成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

《圓柱的體積》教案

時間:2024-05-22 15:38:29 教案 投訴 投稿

《圓柱的體積》教案(精華)

  作為一位優(yōu)秀的人民教師,常常需要準(zhǔn)備教案,教案有助于順利而有效地開展教學(xué)活動。那么寫教案需要注意哪些問題呢?下面是小編整理的《圓柱的體積》教案,僅供參考,歡迎大家閱讀。

《圓柱的體積》教案(精華)

《圓柱的體積》教案1

  教學(xué)內(nèi)容:

  教材第15~16頁的例4和第16頁的試一試、練一練,完成練習(xí)三第1~3題。

  教學(xué)目標(biāo):

  1.結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。

  2.經(jīng)歷類比猜想驗證說明的探索圓柱體積的計算方法的進(jìn)程,掌握圓柱體的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。

  3.引導(dǎo)學(xué)生探索和解決問題,滲透、體驗知識間相互轉(zhuǎn)化的思想方法。

  重點難點:

  掌握圓柱體積公式的推導(dǎo)過程。

  教學(xué)資源:

  PPT課件 圓柱等分模型

  教學(xué)過程:

  一、聯(lián)系舊知,設(shè)疑激趣,導(dǎo)入新課。

  1.呈現(xiàn)例4中長方體、正方體和圓柱的直觀圖。

  2.提問:這幾種立體的體積你都會求嗎?你會求其中哪些立體的'體積?

  啟發(fā):大家想不想知道圓柱的體積怎樣計算?猜想一下:圓柱體積的大小與什么有關(guān)?怎么算?

  3.引入:我們的猜想對不對呢?今天我們就一起來探索一下圓柱的體積計算公式。

  二、動手操作,探索新知,教學(xué)例4

  1.觀察比較

  引導(dǎo)學(xué)生觀察例4的三個立體,提問

  ⑴這三個立體的底面積和高都相等,它們的體積有什么關(guān)系?

 、崎L方體和正方體的體積一定相等嗎?為什么?

  ⑶圓柱的體積與長方體和正方體的體積可能相等嗎?為什么?

  2.實驗操作

 、耪勗挘捍蠹叶颊J(rèn)為圓柱的體積與長方體、正方體的體積可能是相等的,而且都等于底面積乘高。那用什么辦法驗證呢?讓學(xué)生在小組中說說自己的想法。

  提醒:圓的面積公式是怎么推導(dǎo)出來的?我們能不能將圓柱轉(zhuǎn)化成長方體呢?

 、铺岢鲆螅耗隳芟朕k法把圓柱轉(zhuǎn)化成長方體嗎?各小組說出自己的想法,有條件的拿出課前準(zhǔn)備好的圓柱,操作一下。

 、怯懻摻涣鳎喝绻褕A柱的底面平均分成16份,切開后能否拼成一個近似的長方體?

  操作教具,讓學(xué)生觀察。

  引導(dǎo)想像:如果把底面平均分的份數(shù)越來越多,結(jié)果會怎么樣?

  演示一組動畫(將圓柱底面等分成32份、64等份、128等份)課件演示使學(xué)生清楚地認(rèn)識到:拼成的立體會越來越接近長方體。

  3.推出公式

 、盘釂枺浩闯傻拈L方體與原來的圓柱有什么關(guān)系?

  指出:長方體的體積與圓柱的體積相等;長方體的底面積等于圓的底面積;長方體的高等于圓柱的高。

  ⑵想一想:怎樣求圓柱的體積?為什么?

  根據(jù)學(xué)生的回答小結(jié)并板書圓柱的體積公式

  圓柱的體積=底面積高

 、且龑(dǎo)用字母公式表示圓柱的體積公式:V=sh

  長方體的體積 = 底面積 高

  圓柱的體積 = 底面積 高

  用字母表示計算公式V= sh

  三、分層練習(xí),發(fā)散思維,教學(xué)試一試

  ⑴讓學(xué)生列式解答后交流算法。

  ⑵討論:知道什么條件就一定能算出圓柱的體積了?分別怎么算?

  (s和h,r和h,d和h,c和h)

  四、鞏固拓展練習(xí)

  1.做練一練第1題。

 、耪f一說:這兩個圓柱中都是已知什么?能算出圓柱的體積嗎?

 、聘髯跃毩(xí),并指名板演。

  ⑶對照板演,說說計算過程。

  2.做練一練第2題。

  已知底面周長和高,該怎么求它的體積呢?引導(dǎo)學(xué)生根據(jù)底面周長求出底面積。

  五、小結(jié)

  這節(jié)課我們學(xué)習(xí)了什么?有哪些收獲?還有什么疑問?

  六、作業(yè)

  練習(xí)三第1~3題。

《圓柱的體積》教案2

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出“數(shù)學(xué)教學(xué)要讓學(xué)生經(jīng)歷知識的形成過程,能夠初步學(xué)會運用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實社會,去解決日常生活和學(xué)科學(xué)習(xí)中的問題,增加應(yīng)用數(shù)學(xué)的意識”。新課標(biāo)注重的不只是讓學(xué)生掌握學(xué)習(xí)中的結(jié)論,更關(guān)注的是個性的體驗,讓學(xué)生在活動中體驗 、在實踐中運用即讓學(xué)生主動參與、實踐交流、合作探究中去經(jīng)歷知識形成的過程,通過不斷地發(fā)現(xiàn)問題、提出問題、分析問題、解決問題,積累生活中的經(jīng)驗,培養(yǎng)應(yīng)用數(shù)學(xué)的能力,體驗數(shù)學(xué)的樂趣,感受數(shù)學(xué)在生活中的應(yīng)用價值。

  圓柱的體積這節(jié)課是在學(xué)生已經(jīng)初步理解體積和容積的含義、掌握了長方體和正方體體積計算方法的基礎(chǔ)上學(xué)習(xí)的。本節(jié)內(nèi)容包括圓柱的體積計算公式的推導(dǎo),利用公式計算圓柱的體積,能運用圓柱的體積解決生活中的實際問題。

  教學(xué)情境如下:

  一:情境引入,感性認(rèn)識

  師:(拿出橡皮泥)你知道它的體積嗎?你用什么方法知道的,說給大家聽一聽。

  生:捏成長方體或正方體,量出長、寬、高后再用公式:長×寬×高計算出體積。

  師:你還能捏成我們學(xué)過的其他圖形嗎? (學(xué)生操作:捏成圓柱)

  師:現(xiàn)在你會計算它的體積嗎?猜一猜,怎么辦呢?(學(xué)生操作:圓柱捏成長方體)

  師:你發(fā)現(xiàn)了什么?

  生:形狀變,體積不變.

  師:我們曾經(jīng)學(xué)過可以把什么圖形通過什么方法轉(zhuǎn)化成什么圖形求面積呢?

  生:圓切割拼成一個近似的長方形。

  師: 圓柱形橡皮泥的體積會求了, 如果要求圓柱體容器里水的體積該怎么辦?

  生:把水倒入長方體容器中,再測量計算。

  師:要求圓柱體鐵塊的.體積呢?

  生:把它浸入水中,求出排出水的體積。

  師:要求商場門口圓柱體柱子的體積呢?(生面面相覷,不知所措)。

  二:自主探究,遷移轉(zhuǎn)化

  1、引導(dǎo)

  師:有的同學(xué)把圓柱轉(zhuǎn)化成我們已學(xué)過的立體圖形,來計算它的體積。

 。ㄗ寣W(xué)生互相討論,應(yīng)如何轉(zhuǎn)化,然后組織全班匯報)

  生:把圓柱的底面分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長方體了。

  2、 操作

  學(xué)生拿出事先準(zhǔn)備好的蘿卜(圓柱體模具)和小刀,讓學(xué)生動手切一切,拼一拼。

  3、感知:將圓柱體模具(已切好)當(dāng)場演示。

 、僮屢晃粚W(xué)生把切割好的一半拿上又叉開;

  ②另一位學(xué)生將切割好的另一半拼合上去;

  ③觀察得到一個什么形體?同時你發(fā)現(xiàn)了什么?

