- 相關(guān)推薦
高等數(shù)學(xué)微分知識點匯總最新
漫長的學(xué)習(xí)生涯中,大家都背過各種知識點吧?知識點就是掌握某個問題/知識的學(xué)習(xí)要點。哪些知識點能夠真正幫助到我們呢?下面是小編收集整理的高等數(shù)學(xué)微分知識點匯總最新,希望對大家有所幫助。
一、歷年微積分考試命題特點
微積分復(fù)習(xí)的重點根據(jù)考試的趨勢來看,難度特別是怪題不多,就是綜合性串題。以往考試選擇填空題比較少,而今年變大了。微積分一共74分,填空、選擇占32分。第一是要把基本概念、基本內(nèi)容有一個系統(tǒng)的復(fù)習(xí),選擇填空題很重要。幾大運算,一個是求極限運算,還有就是求導(dǎo)數(shù),導(dǎo)數(shù)運算占了很大的比重,這是一個很重要的內(nèi)容。當(dāng)然,還有積分,基礎(chǔ)還是要把基本積分類型基礎(chǔ)搞清楚,定積分就是對稱性應(yīng)用。二重積分就是要分成兩個累次積分。三大運算這是我們的基礎(chǔ),應(yīng)該會算,算的概念比如說極限概念、導(dǎo)數(shù)概念、積分概念。
二、微積分中三大主要函數(shù)
微積分處理的對象有三大主要函數(shù),第一是初等函數(shù),這是最基礎(chǔ)的東西。在初等函數(shù)的基礎(chǔ)上對分段函數(shù),在微積分的概念里都有分段函數(shù),處理的一般方法應(yīng)該掌握。還有就是研究生考試最常見的是變限積分函數(shù)。這是我們經(jīng)常遇到的三大基本函數(shù)。
三、微積分復(fù)習(xí)方法
微積分復(fù)習(xí)內(nèi)容很多,題型也多,靈活度也大。怎么辦呢?這其中有一個調(diào)理辦法,首先要看看輔導(dǎo)書、聽輔導(dǎo)課,老師給你提供幫助,會給你一個比較系統(tǒng)的總結(jié)。老師總結(jié)的東西,比如說我在考研教育網(wǎng)輔導(dǎo)課程中總結(jié)了很多的點,每一個點要掌握重點,要舉一反三搞清楚。從具體大的題目來講,基本運算是考試的重要內(nèi)容。應(yīng)用方面,無非是在工科強調(diào)物理應(yīng)用,比如說旋轉(zhuǎn)體的面積、體積等等。在經(jīng)濟里面的經(jīng)濟運用,彈性概念、邊際是經(jīng)濟學(xué)的重要概念,包括經(jīng)濟的函數(shù)。還有一個更應(yīng)該掌握的,比如集合、旋轉(zhuǎn)體積應(yīng)用面等等,大的題目都是在經(jīng)濟基礎(chǔ)上延伸出的問題,只有數(shù)學(xué)化了之后,才能處理數(shù)學(xué)模型。
還有中值定理,還有微分學(xué)的應(yīng)用,比如說單調(diào)性、凹凸性的討論、不等式證明等等。應(yīng)用部分包括證明推斷的內(nèi)容。
簡單概括一下就是三個基本函數(shù)要搞清楚,三大運算的基礎(chǔ)要搞熟,概念點要看看參考書地都有系統(tǒng)的總結(jié),哪些點在此就不一一列了。計算題、應(yīng)用題、函數(shù)微分學(xué)延伸出的證明題都要搞熟。
高等數(shù)學(xué)考點匯總
一、一元函數(shù)積分學(xué)
(一)不定積分
1.知識范圍
(1)不定積分
原函數(shù)與不定積分的定義原函數(shù)存在定理不定積分的性質(zhì)
(2)基本積分公式
(3)換元積分法
第一換元法(湊微分法)第二換元法
(4)分部積分法
(5)一些簡單有理函數(shù)的積分
2.要求
(1)理解原函數(shù)與不定積分的概念及其關(guān)系,掌握不定積分的性質(zhì),了解原函數(shù)存在定理。
(2)熟練掌握不定積分的基本公式。
(3)熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡單的根式代換)。
(4)熟練掌握不定積分的分部積分法。
(5)會求簡單有理函數(shù)的不定積分。
(二)定積分
1.知識范圍
(1)定積分的概念
