函數知識點總結
總結是事后對某一階段的學習或工作情況作加以回顧檢查并分析評價的書面材料,它可以給我們下一階段的學習和工作生活做指導,為此我們要做好回顧,寫好總結。那么總結有什么格式呢?下面是小編幫大家整理的函數知識點總結,歡迎大家分享。
函數知識點總結1
一、函數的概念與表示
1、映射
(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。
注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射
2、函數
構成函數概念的三要素
、俣x域②對應法則③值域
兩個函數是同一個函數的條件:三要素有兩個相同
二、函數的解析式與定義域
1、求函數定義域的主要依據:
(1)分式的分母不為零;
(2)偶次方根的被開方數不小于零,零取零次方沒有意義;
(3)對數函數的真數必須大于零;
(4)指數函數和對數函數的底數必須大于零且不等于1;
三、函數的值域
1求函數值域的方法
①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的'復合函數;
、趽Q元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;
、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;
、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);
⑤單調性法:利用函數的單調性求值域;
、迗D象法:二次函數必畫草圖求其值域;
⑦利用對號函數
、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數
四.函數的奇偶性
1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數。
如果對于任意∈A,都有,則稱y=f(x)為奇
函數。
2.性質:
、賧=f(x)是偶函數y=f(x)的圖象關于軸對稱,y=f(x)是奇函數y=f(x)的圖象關于原點對稱,
②若函數f(x)的定義域關于原點對稱,則f(0)=0
、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關于原點對稱]
3.奇偶性的判斷
①看定義域是否關于原點對稱②看f(x)與f(-x)的關系
五、函數的單調性
1、函數單調性的定義:
2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。
函數知識點總結2
f(x2),那么那么y=f(x)在區(qū)間D上是減函數,D是函數y=f(x)的單調遞減區(qū)間。
、藕瘮祬^(qū)間單調性的判斷思路
ⅰ在給出區(qū)間內任取x1、x2,則x1、x2∈D,且x1
ⅱ做差值f(x1)-f(x2),并進行變形和配方,變?yōu)橐子谂袛嗾摰男问健?/p>
ⅲ判斷變形后的表達式f(x1)-f(x2)的符號,指出單調性。
、茝秃虾瘮档膯握{性
復合函數y=f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規(guī)律為“同增異減”;多個函數的復合函數,根據原則“減偶則增,減奇則減”。
⑶注意事項
函數的單調區(qū)間只能是其定義域的子區(qū)間,不能把單調性相同的區(qū)間和在一起寫成并集,如果函數在區(qū)間A和B上都遞增,則表示為f(x)的單調遞增區(qū)間為A和B,不能表示為A∪B。
2、函數的整體性質——奇偶性
對于函數f(x)定義域內的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數;
對于函數f(x)定義域內的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數。
小編推薦:高中數學必考知識點歸納總結
、牌婧瘮岛团己瘮档男再|
、o論函數是奇函數還是偶函數,只要函數具有奇偶性,該函數的定義域一定關于原點對稱。
、⑵婧瘮档膱D像關于原點對稱,偶函數的圖像關于y軸對稱。
、坪瘮灯媾夹耘袛嗨悸
ⅰ先確定函數的定義域是否關于原點對稱,若不關于原點對稱,則為非奇非偶函數。
ⅱ確定f(x)和f(-x)的關系:
若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數為偶函數;
若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數為奇函數。
3、函數的最值問題
、艑τ诙魏瘮担门浞椒,將函數化為y=(x-a)2+b的形式,得出函數的最大值或最小值。
、茖τ谝子诋嫵龊瘮祱D像的函數,畫出圖像,從圖像中觀察最值。
⑶關于二次函數在閉區(qū)間的`最值問題
、∨袛喽魏瘮档捻旤c是否在所求區(qū)間內,若在區(qū)間內,則接ⅱ,若不在區(qū)間內,則接ⅲ。
、⑷舳魏瘮档捻旤c在所求區(qū)間內,則在二次函數y=ax2+bx+c中,a>0時,頂點為最小值,a0時的最大值或a
、H舳魏瘮档捻旤c不在所求區(qū)間內,則判斷函數在該區(qū)間的單調性
若函數在[a,b]上遞增,則最小值為f(a),最大值為f(b);
若函數在[a,b]上遞減,則最小值為f(b),最大值為f(a)。
3高一數學基本初等函數1、指數函數:函數y=ax (a>0且a≠1)叫做指數函數
a的取值a>1 0
注意:⑴由函數的單調性可以看出,在閉區(qū)間[a,b]上,指數函數的最值為:
a>1時,最小值f(a),最大值f(b);0
⑵對于任意指數函數y=ax (a>0且a≠1),都有f(1)=a。
2、對數函數:函數y=logax(a>0且a≠1)),叫做對數函數
a的取值a>1 0
3、冪函數:函數y=xa(a∈R),高中階段,冪函數只研究第I象限的情況。
、潘袃绾瘮刀荚(0,+∞)區(qū)間內有定義,而且過定點(1,1)。
、芶>0時,冪函數圖像過原點,且在(0,+∞)區(qū)間為增函數,a越大,圖像坡度越大。
、莂
當x從右側無限接近原點時,圖像無限接近y軸正半軸;
當y無限接近正無窮時,圖像無限接近x軸正半軸。
冪函數總圖見下頁。