  以四人小組為單位進(jìn)行探索、討論、總結(jié)。

  小組匯報:

  生:拼成的長方體和圓柱體不變的有:體積、底面積、高等;變了的有:側(cè)面積、表面積、底面周長。

  4、課件演示,讓學(xué)生明白:分成的扇形越多,拼成的立體圖形就越接近于長方體。

  5、討論:圓柱與所拼成的近似長方體之間的有什么聯(lián)系?你發(fā)現(xiàn)了什么?

  6、匯報:

  圓柱→近似長方體

 、袤w積相等②底面積相等③高相等④表面積不相等,

  根據(jù)學(xué)生的回答板書如下:

  長方體的體積=底面積×高

  ↓ ↓ ↓

  圓 柱 體 的 體 積 =底面積×高

  引導(dǎo)學(xué)生用字母表示計算公式:V=Sh

  師:要用這個公式計算圓柱的體積必須知道什么條件?

  生:底面積和高。

  師:如果給你圓柱的直徑(半徑或者周長)和高,如何求圓柱的體積呢?

  生:根據(jù)公式先求出半徑,再求出底面積即可…

  教學(xué)反思:

  教學(xué)中充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、實踐、比較找兩個圖形之間的關(guān)系,推導(dǎo)出圓柱的體積計算公式。直觀有效的教學(xué)過程不需要教師繁復(fù)的講解,學(xué)生在自主動手探索,互動交流討論的學(xué)習(xí)空間里思維的火花自然而然地爆發(fā)出來。教學(xué)內(nèi)容和重難點不僅得到實施和解決,更重要的是學(xué)生的綜合能力得到提高。

  實際教學(xué)中教師只有不斷誘發(fā)學(xué)生主動思維的愿望,營造無拘無束的思維空間,讓學(xué)生經(jīng)歷知識發(fā)現(xiàn)、探索、創(chuàng)造的過程,才能更有效地培養(yǎng)學(xué)生的創(chuàng)新能力,還要使學(xué)生在學(xué)習(xí)中發(fā)現(xiàn)數(shù)學(xué)知識“從生活中來到生活中去”的理念。

《圓柱的體積》教案3

  【教學(xué)內(nèi)容】

  教科書第34~35頁例3及課堂活動,練習(xí)八1,2,3題。

  【教學(xué)目標(biāo)】

  1.通過學(xué)生體驗圓柱體積公式的推導(dǎo)過程,掌握圓柱的體積公式并能應(yīng)用公式解決實際問題。

  2.倡導(dǎo)交流、合作、實驗操作等學(xué)習(xí)方式,培養(yǎng)學(xué)生觀察、猜測、分析、比較、綜合的學(xué)習(xí)思考方法。

  3.讓學(xué)生感受探索數(shù)學(xué)奧秘的樂趣,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極情感。

  【教學(xué)重點】

  圓柱體積計算方法及應(yīng)用。

  【教學(xué)準(zhǔn)備】

  教具:標(biāo)有厘米刻度的透明長方體容器和圓柱容器、量筒、多媒體課件。

  【教學(xué)過程】

  一、實驗回顧長方體體積計算方法

 。1)出示透明長方體容器。

  教師:現(xiàn)在我們向這個容器里倒入1厘米深的水,容器里的水會形成什么形體?(長方體)

  (教師現(xiàn)場操作倒水)估計一下,有多少立方厘米?

  怎樣才能知道這層長方體的水有多少立方厘米?

 。A(yù)設(shè):①計算;②倒入量筒測量)

 。2)如果要計算的話,要測量哪些數(shù)據(jù)?

 。ㄕ堃幻麑W(xué)生前臺測量,教師注意提醒從內(nèi)部量)

  教師板書數(shù)據(jù),全體學(xué)生即時計算,一生板演。

  學(xué)生講解,教師從算式中用紅線勾出表示底面積的部分。

  說明:長方體的體積可以用底面積乘高來計算,當(dāng)高為1 cm時,底面的面積數(shù)就是這個長方體所含的`體積單位數(shù)。

  教師再往容器內(nèi)依次倒入2 cm,3 cm高的水,隨機(jī)請學(xué)生口答出體積數(shù)。

 。3)揭示:當(dāng)長方體的高度增加,我們就可以用一層的體積數(shù)乘上高度(也就是層數(shù))來求得體積。

  二、實驗探究,學(xué)習(xí)新知

  1.初次實驗

  出示標(biāo)有厘米刻度的圓柱形玻璃容器。

  教師:向這個容器里倒入1厘米深的水,水會形成什么形狀?(圓柱)

  教師操作倒水后:猜一猜,這個圓柱形水柱的體積如何計算?(教師板書學(xué)生猜測結(jié)果:V=Sh)

  教師:假如這些猜測合理,我們需要測量哪些數(shù)據(jù)?(d或r)

  一名學(xué)生上前臺在教師的協(xié)助下現(xiàn)場測量,記錄下數(shù)據(jù)。

  學(xué)生集體按照自己猜測的方法演算結(jié)果,并進(jìn)行相關(guān)板演。

  教師:怎樣證明這些結(jié)果的正確性?(量筒測量)

  教師將容器中的水倒入量筒,直觀驗證V=Sh的正確性。

  2.二度實驗

  教師:一次實驗還不能說明問題,我們再進(jìn)行幾次行嗎?

  教師往容器中倒入2 cm,4 cm,5 cm,10 cm高的水,學(xué)生計算后,師生共同用量筒直觀驗證,并生成實驗表格。

  3.實驗分析

  教師:剛才的實驗說明了什么?觀察數(shù)據(jù)你還有哪些發(fā)現(xiàn)?

  4.回歸課本,認(rèn)識轉(zhuǎn)化法推導(dǎo)圓柱體積,擴(kuò)展對公式的認(rèn)識

  教師:圓柱體積V=Sh,關(guān)于這個方法,我們的數(shù)學(xué)家們用不同的方法進(jìn)行了相關(guān)的說明,一起來看看。

  課件配音演示:

  教師:欣賞了數(shù)學(xué)家的推導(dǎo)方法,再回憶一下我們剛才的實驗,你想說點什么嗎?

  三、實踐應(yīng)用,鞏固新知

  1.基本技能訓(xùn)練

  練習(xí)八第1題。

  2.拓展應(yīng)用,促進(jìn)發(fā)展

  教學(xué)例3。

  教師:不告訴圓柱的底面積,你能求出它的體積嗎?

  課件出示例3:

  集體感知題意。全體學(xué)生獨立完成,兩名學(xué)生板演后講解。

  教師小結(jié):當(dāng)求體積的必要條件沒有直接告訴時,我們應(yīng)先根據(jù)相關(guān)信息予以解決。

  3.獨立作業(yè)

  練習(xí)八第2,3題。

  四、全課總結(jié):

  教師:今天我們一起研究了什么知識?在今天的學(xué)習(xí)中你的最大收獲是什么?

《圓柱的體積》教案4

  圓柱的體積

  教材簡析:

  本節(jié)內(nèi)容包括圓柱的體積計算公式的推導(dǎo),利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計算公式。

  教學(xué)目的:

  1、運用遷移規(guī)律,引導(dǎo)學(xué)生借助因面積計算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計算公式,并理解這個過程。

  2。會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。

  3。引導(dǎo)學(xué)生逐步學(xué)會轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實際問題的能力

  4。借助實物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。

  教 具:圓柱的體積公式演示教具,多媒體課件

  教學(xué)過程:

  一、情景引入

  1、出示圓柱形水杯。

  (1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學(xué)過的方法計算出這些水的體積嗎?

 。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。

  2、創(chuàng)設(shè)問題情景。(課件顯示)

  如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的'計算公式呢?

