別記作零的平方根是零。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個非負數(shù)a的算術(shù)平方根。將符號“”看作開平方求算術(shù)平方根的運算,看作將一個數(shù)進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:

  這里需要注意的是公式成立的.條件是a≥0,提問學(xué)生,a可以代表一個代數(shù)式嗎?

  請分析:引導(dǎo)學(xué)生答如時才成立。時才成立,即a取任意實數(shù)時都成立。我們知道如果我們把,同學(xué)們想一想是否就可以把任何一個非負數(shù)寫成一個數(shù)的平方形式了.

  例1

  計算:

  分析:這個例題中的四個小題,主要是運用公式。其中(2)、(3)、(4)題又運用了整式乘除中學(xué)習的積的冪的運算性質(zhì).結(jié)合第(2)小題中的,說明,這與帶分數(shù)。因此,以后遇到,應(yīng)寫成,而不宜寫成。

  例2

  把下列非負數(shù)寫成一個數(shù)的平方的形式:

  (1)5;

  (2)11;

  (3)1.6;

  (4)0.35.

  例3

  把下列各式寫成平方差的形式,再分解因式:

  (1)4x2-1;   (2)a4-9;

  (3)3a2-10;   (4)a4-6a2+9.

  解:(1)4x2-1

  =(2x)2-12

  =(2x+1)(2x-1).

  (2)a4-9

  =(a2)2-32

  =(a2+3)(a2-3)

  (3)3a2-10

  (4)a4-6a2+32

  =(a2)2-6a2+32

  =(a2-3)2

  (三)小結(jié)

  1.繼續(xù)鞏固二次根式的定義,及二次根式中被開方數(shù)的取值范圍問題.

  2.關(guān)于公式的應(yīng)用。

  (1)經(jīng)常用于乘法的運算中.

  (2)可以把任何一個非負數(shù)寫成一個數(shù)的平方的形式,解決在實數(shù)范圍內(nèi)因式分解等方面的問題.

  (四)練習和作業(yè)

  練習:

  1.填空

  注意第(4)題需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

  2.實數(shù)a、b在數(shù)軸上對應(yīng)點的位置如下圖所示:

  分析:通過本題滲透數(shù)形結(jié)合的思想,進一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.

  3.計算

  二、作業(yè)

  教材P.172習題11.1;A組2、3;B組2.

  補充作業(yè):

  下列各式中的字母滿足什么條件時,才能使該式成為二次根式?

  分析:要使這些式成為二次根式,只要被開方式是非負數(shù)即可,啟發(fā)學(xué)生分析如下:

  (1)由-|a-2b|≥0,得a-2b≤0,

  但根據(jù)絕對值的性質(zhì),有|a-2b|≥0,

  ∴

 。黙-2b|=0,即a-2b=0,得a=2b.

  (2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

  ∴

  (m2+1)(m-n)≤0,又m2+1>0,

  ∴

  m-n≤0,即m≤n.

  二次根式教案 20

  一、教學(xué)目標

  1.掌握二次根式的混合運算.

  2.掌握混合運算的應(yīng)用.

  3.通過二次根式的混合運算,培養(yǎng)學(xué)生的運算能力.

  4.通過混合運算知識拓展,培養(yǎng)學(xué)生的探索精神

  二、教學(xué)設(shè)計

  小結(jié)、歸納、提高

  三、重點、難點解決辦法

  1.教學(xué)重點:二次根式的混合運算.

  2.教學(xué)難點:混合運算的應(yīng)用.

  四、課時安排

  1課時

  五、教具學(xué)具準備

  投影儀、膠片、多媒體

  六、師生互動活動設(shè)計

  復(fù)習小結(jié),歸納整理,應(yīng)用提高,以學(xué)生活動為主

  七、教學(xué)過程

  【例題】

  例1 化簡:

 。1) ; (2) .

  解:(1)

 。2)

  說明:在計算過程中要注意各個式子的特點,能否約分或消項(第2小題)達到化簡的`目的,又要善于在規(guī)則允許的情況下可變換相鄰項的位置,如 ,結(jié)果為-1,繼續(xù)運算易出現(xiàn)符號上的差錯,而把 先變?yōu)?,這樣 則為1,繼續(xù)運算可避免錯誤.

  例2 解下列方程(組):

 。1)

  (2)

 。3)

  解:(1)

  .

 。2)①× ,得

 、

  ②× ,得

  ④

  ③-④,得

  把 代入①,得

  解得 .

  ∴

  是原方程組的解.

 。3)由②,得

 、

  ①× ,得

 、

 、郏埽

  把 代入①,得

  .