4、反函數:將原函數y=f(x)的x和y互換即得其反函數x=f-1(y)。
反函數圖像與原函數圖像關于直線y=x對稱。
函數知識點總結3
1.二次函數的概念
二次函數的概念:一般地,形如(是常數,)的函數,叫做二次函數。這里需要強調:和一元二次方程類似,二次項系數,而可以為零.二次函數的定義域是全體實數。
2.二次函數的結構特征:
、诺忍栕筮吺呛瘮担疫吺顷P于自變量的二次式,的最高次數是2。
、剖浅担嵌雾椣禂,是一次項系數,是常數項。
2.初三數學二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)。頂點式:y=a(x-h)^2+k[拋物線的.頂點P(h,k)]。
交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]。
注:在3種形式的互相轉化中,有如下關系:h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a。
3.二次函數的性質
1.性質:
(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。
(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
2.k,b與函數圖像所在象限:當k>0時,直線必通過一、三象限,y隨x的增大而增大;當k<0時,直線必通過二、四象限,y隨x的增大而減小。當b>0時,直線必通過一、二象限;當b=0時,直線通過原點;當b<0時,直線必通過三、四象限。特別地,當b=o時,直線通過原點o(0,0)表示的是正比例函數的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
4.初三數學二次函數圖像
對于一般式:①y=ax2+bx+c與y=ax2-bx+c兩圖像關于y軸對稱。
、趛=ax2+bx+c與y=-ax2-bx-c兩圖像關于x軸對稱。
③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關于頂點對稱。
、躽=ax2+bx+c與y=-ax2+bx-c關于原點中心對稱。(即繞原點旋轉180度后得到的圖形)
對于頂點式:
①y=a(x-h)2+k與y=a(x+h)2+k兩圖像關于y軸對稱,即頂點(h,k)和(-h,k)關于y軸對稱,橫坐標相反、縱坐標相同。
、趛=a(x-h)2+k與y=-a(x-h)2-k兩圖像關于x軸對稱,即頂點(h,k)和(h,-k)關于x軸對稱,橫坐標相同、縱坐標相反。
③y=a(x-h)2+k與y=-a(x-h)2+k關于頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。
、躽=a(x-h)2+k與y=-a(x+h)2-k關于原點對稱,即頂點(h,k)和(-h,-k)關于原點對稱,橫坐標、縱坐標都相反。(其實①③④就是對f(x)來說f(-x),-f(x),-f(-x)的情況)
函數知識點總結4
I.定義與定義表達式
一般地,自變量_和因變量y之間存在如下關系:y=a_^2+b_+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為_的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=a_^2+b_+c(a,b,c為常數,a≠0)
頂點式:y=a(_-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(_-_?)(_-_?)[僅限于與_軸有交點A(_?,0)和B(_?,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a
III.二次函數的圖像
在平面直角坐標系中作出二次函數y=_^2的圖像,可以看出,二次函數的圖像是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的'對稱軸是y軸(即直線_=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與_軸交點個數
Δ=b^2-4ac>0時,拋物線與_軸有2個交點。
Δ=b^2-4ac=0時,拋物線與_軸有1個交點。
Δ=b^2-4ac<0時,拋物線與_軸沒有交點。
_的取值是虛數(_=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
V.二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=a_^2+b_+c,
當y=0時,二次函數為關于_的一元二次方程(以下稱方程),即a_^2+b_+c=0
此時,函數圖像與_軸有無交點即方程有無實數根。函數與_軸交點的橫坐標即為方程的根。
函數知識點總結5
一次函數
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx (k為常數,k0)
二、一次函數的性質:
1、y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實數b取任何實數)
2、當x=0時,b為函數在y軸上的截距。
三、一次函數的圖像及性質:
1、作法與圖形:通過如下3個步驟
(1)列表;
。2)描點;
。3)連線,可以作出一次函數的圖像一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2、性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過原點。
3、k,b與函數圖像所在象限:
當k0時,直線必通過一、三象限,y隨x的增大而增大;
當k0時,直線必通過二、四象限,y隨x的增大而減小。
當b0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限。
四、確定一次函數的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。
。1)設一次函數的表達式(也叫解析式)為y=kx+b。