  今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設(shè)計意圖:問題是思維的動力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認(rèn)知沖突,形成"任務(wù)驅(qū)動"的探究氛圍。)

  二、新課教學(xué):

  設(shè)疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。

  1。探究推導(dǎo)圓柱的體積計算公式。

  課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)

  討論并得出結(jié)果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計意圖:在新課教學(xué)中,先讓學(xué)生通過復(fù)習(xí)舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學(xué)生切實經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導(dǎo)作用和學(xué)生的主體作用。這樣的教學(xué),不僅有利于學(xué)生理解算理,掌握算法,而且在公式的推導(dǎo)過程當(dāng)中,領(lǐng)悟了學(xué)習(xí)方法,培養(yǎng)了學(xué)生的學(xué)習(xí)能力、抽象概括能力和邏輯思維能力)

  要用這個公式計算圓柱的體積必須知道什么條件?

  填表:請同學(xué)看屏幕回答下面問題,

  底面積(㎡)高(m)圓柱體積(m3)

  63

  0.5 8

  52

  (設(shè)計意圖:設(shè)計練習(xí)能使學(xué)生達(dá)到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的掌握本課重點,夯實基礎(chǔ)知)

  例:一個圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米。它的容積約是多少立方分米?(得數(shù)保留整立方分米)

  解: d=6dm,h=7dm。r=3dm

  S底 =πr2=3。14×32 =3。14×9 =28。26(dm2)

  V =S底h =28。26×7 =197。82198dm3 答:油桶的容積約是198立方分

 。ㄔO(shè)計意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)

  三.鞏固反饋

  1.求下面圓柱體的體積。(單位:厘米)

  同學(xué)板演,其余同學(xué)在作業(yè)本上做。板演的同學(xué)講解自己的解題方法題,教師歸納學(xué)生所用的解題方法,強(qiáng)調(diào)在解題的過程當(dāng)中格式。(設(shè)計意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會靈活運用公式的訓(xùn)練題。通過對公式的拓展性理解,可以進(jìn)一步加深學(xué)生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學(xué)生的邏輯思維能力。)

  練習(xí):(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm。已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?

 。ㄔO(shè)計意圖:這是第三層發(fā)展性練習(xí),安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數(shù)學(xué)就存在于自己的身邊。)

  四.拓展練習(xí)

  1.一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(結(jié)果保留π)

  2.一個底面直徑是20cm的圓柱形容體里,放進(jìn)一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、

 。ㄔO(shè)計意圖:安排了密切聯(lián)系生活實際的習(xí)題,讓學(xué)生運用公式解決引入環(huán)節(jié)中的兩個問題,使學(xué)生認(rèn)識到數(shù)學(xué)的價值體驗到數(shù)學(xué)對于了解周圍世界和解決實際問題是非常有作用的;能使學(xué)生的思維處于積極的狀態(tài)達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。)

  五.課堂小結(jié):

  1.談?wù)勥@節(jié)課你有哪些收獲。

  2.解題時需要注意那些方面。

 。ㄔO(shè)計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結(jié),使學(xué)生暢談收獲、發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生的語言表達(dá)能力,又能培養(yǎng)學(xué)生的歸納概括能力;同時通過對本節(jié)所學(xué)知識的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識系統(tǒng)化、完整化。)

  六.布置作業(yè)

  1。A冊習(xí)題2。7

  2。拓展練習(xí)2題

  教學(xué)反思: 本節(jié)課的教學(xué)體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境;二、遵循學(xué)生的認(rèn)知規(guī)律,引導(dǎo)學(xué)生觀察、思考、說理,調(diào)動多種感觀參與學(xué)習(xí);三、正確處理"兩主"關(guān)系,充分發(fā)揮學(xué)生的主體作用,注意學(xué)生學(xué)習(xí)的參與過程及知識的獲取過程,學(xué)生積極性高,學(xué)習(xí)效果好。達(dá)到預(yù)期效果,不足處學(xué)生討論時間控制太少,課后作業(yè)個別學(xué)生還是對公式不會靈活應(yīng)用。

《圓柱的體積》教案5

  教學(xué)目標(biāo)

  1.理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式

  2.會運用公式計算圓柱的體積

  教學(xué)重點

  圓柱體體積的計算

  教學(xué)難點

  理解圓柱體體積公式的推導(dǎo)過程

  教學(xué)過程

  一、復(fù)習(xí)準(zhǔn)備

 。ㄒ唬┙處熖釂

  1.什么叫體積?怎樣求長方體的體積?

  2.圓的面積公式是什么?

  3.圓的面積公式是怎樣推導(dǎo)的?

  (二)談話導(dǎo)入

  同學(xué)們,我們在研究圓面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形知識的來解決的.那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題.(板書:圓柱的體積)

  二、新授教學(xué)

 。ㄒ唬┙虒W(xué)圓柱體的體積公式.(演示動畫“圓柱體的體積1”)

  1.教師演示

  把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體

  2.學(xué)生利用學(xué)具操作

  3.啟發(fā)學(xué)生思考、討論:

 。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)

 。2)通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?

  ①拼成的近似的長方體和圓柱體相比,體積大小沒變,形狀變了

 、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化

 、劢崎L方體的高就是圓柱的高,沒有變化

  4.學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進(jìn)行猜想

  (1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?

 。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?

 。3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?

  5.啟發(fā)學(xué)生說出通過以上的觀察,發(fā)現(xiàn)了什么?

 。1)平均分的份數(shù)越多,拼起來的形體越近似于長方體

  (2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體

  6.推導(dǎo)圓柱的'體積公式

  (1)學(xué)生分組討論:圓柱體的體積怎樣計算?

  (2)學(xué)生匯報討論結(jié)果,并說明理由.

  因為長方體的體積等于底面積乘高.(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積×高)

  (3)用字母表示圓柱的體積公式.(板書:V=Sh)

 。ǘ┙虒W(xué)例4.

  1.出示例4

  例4.一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?

  2.1米=210厘米

  50×210=10500(立方厘米)

  答:它的體積是10500立方厘米.

  2.反饋練習(xí)

 。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?

 。2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?

 。ㄈ┙虒W(xué)例5.

  1.出示例5

  例5.一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?

  水桶的底面積:

 。3.14×

 。3.14×100

 。314(平方厘米)

  水桶的容積:

  314×25

  =7850(立方厘米)

 。7.8(立方分米)

  答:這個水桶的容積大約是7.8立方分米.

  三、課堂小結(jié)

  通過本節(jié)課的學(xué)習(xí),你有什么收獲?

  1.圓柱體體積公式的推導(dǎo)方法.

  2.公式的應(yīng)用.

  四、課堂練習(xí)

  (一)填表

  class=Normal vAlign=top width=157>

  底面積S(平方米)

  class=Normal vAlign=top width=136>

  高h(yuǎn)(米)

  class=Normal vAlign=top width=179>

  圓柱的體積V(立方米)

  class=Normal vAlign=top width=157>

  15

  class=Normal vAlign=top width=136>

  3

  class=Normal vAlign=top width=179> class=Normal vAlign=top width=157>

  6.4

  class=Normal vAlign=top width=136>

  4

  class=Normal vAlign=top width=179>

 。ǘ┣笙旅娓鲌A柱的體積

 。ㄈ┮粋圓柱形水池,半徑是10米,深1.5米.這個水池占地面積是多少?水池的容積是多少立方米?

  五、課后作業(yè)

 。ㄒ唬┣笙铝袌D形的表面積和體積(圖中單位:厘米)

 。ǘ﹥蓚底面積相等的圓柱,一個圓柱的高為4.5分米,體積為81立方分米.另一個圓柱的高為3分米,體積是多少?

  六、板書設(shè)計

《圓柱的體積》教案6

  學(xué)習(xí)目標(biāo):

  經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測量和計算過程,在動手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗“等積變形”的轉(zhuǎn)化過程。學(xué)習(xí)重點:應(yīng)用圓柱的體積計算公式解決實際問題。

  學(xué)習(xí)難點:理解瓶子的容積是由裝水的圓柱的體積和倒置后無水的圓柱的體積兩部分組成的。

  學(xué)習(xí)過程

  一.創(chuàng)設(shè)情境,提出問題。

  每個小組桌子上有一個沒有裝滿水的礦泉水瓶。原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個數(shù)學(xué)問題嗎?