定積分的定義及其幾何意義可積條件
(2)定積分的性質(zhì)
(3)定積分的計算
變上限積分牛頓—萊布尼茨(Newton-Leibniz)公式換元積分法分部積分法
(4)無窮區(qū)間的廣義積分
(5)定積分的應(yīng)用
平面圖形的面積旋轉(zhuǎn)體體積物體沿直線運動時變力所作的功
2.要求
(1)理解定積分的概念及其幾何意義,了解函數(shù)可積的條件。
(2)掌握定積分的基本性質(zhì)。
(3)理解變上限積分是變上限的函數(shù),掌握對變上限定積分求導(dǎo)數(shù)的方法。
(4)熟練掌握牛頓—萊布尼茨公式。
(5)掌握定積分的換元積分法與分部積分法。
(6)理解無窮區(qū)間的廣義積分的概念,掌握其計算方法。
(7)掌握直角坐標(biāo)系下用定積分計算平面圖形的面積以及平面圖形繞坐標(biāo)軸旋轉(zhuǎn)所生成的旋轉(zhuǎn)體體積。
會用定積分求沿直線運動時變力所作的功。
二、向量代數(shù)與空間解析幾何
(一)向量代數(shù)
1.知識范圍
(1)向量的概念
向量的定義向量的模單位向量向量在坐標(biāo)軸上的投影向量的坐標(biāo)表示法向量的方向余弦
(2)向量的線性運算
向量的加法向量的減法向量的數(shù)乘
(3)向量的數(shù)量積
二向量的夾角二向量垂直的充分必要條件
(4)二向量的向量積二向量平行的充分必要條件
2.要求
(1)理解向量的概念,掌握向量的坐標(biāo)表示法,會求單位向量、方向余弦、向量在坐標(biāo)軸上的投影。
(2)熟練掌握向量的線性運算、向量的數(shù)量積與向量積的計算方法。
(3)熟練掌握二向量平行、垂直的充分必要條件。
(二)平面與直線
1.知識范圍
(1)常見的平面方程
點法式方程一般式方程
(2)兩平面的位置關(guān)系(平行、垂直和斜交)
(3)點到平面的距離
(4)空間直線方程
標(biāo)準(zhǔn)式方程(又稱對稱式方程或點向式方程)一般式方程參數(shù)式方程
(5)兩直線的位置關(guān)系(平行、垂直)
(6)直線與平面的位置關(guān)系(平行、垂直和直線在平面上)
2.要求
(1)會求平面的點法式方程、一般式方程。會判定兩平面的垂直、平行。會求兩平面間的夾角。
(2)會求點到平面的距離。
(3)了解直線的一般式方程,會求直線的標(biāo)準(zhǔn)式方程、參數(shù)式方程。會判定兩直線平行、垂直。
(4)會判定直線與平面間的關(guān)系(垂直、平行、直線在平面上)。
(三)簡單的二次曲面
1.知識范圍
球面母線平行于坐標(biāo)軸的柱面旋轉(zhuǎn)拋物面圓錐面橢球面
2.要求
了解球面、母線平行于坐標(biāo)軸的柱面、旋轉(zhuǎn)拋物面、圓錐面和橢球面的方程及其圖形。
三、多元函數(shù)微積分學(xué)
(一)多元函數(shù)微分學(xué)
1.知識范圍
(1)多元函數(shù)
多元函數(shù)的定義二元函數(shù)的幾何意義二元函數(shù)極限與連續(xù)的概念
(2)偏導(dǎo)數(shù)與全微分
偏導(dǎo)數(shù)全微分二階偏導(dǎo)數(shù)
(3)復(fù)合函數(shù)的偏導(dǎo)數(shù)
(4)隱函數(shù)的偏導(dǎo)數(shù)
(5)二元函數(shù)的無條件極值與條件極值
2.要求
(1)了解多元函數(shù)的概念、二元函數(shù)的幾何意義。會求二次函數(shù)的表達式及定義域。了解二元函數(shù)的極限與連續(xù)概念(對計算不作要求)。
(2)理解偏導(dǎo)數(shù)概念,了解偏導(dǎo)數(shù)的幾何意義,了解全微分概念,了解全微分存在的必要條件與充分條件。
(3)掌握二元函數(shù)的一、二階偏導(dǎo)數(shù)計算方法。
(4)掌握復(fù)合函數(shù)一階偏導(dǎo)數(shù)的求法。
(5)會求二元函數(shù)的全微分。
(6)掌握由方程所確定的隱函數(shù)的一階偏導(dǎo)數(shù)的計算方法。
(7)會求二元函數(shù)的無條件極值。會用拉格朗日乘數(shù)法求二元函數(shù)的條件極值。