  ∴ 是原方程組的解.

  例3 已知 , ,求 的值.

  解: .

  .

  , ,

  ∴ .

  例4 已知 , ,求 的值.

  解: , .

 。

 。ǘ╇S堂練習

  1.教材中P206中8.

  2.解不等式: .

  解:

  ∴

 。

  3.已知 , ,求 的值.

  解:3. ,或 .

  .

  ∴

 。

  4.已知 , ,求: 的值.

  解 4.

 。

  5.已知 ,求 的值.

  解 5. .

 。

  6.不求方根的值比較 與 的大。

  解 6.∵

  ∴

  ∴

  (三)總結(jié)、擴展

  根據(jù)已知條件,求一個代數(shù)的值,要注意條件或代數(shù)式的化簡,有時條件和要求的代數(shù)式都需要化簡,當把條件化簡后,代數(shù)式的化簡要朝著條件化簡的結(jié)果去化簡.

  (四)布置作業(yè)

  教材中P207B組1、3和補充作業(yè).

  補充作業(yè):

  1.已知 ,求 的值.

  2.已知 , ,求 的值.

 。ㄎ澹┌鍟O(shè)計

  標 題

  1.例題……

  3.例題……

  2.練習題

  4.練習題

  八、背景知識與課外閱讀

  二次根式的混和運算方法和順序

  1.方法 (1)應(yīng)用二次根式乘法、除法和加減法運算法則.

  (2)在實數(shù)范圍內(nèi)運算律仍適用.

 。3)二次根式的乘法,與多項式的乘法相類似,遇運用多項式乘法公式時,也可以運用乘法公式.

  2.順序 先乘方、后乘除,最后加減,有括號的先算括號內(nèi)的數(shù).

  二次根式教案 21

  【教學(xué)目標】

  1、經(jīng)歷二次根式概念的發(fā)生過程

  2、了解二次根式的概念

  3、理解二次根式何時有意義,何時無意義,會在簡單情況下求根號內(nèi)所有含字母的取值范圍

  4、會求二次根式的值

  【教學(xué)重點、難點】

  重點:二次根式的概念

  難點:例1的第(2)(3)題學(xué)生不容易理解。

  【教學(xué)過程】

  一、知識回顧:

  1、什么叫做平方根?

  一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根。

  2、什么叫算術(shù)平方根?

  正數(shù)的'正平方根和零的平方根,統(tǒng)稱算術(shù)平根。

  用表示,討論并解釋:為什么a≥0?

  二、新課教學(xué)

  做一做:課本P 4的填空

  你認為所得的各代數(shù)式的共同特點是什么?

  像xx這樣表示的算術(shù)平方根,且根號中含有字母的代數(shù)式叫做二次根式

  為了方便起見,我們把一個數(shù)的算術(shù)平方根也叫做二次根式。如

  例1求下列二次根式中字母a的取值范圍:

  解:(1)由a+1≥0得,a≥-1

  ∴字母a的取值范圍是大于或等于—1的實數(shù)

 。2)由>0,得1—2a>0。

  ∴字母a的取值范圍是小于的實數(shù)

 。3)因為無論a取何值,都有(a—3)2≥0,所以a的取值范圍是全體實數(shù)

  說明:求字母的取值范圍實質(zhì)是:轉(zhuǎn)化為解不等式(組)

  練習:求下列二次根式中字母a的取值范圍:

  例2當x = —4時,求二次根式的值

  解:將x = —4代入二次根式得= 3

  說明:與求代數(shù)式的值類比。

  課內(nèi)練習:p 5 T1 T2

  提高:

  物體自由下落時,下落距離h(米)可用公式h=5t2來估計,其中t(秒)表示物體下落所經(jīng)過的時間。

 。1)把這個公式變形成用h表示t的公式

 。2)一個物體從54.5米高的塔頂自由下落,落到地面需幾秒(精確到0.1秒)?

  三、課堂小結(jié):由學(xué)生總結(jié),教師適當提問補充。

  談一談:本節(jié)課你有什么收獲?

  四、布置作業(yè):

  1、課后作業(yè)題

  2、作業(yè)本

【二次根式教案】相關(guān)文章:

二次根式教案優(yōu)秀08-24

二次根式教案(15篇)02-27

二次根式教案合集5篇04-05

二次根式教案匯編6篇04-08

二次根式教案匯總五篇04-03

二次根式教案合集10篇04-04

【精品】二次根式教案三篇04-05

二次根式教案范文8篇04-09

二次根式教案模板匯總五篇04-26

二次根式教案模板合集9篇04-26