  1:瓶子還有多少水?(剩下多少水?)

  2:喝了多少水?(也就是瓶子的空氣部分。)

  3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)

  二、小組交流、探究新知

  1.獨立思考、嘗試解決問題

  怎么求這個礦泉水瓶的容積?根據(jù)自己的生活學(xué)習(xí)經(jīng)驗來想辦法解決,2.小組合作,探討瓶子的容積計算方法

  小組合作活動一:要求:小組內(nèi)拿出課前準(zhǔn)備的礦泉水,先請一位同學(xué)倒出一部分,再把你的想法在小組內(nèi)交流交流。

  交流:哪位同學(xué)上來把你們的想法給大家交流分享一下?(生上臺演示講解。)

  3.總結(jié)板書:水的體積+空氣部分體積=瓶子的容積。

  三、同樣的方法完成課本例題及做一做。

  1.完成例7。指名學(xué)生上臺板演,2.數(shù)學(xué)書P27做一做。

  四、總結(jié)板書

  水的體積+空氣部分體積=瓶子的容積

  形狀變了體積不變

  五、作業(yè):課本29頁練習(xí)第10題、13題。

  教學(xué)反思

  本節(jié)課是利用所學(xué)圓柱的知識解決實際問題。雖然備課時盡量考慮到可能出現(xiàn)的所有情況,但是實際上課的過程中還是出現(xiàn)了沒有預(yù)料到的情況。

  首先,小組合作的時候分組比較大:即有的學(xué)生真的參與進(jìn)去了,有的學(xué)生卻無事可干,因為計算量比較大,得到數(shù)據(jù)的同學(xué)忙著計算,沒有接觸到瓶子的同學(xué)沒有計算的數(shù)據(jù),也反映出我們平時小組合作時互相配合的良好習(xí)慣還沒養(yǎng)成。如果我把小組設(shè)定為4人一組或2人一組的'話,學(xué)生實際的參與程度會更高。

  其次,本課的教學(xué)過程中瓶子的容積計算方法的推導(dǎo)過程中,滲透了簡便計算的方法,如果在理解底面積x(水的高+空氣部分的高)這一步時,如果配上教具展示(把教具中圓柱形的水和倒置后圓柱形的空氣部分剪下來,再拼接在一起,形成一個大圓柱。)學(xué)生更能理解空氣部分體積+水的體積=底面積x(水的高+空氣部分的高)表示的具體意義了。

  最后,我感覺這節(jié)課注重了容積計算方法的推導(dǎo)過程,練習(xí)時間較少,還有更多不規(guī)則體積的計算,期待在以后的練習(xí)中,學(xué)生都能找到解決問題的方法!

《圓柱的體積》教案7

  教學(xué)目標(biāo):

  1、使學(xué)生能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  4、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:掌握圓柱體積的計算公式。

  教學(xué)難點:靈活應(yīng)用圓柱的體積公式解決實際問題。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、復(fù)習(xí)圓柱體積的推導(dǎo)過程

  長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

  長方體的體積=底面積高,所以圓柱的體積=底面積高,即V=Sh。

  2、復(fù)習(xí)長方體的體積公式后,讓學(xué)生獨立完成練習(xí)三第6題,并指名板演。

  二、解決實際問題

  1、練習(xí)三第7題。

  學(xué)生思考:要求糧囤所能裝的玉米的重量,需先知道什么?然后獨立完成。

  2、練習(xí)三第5題。

 。1)指導(dǎo)學(xué)生變換公式:因為V=Sh,所以h=VS。也可以列方程解答。

 。2)學(xué)生選擇喜愛的方法解答這道題目。

  3、練習(xí)三第8題。

 。1)學(xué)生讀題后,指名說說對題意的理解:求減少的'土方石就是求月亮門所占的空間,而月亮門所占的空間是一個底面直徑為2米,高為0.25米的圓柱。

 。2)在充分理解題意后學(xué)生獨立完成,集體訂正。

  4、練習(xí)三第9、10題

 。1)學(xué)生獨立審題,完成9、10兩題。

 。2)評講第9題:要怎樣才能判斷出800ml的果汁夠倒三杯嗎?必須先求出什么?怎么求?(需先求出圓柱形玻璃杯的容積,用公式V=Sh)

 。3)指名說說解答第10題的思路:根據(jù)兩個圓柱的底面積相等這一條件,先求出其中一個圓柱的底面積。利用這個底面積再求出另一個圓柱的體積。

  三、布置作業(yè)

  完成一課三練的相關(guān)練習(xí)。

《圓柱的體積》教案8

  一、教學(xué)內(nèi)容:人教版教材六年級下冊19——20頁例5例6及相關(guān)的練習(xí)題。

  二、教學(xué)目標(biāo):

  1、結(jié)合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進(jìn)一步理解體積和容積的含義。

  2、經(jīng)歷“類比猜想——驗證說明”的探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積。并會解決一些簡單的實際問題。

  3、注意滲透類比、轉(zhuǎn)化思想。

  三、教學(xué)重點:理解、掌握圓柱體積計算的公式,能運用公式正確地計算圓柱的體積。

  四、教學(xué)難點:推導(dǎo)圓柱的體積計算公式。

  五、教法要素:

  1、已有的知識和經(jīng)驗:體積、體積單位,學(xué)習(xí)長方體正方體的體積公式的經(jīng)驗。

  2、原型:圓柱模型。

  3、探究的問題:

 。1)圓柱的體積和什么有關(guān)?圓柱能否轉(zhuǎn)化成已學(xué)過的立體圖形來計算體積?

 。2)把圓柱拼成一個近似的長方體后,長方體的長、寬、高是圓柱的哪個

  部分?

 。3)怎樣計算圓柱的體積?

  六、教學(xué)過程:

 。ㄒ唬﹩酒鹋c生成。

  1、什么叫物體的體積?我們學(xué)過哪些立體圖形的體積計算?

  2、長方體和正方體的體積怎樣計算?它們可以用一個公式表示出來嗎?

  切入教學(xué):怎樣計算圓柱的體積?圓柱的體積計算會和什么有關(guān)?

 。ǘ┨骄颗c解決。

  探究:圓柱的體積

  1、 提出問題,啟發(fā)思考:如何計算圓柱的體積?

  2、 類比猜測,提出假設(shè):結(jié)合長方體和正方體體積計算的知識,即長方

  體和正方體的體積都等于底面積×高,據(jù)此分析并猜測圓柱的體積與誰有關(guān),有什么關(guān)系;提出假設(shè),圓柱的體積可能等于底面積×高。

  3、 轉(zhuǎn)化物體,分析推理:

  怎樣來驗證我們的猜想?我們在學(xué)圓的面積時是把圓平均分成若干份,然后拼成一個近似的長方形,推導(dǎo)出圓的面積計算公式。我們能不能也把圓柱轉(zhuǎn)化為我們學(xué)過的立體圖形呢?應(yīng)該怎樣轉(zhuǎn)化?結(jié)合圓的面積計算小組討論。學(xué)生匯報交流。

 。贸銎骄趾玫膱A柱模型,圓柱的底面用一種顏色,圓柱的側(cè)面用另一種顏色,以便學(xué)生觀察。)現(xiàn)在利用這個圓柱模型小組合作把它轉(zhuǎn)化為我們學(xué)過的立體圖形。學(xué)生在小組合作后匯報交流。

  4、全班交流,公式歸納:

  交流時,要學(xué)生說明拼成的長方體與原來的圓柱有什么關(guān)系?圓柱的底面積和拼成的長方體的底面積有什么關(guān)系?拼成的長方體的高和圓柱的高有什么關(guān)系?引導(dǎo)學(xué)生推導(dǎo)出圓柱的體積計算方法。圓柱的體積=底面積×高。(在這一過程中,使學(xué)生認(rèn)識到:把圓柱平均分成若干份切開,可以拼成近似的長方體,這樣“化曲為直”,圓柱的體積就轉(zhuǎn)化為長方體的體積,分的份數(shù)越多,拼起來就越接近長方體,滲透“極限”思想。)教師板書計算公式,并用字母表示。

  回想一下,剛才我們是怎樣推導(dǎo)出圓柱的體積計算公式的.?