(二)二重積分
1.知識范圍
(1)二重積分的概念
二重積分的定義二重積分的幾何意義
(2)二重積分的性質(zhì)
(3)二重積分的計算
(4)二重積分的應(yīng)用
2.要求
(1)理解二重積分的概念及其性質(zhì)。
(2)掌握二重積分在直角坐標(biāo)系及極坐標(biāo)系下的計算方法。
(3)會用二重積分解決簡單的應(yīng)用問題(限于空間封閉曲面所圍成的有界區(qū)域的體積、平面薄板質(zhì)量)。
四、無窮級數(shù)
(一)數(shù)項級數(shù)
1.知識范圍
(1)數(shù)項級數(shù)
數(shù)項級數(shù)的概念級數(shù)的收斂與發(fā)散級數(shù)的基本性質(zhì)級數(shù)收斂的必要條件
(2)正項級數(shù)收斂性的判別法
比較判別法比值判別法
(3)任意項級數(shù)交錯級數(shù)絕對收斂條件收斂萊布尼茨判別法
2.要求
(1)理解級數(shù)收斂、發(fā)散的概念。掌握級數(shù)收斂的必要條件,了解級數(shù)的基本性質(zhì)。
(2)掌握正項級數(shù)的比值判別法。會用正項級數(shù)的比較判別法。
(3)掌握幾何級數(shù)、調(diào)和級數(shù)與級數(shù)的收斂性。
(4)了解級數(shù)絕對收斂與條件收斂的概念,會使用萊布尼茨判別法。
(二)冪級數(shù)
1.知識范圍
(1)冪級數(shù)的概念
收斂半徑收斂區(qū)間
(2)冪級數(shù)的基本性質(zhì)
(3)將簡單的初等函數(shù)展開為冪級數(shù)
2.要求
(1)了解冪級數(shù)的概念。
(2)了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和、差、逐項求導(dǎo)與逐項積分)。
(3)掌握求冪級數(shù)的收斂半徑、收斂區(qū)間(不要求討論端點)的方法。
(4)會運用麥克勞林(Maclaurin)公式,將一些簡單的初等函數(shù)展開為冪級數(shù)。
五、常微分方程
(一)一階微分方程
1.知識范圍
(1)微分方程的概念
微分方程的定義階解通解初始條件特解
(2)可分離變量的方程
(3)一階線性方程
2.要求
(1)理解微分方程的定義,理解微分方程的階、解、通解、初始條件和特解。
(2)掌握可分離變量方程的解法。
(3)掌握一階線性方程的解法。
(二)可降價方程
1.知識范圍
(1)型方程
(2)型方程
2.要求
(1)會用降階法解型方程。
(2)會用降階法解型方程。
(三)二階線性微分方程
1.知識范圍
(1)二階線性微分方程解的結(jié)構(gòu)
(2)二階常系數(shù)齊次線性微分方程
(3)二階常系數(shù)非齊次線性微分方程
2.要求
(1)了解二階線性微分方程解的結(jié)構(gòu)。
(2)掌握二階常系數(shù)齊次線性微分方程的解法。
(3)掌握二階常系數(shù)非齊次線性微分方程的解法。
考試形式及試卷結(jié)構(gòu)
試卷總分:150分
考試時間:150分鐘
考試方式:閉卷,筆試
試卷內(nèi)容比例:
函數(shù)、極限和連續(xù)約15%
一元函數(shù)微分學(xué)約25%
一元函數(shù)積分學(xué)約20%
多元函數(shù)微積分(含向量代數(shù)與空間解析幾何)約20%
無窮級數(shù)約10%
常微分方程約10%
試卷題型比例:
選擇題約15%
填空題約25%
解答題約60%
試題難易比例:
容易題約30%
中等難度題約50%
較難題約20%
【高等數(shù)學(xué)微分知識點最新】相關(guān)文章:
必備的高等數(shù)學(xué)的學(xué)習(xí)資料08-26
高三數(shù)學(xué)知識點總結(jié)最新10-21
最新高三物理知識點總結(jié)10-11
高三數(shù)學(xué)知識點總結(jié)最新6篇10-21
高二數(shù)學(xué)最新知識點總結(jié)歸納10-11
最新高三物理知識點總結(jié)6篇10-11