。2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②
。3)解這個二元一次方程,得到k,b的值。
。4)最后得到一次函數的表達式。
五、一次函數在生活中的應用:
1、當時間t一定,距離s是速度v的一次函數。s=vt。
2、當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S—ft。
六、常用公式:(不全,希望有人補充)
1、求函數圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線段的'中點:|x1—x2|/2
3、求與y軸平行線段的中點:|y1—y2|/2
4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)
二次函數
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:
y=ax^2+bx+c
。╝,b,c為常數,a0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a0)
頂點式:y=a(x—h)^2+k [拋物線的頂點P(h,k)]
交點式:y=a(x—x)(x—x ) [僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a
III、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,
可以看出,二次函數的圖像是一條拋物線。
IV、拋物線的性質
1、拋物線是軸對稱圖形。對稱軸為直線
x= —b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標為
P( —b/2a,(4ac—b^2)/4a )
當—b/2a=0時,P在y軸上;當= b^2—4ac=0時,P在x軸上。
3、二次項系數a決定拋物線的開口方向和大小。
當a0時,拋物線向上開口;當a0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab0),對稱軸在y軸左;
當a與b異號時(即ab0),對稱軸在y軸右。
5、常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點個數
= b^2—4ac0時,拋物線與x軸有2個交點。
= b^2—4ac=0時,拋物線與x軸有1個交點。
= b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個式子除以2a)
V、二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,
當y=0時,二次函數為關于x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。
函數與x軸交點的橫坐標即為方程的根。
1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式頂點坐標對稱軸
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
當h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0時,則向左平行移動|h|個單位得到、
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、
2、拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=—b/2a,頂點坐標是(—b/2a,[4ac—b^2]/4a)、
3、拋物線y=ax^2+bx+c(a0),若a0,當x —b/2a時,y隨x的增大而減小;當x —b/2a時,y隨x的增大而增大、若a0,當x —b/2a時,y隨x的增大而增大;當x —b/2a時,y隨x的增大而減小、
4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
。1)圖象與y軸一定相交,交點坐標為(0,c);
。2)當△=b^2—4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=
。╝0)的兩根、這兩點間的距離AB=|x—x|
當△=0、圖象與x軸只有一個交點;
當△0、圖象與x軸沒有交點、當a0時,圖象落在x軸的上方,x為任何實數時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數時,都有y0、
5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時,y最。ù螅┲=(4ac—b^2)/4a、
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值、
6、用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a0)、
。2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x—h)^2+k(a0)、
。3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x—x)(x—x)(a0)、
7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現、
反比例函數
形如y=k/x(k為常數且k0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。
當K0時,反比例函數圖像經過一,三象限,是減函數
當K0時,反比例函數圖像經過二,四象限,是增函數
反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。
2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(xm)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