  5、舉一反三,應(yīng)用規(guī)律:

 。1)你能用這個公式解決實際問題嗎?20頁做一做,學(xué)生獨立完成,全班訂正。

  如果我們只知道圓柱的半徑和高,你能不能求出圓柱的體積?引導(dǎo)學(xué)生推導(dǎo)出V=∏r2h

 。2)教學(xué)例6

  學(xué)生審題之后,引導(dǎo)學(xué)生思考:解決這個問題就是要計算什么?然后指出求杯子的容積就是求這個圓柱形杯子可容納東西的體積,計算方法跟圓柱體積的計算方法一樣,再讓學(xué)生獨立解決。反饋時,要引導(dǎo)學(xué)生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。

  (三)訓(xùn)練與強(qiáng)化。

  1、基本練習(xí)。

  練習(xí)三第1題,學(xué)生獨立完成,這兩個都可以直接用V=sh來計算。全班訂正,注意培養(yǎng)學(xué)生良好的計算習(xí)慣。

  2、變式練習(xí)。

  第2題,這題中給的條件不同,不管是知道半徑還是直徑,我們都要先求出底面積,再求體積。學(xué)生獨立完成,在交流時,注意計算方法的指導(dǎo)。

  第3題。求裝多少水,實際是求這個水桶的容積。學(xué)生獨立完成,全班交流。水是液體,單位應(yīng)用毫升或升。

  3、綜合練習(xí)。

  第5題。這題中知道了圓柱的體積和底面積求高,引導(dǎo)學(xué)生推出h=V÷s,如果有困難,也可列方程解答。學(xué)生獨立完成,有困難的小組交流。

  4、提高性練習(xí)。22頁第10題,學(xué)生先小組討論,再全班交流。

 。ㄋ模┛偨Y(jié)與提高。

  這節(jié)課我們是怎樣推導(dǎo)出圓柱體積的計算方法的?圓柱和長方體、正方體在形體上有什么相同的地方?像這樣上下兩個底面一樣,粗細(xì)不變的立體圖形叫做直柱體,直柱體的體積都可以用底面積×高計算。出示幾個直柱體(例:三棱柱、鋼管等),讓學(xué)生計算出他們的體積。

《圓柱的體積》教案9

  教學(xué)內(nèi)容:

  教材第10~12頁圓柱的體積公式,例1、例2和練一練,練習(xí)二第1~5題。

  教學(xué)要求:

  1.使學(xué)生理解和掌握圓柱的體積計算公式,并能根據(jù)題里的條件正確地求出圓柱的體積。

  2.培養(yǎng)學(xué)生初步的空間觀念和思維能力;讓學(xué)生認(rèn)識轉(zhuǎn)化的思考方法。

  教具準(zhǔn)備:

  圓柱體積演示教具。

  教學(xué)重點:

  理解和掌握圓柱的體積計算公式。

  教學(xué)難點:

  圓柱體積計算公式的推導(dǎo)。

  教學(xué)過程:

  一、鋪墊孕伏:

  1.求下面各圓的面積(回答)。

  (1)r=1厘米;(2)d=4分米;(3)C=6.28米。

  要求說出解題思路。

  2.想一想:學(xué)習(xí)計算圓的面積時,是怎樣得出圓的面積計算公式的?指出:把一個圓等分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。

  3.提問:什么叫體積?常用的體積單位有哪些?

  4.已知長方體的底面積s和高h(yuǎn),怎樣計算長方體的體積?(板書:長方體的體積=底面積高)

  二、自主研究:

  1.根據(jù)學(xué)過的體積概念,說說什么是圓柱的體積。(板書課題)

  2.怎樣計算圓柱的體積呢?我們能不能根據(jù)圓柱的底面可以像上面說的轉(zhuǎn)化成一個長方形,通過切、拼的方法,把圓柱轉(zhuǎn)化為已學(xué)過的立體圖形來計算呢,現(xiàn)在我們大家一起來討論。

  3.公式推導(dǎo)。(可分小組進(jìn)行)

  (1)請同學(xué)指出圓柱體的底面積和高。

  (2)回顧圓面積公式的推導(dǎo)。(切拼轉(zhuǎn)化)

  (3)探索求圓柱體積的公式。

  根據(jù)圓面積剪、拼轉(zhuǎn)化成長方形的思路,我們也可以運用切拼轉(zhuǎn)化的方法把圓柱體變成學(xué)過的幾何形體來推導(dǎo)出圓柱的體積計算公式。你能想出怎樣切、拼轉(zhuǎn)化嗎?請同學(xué)們仔細(xì)觀察以下實驗,邊觀察邊思考圓柱的體積、底面積、高與拼成的幾何形體之間的關(guān)系。教師演示圓柱體積公式推導(dǎo)演示教具:把圓柱的底面分成許多相等的扇形(數(shù)量一般為16個),然后把圓柱切開,照下圖拼起來,(圖見教材)就近似于一個長方體?梢韵胂,分成的扇形越多,拼成的立體圖形就越接近于長方體。

  (4)討論并得出結(jié)果。

  你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的體。這個長方體的底面積與圓柱體的底面積,這個長方體的高與圓柱體的高。因為長方體的'體積等于底面積乘以高,所以,圓柱體的體積計算公式是:。(板書:圓柱的體積=底面積高)用字母表示:。(板書:V=Sh)

  (5)小結(jié)。

  圓柱的體積是怎樣推導(dǎo)出來的?計算圓柱的體積必須知道哪些條件?

  4.教學(xué)例1。

  出示例1,審題。提問:你能獨立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位)

  0.9米=90厘米2490=2160(立方厘米)

  5.做練習(xí)二第1題。

  讓學(xué)生做在課本上。指名口答,集體訂正。追問:圓柱的體積是怎樣算的?

  6.教學(xué)試一試一個圓柱的底面半徑是2分米,高是8米,求它的體積。指名一人板演,其余學(xué)生做在練習(xí)本上。評講試一試小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。

  7.教學(xué)例2。

  出示例2,審題。小組討論計算方法,然后學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?(單位統(tǒng)一,最后結(jié)果用體積單位,結(jié)果保留整數(shù)。)

  三、鞏固練習(xí)

  第12頁,練一練。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉(zhuǎn)化,把圓柱體切拼轉(zhuǎn)化成長方體,(在課題下板書:圓柱些長方體)得出了圓柱體的體積計算公式V=Sh。

  五、布置作業(yè)

  練習(xí)二第2,3,4,5題及數(shù)訓(xùn)。

  六、板書設(shè)計:

  圓柱的體積

  長方體的體積=底面積高

  圓柱的體積=底面積高

  V=Sh

《圓柱的體積》教案10

  教學(xué)內(nèi)容:P19-20頁例5、例6及補(bǔ)充例題,完成“做一做”及練習(xí)三第1~4題。

  教學(xué)目標(biāo):

  1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:掌握圓柱體積的計算公式。

  教學(xué)難點:圓柱體積的計算公式的推導(dǎo)。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、長方體的體積公式是什么?(長方體的.體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)

  2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。

  3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。

  二、新課

  1、圓柱體積計算公式的推導(dǎo)。

 。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形。

《圓柱的體積》教案11

  設(shè)計說明

  本節(jié)課是在學(xué)生已經(jīng)了解了圓柱的特征,掌握了長方體體積的計算方法以及圓的面積計算公式的推導(dǎo)過程的基礎(chǔ)上進(jìn)行教學(xué)的。根據(jù)學(xué)生的認(rèn)知水平和已有經(jīng)驗,本節(jié)課在教學(xué)設(shè)計上體現(xiàn)了以下幾個特點:

  1.創(chuàng)設(shè)問題情境,點燃探索激情。

  基于“數(shù)學(xué)來源于生活,又應(yīng)用于生活”這一理念,教學(xué)過程中通過呈現(xiàn)身邊圓柱的體積問題,使學(xué)生感受到數(shù)學(xué)與現(xiàn)實生活的密切聯(lián)系,認(rèn)識到學(xué)習(xí)圓柱的體積計算公式的必要性,從而激發(fā)了學(xué)生的探究興趣,使學(xué)習(xí)成為學(xué)生自覺的需求。

  2.注重直觀教學(xué),引導(dǎo)合作遷移。

  數(shù)學(xué)理論的表述往往是抽象的,它影響了學(xué)生數(shù)學(xué)思維的發(fā)展,而引導(dǎo)學(xué)生從觀察和分析有關(guān)具體實物入手,就比較容易理解概念的本質(zhì)特征。所以,教學(xué)中不但設(shè)計了通過排水法理解圓柱體積的實驗,而且還借助教具演示、課件演示等直觀教學(xué)手段幫助學(xué)生推導(dǎo)出圓柱體積的計算公式,使學(xué)生從感性認(rèn)識上升到理性認(rèn)識,體會到知識的由來。

  3.滲透數(shù)學(xué)思想,發(fā)展數(shù)學(xué)思考。

  在本節(jié)課的教學(xué)中,充分利用教材內(nèi)容,對學(xué)生有效地進(jìn)行轉(zhuǎn)化思想的滲透,使學(xué)生在體會運用轉(zhuǎn)化思想可以化難為易、化復(fù)雜為簡單、化生疏為熟悉等作用的同時,參與數(shù)學(xué)活動,提高解決問題的`能力。

  課前準(zhǔn)備

  教師準(zhǔn)備 PPT課件

  學(xué)生準(zhǔn)備 圓柱形實物

  教學(xué)過程

  ⊙情境引入

  1.操作感知體積的意義。

  通過出示一個裝了半杯水的燒杯,引導(dǎo)學(xué)生猜測:在燒杯中投入一個圓柱形物體,會有什么現(xiàn)象發(fā)生?

  (水面升高或者水會溢出來)

  師:為什么會有這種現(xiàn)象發(fā)生?

  預(yù)設(shè)

  生1:圓柱占有一定的空間。

  生2:圓柱占據(jù)了原來水占有的空間。

  生3:圓柱是立體圖形,它具有一定的體積。

  2.討論、概括圓柱的體積的意義。

  師:你認(rèn)為什么是圓柱的體積?

  (圓柱所占空間的大小,叫做圓柱的體積)

  3.引入:這節(jié)課我們就一起來探究圓柱體積的計算方法。

  (板書課題:圓柱的體積)

  設(shè)計意圖:通過操作、演示,使學(xué)生在猜測、觀察、討論中加深對抽象的“體積”概念的理解,自主概括出圓柱的體積的意義,為下面的探究活動做好充分的準(zhǔn)備。

  ⊙自主探究

  1.探究影響圓柱的體積大小的相關(guān)因素。

  (1)課件出示兩個大小不等的圓柱。

  師:哪個圓柱的體積比較大?為什么?

  預(yù)設(shè)

  生1:左面的圓柱的體積比較大,因為它高一些。

  生2:右面的圓柱的體積比較大,因為它粗一些。

  生3:不好比較。因為左面的圓柱雖然高,但比較細(xì);右面的圓柱雖然粗,但比較矮。

  (2)討論、概括。

  師:圓柱的體積的大小與哪些因素有關(guān)?

  (圓柱的體積的大小與圓柱的高及圓柱的底面積的大小有關(guān))

《圓柱的體積》教案12

  最近,本人在《小學(xué)教學(xué)設(shè)計》看到一則“圓柱的體積”教學(xué)實錄精彩片段,它以一種全新的視角詮釋了新課標(biāo)所倡導(dǎo)的理念,給我留下了較為深刻的印象,F(xiàn)把它擷取下來與各位同行共賞。

  ……

  師:圓柱有大有小,你覺得圓柱體積應(yīng)該怎樣計算呢?

  生:(絕大部分學(xué)生舉起了手)底面積乘高。

  師:那你們是怎樣理解這個計算方法的呢?

  生1:我是從書上看到的。

  (舉起的手放下了一大半。很明顯,大部分同學(xué)都看到或聽到這個結(jié)論,并不理解實質(zhì)的涵義。但仍有幾位學(xué)生的手高高舉起,躍躍欲試,臉上的神情告訴老師:他們有更高明的答案。老師便順?biāo)浦,讓他們來講。)

  生2:我是這樣思考的:長方體、正方體和圓柱體它們都是立體圖形,體積都是指它們所占空間的大小。而長方體、正方體的體積都可以用底面積乘高來計算,所以我想計算圓柱體的體積時也應(yīng)該可以用底面積乘高吧!

  師:你能迅速地把圓柱體與以前學(xué)過的長方體、正方體聯(lián)系起來,進(jìn)而聯(lián)想到圓柱體的體積計算方法。真行!當(dāng)然這僅是你的猜測,要是再能證明就好了。

  生3:我可以證明。推導(dǎo)長方體體積公式時,我們是采用擺體積單位的方法,用每層個數(shù)(底面積)×層數(shù)(高)現(xiàn)在求圓柱體積我們也可以沿襲這種思路,在圓柱體內(nèi)部同樣擺上合適的體積單位,用每層個數(shù)×層數(shù),每層的個數(shù)也就是它的底面積,擺的層數(shù)也就是高。那不就證明了圓柱體積的計算公式就是用底面積乘高嗎?

  (教室里立刻響起了熱烈的掌聲,許多同學(xué)被他精彩的發(fā)言折服了,理性的思維散發(fā)出誘人的魅力。)

  師:你真聰明,能用以前學(xué)過的知識解決今天的難題!(這時舉起的手更多了。)

  生4:我有個想法不知是否可行、在推導(dǎo)圓面積計算方法時,我們是把圓轉(zhuǎn)化成了長方形,圓柱的底面就是一個圓,所以我就想是否可以把圓柱體轉(zhuǎn)化成長方體呢?

  師:(翹起了大拇指)你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉(zhuǎn)化成近似的長方體。

  生5:我還有一種想法:我們可以把圓柱體看成是無數(shù)個同樣大小的圓片疊加而成的。那么圓柱體的體積就應(yīng)該用每個圓片的面積×圓的個數(shù)。圓的`個數(shù)也就相當(dāng)于圓柱的高。所以我認(rèn)為圓柱體的體積可以用每個圓的面積(底面積)×高。

  師:了不起的一種想法!(師情不自禁的鼓起了掌。)

  生6:我看過爸爸媽媽“扎筷子”。把十雙同樣的筷子扎在一起就變成了一個近似的圓柱體。我們可以把每根筷子看成一個長方體,那么扎成的近似圓柱體的體積應(yīng)該是這二十個小長方體的體積之和。又因為它們具有同樣的高度,運用乘法分配律,就變成了這二十個小長方體的底面積之和×高。

  師:你真會思考問題!

  生7:我還有一種想法:學(xué)習(xí)圓的面積時我們知道,當(dāng)圓的半徑和一個正方形的邊長相等時,圓的面積約是這個正方形的3.14倍。把疊成這個圓柱體的這無數(shù)個圓都這樣分割,那么圓柱體的體積不也大約是這個長方體的體積的3.14倍嗎?長方體的體積用它的底面積×高,圓柱體的體積就在這基礎(chǔ)上再乘3.14,也就是用圓柱體的底面積×高。

  生8:把圓柱體形狀的橡皮泥捏成等高長方體形狀的橡皮泥,長方體體積用底面積乘高來計算,所以計算圓柱體的體積也是用底面積乘高吧!

  師:沒想到一塊橡皮泥還有這樣的作用,你們可真是不簡單!

  ……

  整節(jié)課不時響起孩子們、聽課老師們熱烈的掌聲。

  過去的數(shù)學(xué)課堂教學(xué),忠誠于學(xué)科,卻背棄了學(xué)生,體現(xiàn)著權(quán)利,卻忘記了民主,追求著效率,卻忘記了意義。而這個片斷折射出,新課標(biāo)理念下的不再是教師一廂情愿的“獨白”,而是學(xué)生、數(shù)學(xué)材料、教師之間進(jìn)行的一次次真情的“對話”。

  現(xiàn)從“對話”的視角來賞析這則精彩的片段。

  一、“對話”喚發(fā)出學(xué)習(xí)熱情。

  《新課程標(biāo)準(zhǔn)》指出:有意義的數(shù)學(xué)學(xué)習(xí)必須建立在學(xué)生的主觀愿望和知識經(jīng)驗的基礎(chǔ)上,在這樣的氛圍中,學(xué)生的思考才能積極。在當(dāng)今數(shù)字化、信息化非常發(fā)達(dá)的社會中,學(xué)生接受信息獲取知識的途徑非常多,圓柱體的體積計算方法對學(xué)生來說并不陌生,如果教師再按傳統(tǒng)的教學(xué)程序(創(chuàng)設(shè)情境——研究探討——獲得結(jié)論)展開,學(xué)生易造成這樣的錯誤認(rèn)識:認(rèn)為自己已經(jīng)掌握了這部分知識而失去對學(xué)習(xí)過程的熱情。而本課,教學(xué)伊始,教師提問“圓柱體的體積如何計算”,讓學(xué)生先行呈現(xiàn)已有的知識結(jié)論,在通過問題“你是怎樣理解這個公式的呢?”把學(xué)生的注意引向?qū)揭饬x的理解,學(xué)生積極主動的投入思維活動,喚發(fā)學(xué)習(xí)熱情。

  二、“對話”迸發(fā)出智慧的火花

  “水本無華,相蕩而生漣漪;石本無火,相擊始發(fā)靈光。”思維的激活、靈性的噴發(fā)源于對話的啟迪和碰撞。本課如果按照教材的設(shè)計:通過把圓柱體轉(zhuǎn)化為長方體,研究圓柱體和長方體間的關(guān)系,得出計算公式:底面積×高,經(jīng)歷這樣的學(xué)習(xí)過程學(xué)生的思維是千篇一律的,獲得的發(fā)展也是有限的。而這位教師對教材進(jìn)行相應(yīng)的拓展,先呈現(xiàn)公式,后提問“你是怎樣理解這個公式的呢?”,使學(xué)生的思維沿著各自獨特的理解“決堤而出”。

  三、“對話”贏得心靈的敞亮和溝通

  “真行!當(dāng)然這僅是你的猜測,要是再能證明就好了!薄澳阏媛斆!能用以前學(xué)過的知識解決今天的難題!”“你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉(zhuǎn)化成近似的長方體。”……教師不斷地肯定著學(xué)生的每一種觀點,引燃學(xué)生的每一絲發(fā)現(xiàn)的火花;同時象一位節(jié)目主持人一樣,平和、真誠,傾聽、接納著學(xué)生的聲音,在課堂上,學(xué)生真是神了、奇了,說出一種又一種的方法,連聽課老師也情不自禁的鼓起掌來。此情此景,我們不難看出,老師能注意蹲下身來與學(xué)生交流,注意尋求學(xué)生的聲音,讓學(xué)生在一種“零距離”的、活躍的心理狀態(tài)下敞亮心扉,放飛思想,進(jìn)行著師生“視界融合”的真情對話,贏得心靈的敞亮和溝通。

  數(shù)學(xué)教學(xué)在對話中進(jìn)行,展示著民主與平等,凸現(xiàn)著創(chuàng)造與生成。有效的對話中不僅有信息的傳輸,更有思維的升華;不僅能增進(jìn)學(xué)生的理解,更能促進(jìn)教師的反思;不僅有繼承的喜悅,更有創(chuàng)造的激情。這則教學(xué)片斷,有很多的精彩值得我們欣賞與贊嘆。我想說:我的內(nèi)心很受鼓舞,我會向這位老師學(xué)習(xí),讓自己的課堂也能成就精彩的時刻!

《圓柱的體積》教案13

  教學(xué)目標(biāo):

  1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力

  3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。

  教學(xué)重點:

  掌握圓柱體積的計算公式。

  教學(xué)難點:

  圓柱體積的計算公式的推導(dǎo)。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、長方體的體積公式是什么?正方體呢?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)

  2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。

  3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。

  師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?

  二、新課

  1、圓柱體積計算公式的推導(dǎo)。

 。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)

 。2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個長方體)

  反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的.過程中,什么變了什么沒變?

  長方體和圓柱體的底面積和體積有怎樣的關(guān)系?

  學(xué)生說演示過程,總結(jié)推倒公式。

 。3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)

  2、教學(xué)補(bǔ)充例題(刪掉)

 。1)出示補(bǔ)充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?

 。2)指名學(xué)生分別回答下面的問題

  ①這道題已知什么?求什么?

 、谀懿荒芨鶕(jù)公式直接計算?

  ③計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)

  (3)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的.

 、賄=Sh

  50×2.1=105(立方厘米)

  答:它的體積是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的體積是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的體積是1.05立方米。

 、50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的體積是0.0105立方米。

  先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.(刪掉)

 。4)做第20頁的“做一做”。

  學(xué)生獨立做在練習(xí)本上,做完后集體訂正.

  出示一組習(xí)題

  一個圓柱的半徑4厘米,高3厘米,體積是多少立方厘米?

  一個圓柱的直徑12厘米,高3厘米,體積是多少立方厘米?

  一個圓柱的周長12.56厘米,高3厘米,體積是多少立方厘米?

  3、引導(dǎo)思考:如果已知圓柱底面半徑,直徑,和底面周長和高,圓柱體積的計算公式是怎樣的?

  4、教學(xué)例6

 。1)出示例,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)(刪掉)

 。1)學(xué)生嘗試完成例6。

 、俦拥牡酌娣e:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

 、诒拥娜莘e:50.24×10=502.4(cm3)=502.4(ml)

 。2)學(xué)生見解例題,師補(bǔ)充

  三、鞏固練習(xí)

  1、一個圓柱形水桶底面直徑是56厘米,高87厘米,水桶裝多少水?

  2、一個圓柱的體積是80立方厘米,底面積是16平方厘米,它的高是多少厘米?

  3、一個圓柱形糧囤,從里面量得底面半徑是1.5米,高是2米。如果每立方米約中750千克,這個糧囤能裝多少噸玉米?

  4鋼管的長80厘米,外直徑10厘米,內(nèi)直徑8厘米,求它的體積。

  板書設(shè)計:

  圓柱的體積=底面積×高V=Sh或V=πr2h

  例6:

 、俦拥牡酌娣e:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

 、诒拥娜莘e:50.24×10=502.4(cm3)=502.4(ml)

  教學(xué)反思:

  以舊引新,培養(yǎng)學(xué)生的自主學(xué)習(xí)能力。加強(qiáng)直觀操作,培養(yǎng)學(xué)生的動手操作能力。利用“轉(zhuǎn)化思想”的方法把圓柱轉(zhuǎn)化成近似的長方體,通過小組合作實驗推導(dǎo)出圓柱體積的計算方法,使學(xué)生在操作中感知,在觀察中理解,在比較中歸納,發(fā)展了學(xué)生的空間觀念,培養(yǎng)了學(xué)生的動手能力和合作能力。

《圓柱的體積》教案14

  教學(xué)內(nèi)容:

  教科書第44頁的例5,完成第44頁;“做一做”的第2題和練習(xí)十一的第3—7題。

  教學(xué)目的:

  使學(xué)生掌握圓柱體積的計算公式,并能運用公式解決一些簡單的實際問題。

  教具準(zhǔn)備:

  一個圓柱形物體,一個圓柱形杯子。

  教學(xué)過程:

  一、復(fù)習(xí)

  1、口算。

  出示練習(xí)十一的第3題(可以用卡片或用投影出示):

 、4、5十0、37 0、25×8 5、8十2、9

 、7、2÷9 6、1—4、8

  2,復(fù)習(xí)圓柱的體積。

  教師:我們是怎樣得到圓柱體積的計算公式的?圓柱體積的計算公式是什么?

  指名學(xué)生敘述一下圓柱體積計算公式的'推導(dǎo)過程,使學(xué)生明確求圓柱的體積是通過切拼成長方體來求得的。圓柱體積的計算公式是“底面積×高”,即:V=SH。

  二、新課

  1、教學(xué)圓柱體積公式的另一種形式。

  教師:請大家想一想,如果已知圓柱底面的半徑r和高H,圓柱體積的計算公式

  應(yīng)該怎樣表達(dá)?

  引導(dǎo)學(xué)生根據(jù)底面積S與半徑r的關(guān)系可以知道:S=∏×R × R,所以圓柱體積的計算公式也可以寫成:V=∏×R×R×H。

  2、教學(xué)例5。

  出示例5。

  (1)教師提出下面問題幫助學(xué)生理解題意:

  ①這道題已知什么?求什么?

 、谇笏暗娜莘e是什么意思?根據(jù)什么公式?為什么?

  要使學(xué)生理解水桶的容積就是水桶能容納物體的體積,求水桶的容積就是求這個圓柱形水桶內(nèi)部的體積。所以可以根據(jù)圓柱體積的計算公式來計算。

  ⑧要求水桶的容積應(yīng)該先求什么?

  要使學(xué)生明確,水桶的底面積在題中沒有直接給出,因此要先求水桶的底面積,再求水桶的容積。

 、偎暗牡酌娣e應(yīng)該怎樣求?

  (2)讓學(xué)生敘述解答過程,教師板書。

  求出水捅容積之后,教師提問:最后結(jié)果應(yīng)該怎樣取值?

  使學(xué)生明確要把計量單位改寫成立方分米,取近似值時要采用去尾法。

  (3)做第44頁。做一做”的第2題。

  讓學(xué)生獨立做在練習(xí)本上,做完后集體訂正。

  三、課堂練習(xí)

  1、做練習(xí)十一的第4題。

  這是一道實際測量、計算的題目,可以分組進(jìn)行測量和計算,每組的茶杯可以是不一樣的。教師可以先讓學(xué)生講一下自己的測量方法,再進(jìn)行測量和計算。

  學(xué)生測量時,教師行間巡視,注意察看學(xué)生測量的方法是否正確,對有困難的學(xué),生要及時給予指導(dǎo)。

  做完后集體訂正,要注意強(qiáng)調(diào)不能只計算出茶杯的體積,還要計算出可以裝多少克水,以及取近似數(shù)的方法。

  2、做練習(xí)十一的第5題。

  讀題后、教師可以先后提問:

  “這道題要求的是什么?”

  “題目只告訴了圓柱形糧食囤的底面半徑和高,要求這個糧囤能裝稻谷多少立方米,應(yīng)該先求什么?怎樣求?”

  指名學(xué)生回答后,再讓學(xué)生獨立做在練習(xí)本上,教師巡視。

  做完后集體訂正,強(qiáng)調(diào)得數(shù)的取舍方法。

  3、做練習(xí)十一的第6題。

  教師:這道題已知什么?求什么?

  指名學(xué)生回答后,再問:應(yīng)該怎樣求?

  引導(dǎo)學(xué)生從圓柱的體積計算公式入手,可以直接用算術(shù)方法計算,也可以列方程來解答。

  4、做練習(xí)十一的第7題。

  讀題后,教師可提出以下問題:

  “這道題要求的是什么?”

  “怎樣利用已知條件求出這個油桶的容積?”

  “題目中的條件和問題的單位不統(tǒng)一。應(yīng)該怎樣改寫更簡便?”分別指名學(xué)生回答。要使學(xué)生明白,這里可以先將40厘米和50厘米分別改寫成4分米和5分米計算更簡便。

  讓學(xué)生獨立做在練習(xí)本上,教師行間巡視,注意察看學(xué)生對圓柱體積計算方法是否掌握,計量單位是否按照題目的要求進(jìn)行改寫,最后得數(shù)的取舍是否正確。

  做完后集體訂正,指名學(xué)生說說自己是怎樣計算的。

《圓柱的體積》教案15

  教學(xué)目標(biāo)

  1.理解圓柱體積公式的推導(dǎo)過程。

  2.能夠初步地學(xué)會運用體積公式解決簡單的實際問題。

  3.進(jìn)一步提高同學(xué)們解決問題的能力。

  教學(xué)過程

  教師活動學(xué)生活動

  活動一:復(fù)習(xí)舊知。

  1.什么是體積?

  2.長方體的體積該怎樣計算?歸納到底面積乘高上來)

  3.圓的面積怎樣計算?

  4.圓的面積是怎樣推倒得來的?

  活動二:經(jīng)歷圓柱體積的推導(dǎo)過程,得出公式。

(一)

  1.計算圓的面積時,是把圓面積轉(zhuǎn)化成我們學(xué)過的長方形進(jìn)行計算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計算它的體積?

  2.把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示。

  3.思考:

  (1)圓柱切開后可以拼成一個什么形體?

 。2)通過實驗?zāi)惆l(fā)現(xiàn)了什么?

  *拼成的近似長方體體積大小沒變,形狀變了。

  *拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。

  *近似長方形的高就是圓柱的高,沒有變化。

  4.根據(jù)圓面積的推導(dǎo)公式進(jìn)行猜想:

  如果把圓柱體32等份,64等份,128等份拼成的長方體的形狀怎么樣?

 。ǘ┩ㄟ^以上的觀察你發(fā)現(xiàn)了什么?

  師:平均分的分?jǐn)?shù)越多,每分扇形的底面就越小,弧就越短,拼成的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。

  (三)推導(dǎo)圓柱體積公式。

  長方體的體積可以用底面積乘高來計算,而在推導(dǎo)過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。

  板書:V=Sh

  (四)算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?

  要求這根柱子的體積,要先求什么?

  活動三:試一試。

  1.一個圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個水桶的容積是多少升?

  說明:求水桶的容積,就是求水桶的`體積。想一想先求什么?

  2.一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?

  已知底面周長對解決問題有什么幫助嗎?必須先求出什么?

  物體所占空間的大小叫做物體的體積。

  指名說。

  是把圓面積轉(zhuǎn)化成(補(bǔ)充:面積相等的)近似的長方形面積進(jìn)行計算的。

  啟發(fā)學(xué)生思考。

  引導(dǎo)學(xué)生進(jìn)行觀察。

  小組討論:實驗前后,什么變了?什么沒變?

  討論后,整理出來,再進(jìn)行匯報。

  說說你猜想的結(jié)果。

  生:平均分的分?jǐn)?shù)越多,拼起來的形體越近似于長方體。

  小組討論:怎樣計算圓柱的體積?

  學(xué)生匯報討論結(jié)果。

  請你先求底面積,再求體積,自己試計算。請生板演。

  正確理解題意,自己完成。

  先求底面半徑再求底面積,最后求體積。

【《圓柱的體積》教案】相關(guān)文章:

《圓柱的體積》教案10-21

《圓柱的體積》教案09-01

圓柱的體積教案03-19

《圓柱的體積》教案(精品)05-20

《圓柱的體積》教案15篇01-02

《圓柱的體積》數(shù)學(xué)教案07-18

實用的《圓柱的體積》教案3篇06-07

實用的《圓柱的體積》教案4篇06-28

《圓柱的體積》教案(通用22篇)06-15