函數知識點總結6
1.①與(0°≤<360°)終邊相同的角的集合(角與角的終邊重合):|k360,kZ
、诮K邊在x軸上的角的集合:|k180,kZ③終邊在y軸上的角的集合:|k18090,kZ
、芙K邊在坐標軸上的角的集合:|k90,kZ
⑤終邊在y=x軸上的角的集合:|k18045,kZ⑥終邊在yx軸上的角的集合:|k18045,kZ
、呷艚桥c角的終邊關于x軸對稱,則角與角的關系:360k
、嗳艚桥c角的終邊關于y軸對稱,則角與角的關系:360k180
、崛艚桥c角的終邊在一條直線上,則角與角的關系:180k
、饨桥c角的終邊互相垂直,則角與角的關系:360k902.角度與弧度的互換關系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧長公式:l||r.扇形面積公式:s12扇形2lr12||r
2、三角函數在各象限的符號:(一全二正弦,三切四余弦)
yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切
3.三角函數的定義域:
三角函數定義域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2
f(x)cotxx|xR且xk,kZ
4、同角三角函數的基本關系式:
sincostan
cossincot
tancot1sin2cos217、誘導公式:
把k2“奇變偶不變,符號看象限”的三角函數化為的三角函數,概括為:三角函數的公式:
(一)基本關系
公式組一sinxcscx=1tanx=sinx22
cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x
公式組二公式組三
sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx
公式組四公式組五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx
cot(2x)cotx(二)角與角之間的互換
cos()coscossinsincos()coscossinsin
公式組六
sin(x)sinxcos(x)cosxtan(x)tanx
cot(x)cotxsin22sincos-2-
cos2cos2sin2cos112sin
2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan
tantan1tantan
tan()
5.正弦、余弦、正切、余切函數的圖象的性質:
ysinxycosxytanxycotxyAsinx(A、>0)定義域RR值域周期性奇偶性單調性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函數A,A22奇函數2當當0,非奇非偶奇函數偶函數奇函數0,上為上為上為增函上為增函數;上為增增函數;增函數;數;上為減函數函數;上為減函數上為減上為減上為減函數函數函數注意:①ysinx與ysinx的單調性正好相反;ycosx與ycosx的單調性也同樣相反.一般地,若yf(x)在[a,b]上遞增(減),則yf(x)在[a,b]上遞減(增).②ysinx與的ycosx周期是.
▲y
Ox
0)的周期T③ysin(x)或yx2cos(x)(2.
ytan的周期為2(TT2,如圖,翻折無效).
、躽sin(x)的對稱軸方程是xk2(
kZ),對稱中心(
12k,0);
ycos(x)的對稱軸方程是xk(
kZ),對稱中心(k,0);
yatn(
x)的對稱中心(
k2,0).
三角函數圖像
數y=Asin(ωx+φ)的振幅|A|,周期T2||,頻率f1T||2,相位x;初
相(即當x=0時的相位).(當A>0,ω>0時以上公式可去絕對值符號),
由y=sinx的圖象上的點的橫坐標保持不變,縱坐標伸長(當|A|>1)或縮短(當0<|A|<1)到原來的|A|倍,得到y=Asinx的圖象,叫做振幅變換或叫沿y軸的伸縮變換.(用y/A替換y)
由y=sinx的圖象上的'點的縱坐標保持不變,橫坐標伸長(0<|ω|<1)或縮短(|ω|>1)到原來的|1|倍,得到y=sinωx的圖象,叫做周期變換或叫做沿x軸的伸縮變換.(用
ωx替換x)
由y=sinx的圖象上所有的點向左(當φ>0)或向右(當φ<0)平行移動|φ|個單位,得到y=sin(x+φ)的圖象,叫做相位變換或叫做沿x軸方向的平移.(用x+φ替換x)
由y=sinx的圖象上所有的點向上(當b>0)或向下(當b<0)平行移動|b|個單位,得到y=sinx+b的圖象叫做沿y軸方向的平移.(用y+(-b)替換y)
由y=sinx的圖象利用圖象變換作函數y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的圖象,要特別注意:當周期變換和相位變換的先后順序不同時,原圖象延x軸量伸縮量的區(qū)別。
函數知識點總結7
課題
3.5正比例函數、反比例函數、一次函數和二次函數
教學目標
1、掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質2、會用待定系數法確定函數的解析式
教學重點
掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質
教學難點
掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質
教學方法
講練結合法
教學過程
。↖)知識要點(見下表:)
第三章第29頁函數名稱解析式圖像正比例函數ykx(k0)0x反比例函數一次函數ykxb(k0)0x二次函數yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的.直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數,在,-單調性k0時,在,0,k0時為增函數0,上為減函數k0時,為增函數b上為減函數2ak0時為減函數k0時,在,0,k0時,為減函數0,上為增函數ba0時,在-,上為減2a函數,在,-b上為增函數2a奇偶性奇函數奇函數b=0時奇函數b=0時偶函數a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax
第三章第30頁b24acb2注:二次函數yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)
2a2a4a2拋物線與x軸交點坐標(m,0),(n,0)(II)例題講解
例1、求滿足下列條件的二次函數的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的頂點為P(1,5)且過點Q(3,3)
。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,
解:(1)設yax2bxc(a0),將A、B、C三點坐標分別代入,可得方程組為
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數為ya(x1)25,將Q點坐標代入,即a(31)253,得
a2,故y2(x1)252x24x3
(3)∵拋物線對稱軸為x2;
∴拋物線與x軸的兩個交點A、B應關于x2對稱;∴由題設條件可得兩個交點坐標分別為A(2∴可設函數解析式為:ya(x2代入方程可得a1
∴所求二次函數為yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,將(1,7)
5),例2:二次函數的圖像過點(0,8),(1,(4,0)
。1)求函數圖像的頂點坐標、對稱軸、最值及單調區(qū)間(2)當x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函數f(x)x2x1,x[1,1]的最值及相應的x值
113x1(x)2,知函數的圖像開口向上,對稱軸為x
224111]上是增函數。∴依題設條件可得f(x)在[1,]上是減函數,在[,22131]時,函數取得最小值,且ymin∴當x[1,24131又∵11
函數知識點總結8
1.函數的定義
函數是高考數學中的重點內容,學習函數需要首先掌握函數的各個知識點,然后運用函數的各種性質來解決具體的問題。
設A、B是非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A-B為從集合A到集合B的一個函數,記作y=f(x),xA
2.函數的定義域
函數的定義域分為自然定義域和實際定義域兩種,如果給定的函數的解析式(不注明定義域),其定義域應指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數是有實際問題確定的,這時應根據自變量的實際意義來確定,函數的'值域是由全體函數值組成的集合。
3.求解析式
求函數的解析式一般有三種種情況:
(1)根據實際問題建立函數關系式,這種情況需引入合適的變量,根據數學的有關知識找出函數關系式。
。2)有時體中給出函數特征,求函數的解析式,可用待定系數法。
。3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設h(x)=t,從中解出x,代入g(x)進行換元來解。掌握求函數解析式的前提是,需要對各種函數的性質了解且熟悉。
目前我們已經學習了常數函數、指數與指數函數、對數與對數函數、冪函數、三角函數、反比例函數、二次函數以及由以上幾種函數加減乘除,或者復合的一些相對較復雜的函數,但是這種函數也是初等函數。
函數知識點總結9
1、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a
二次函數表達式的右邊通常為二次三項式。
2、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k [拋物線的頂點p(h,k)]
交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點a(x,0)和b(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
3、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
4、拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。
對稱軸與拋物線唯一的交點為拋物線的.頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點p,坐標為:p ( -b/2a,(4ac-b^2)/4a )當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
δ= b^2-4ac>0時,拋物線與x軸有2個交點。
δ= b^2-4ac=0時,拋物線與x軸有1個交點。
δ= b^2-4ac
5、二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,
當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸:
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2 +k的圖象;
當h>0,k
當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離ab=|x-x|
當△=0.圖象與x軸只有一個交點;
當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a
5.拋物線y=ax^2+bx+c的最值:如果a>0(a
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
函數知識點總結10
k0時,y隨x的增大而減小,直線一定過二、四象限(3)若直線l1:yk1xb1l2:yk2xb2
當k1k2時,l1//l2;當b1b2b時,l1與l2交于(0,b)點。
。4)當b>0時直線與y軸交于原點上方;當b學大教育
(1)是中心對稱圖形,對中稱心是原點(2)對稱性:是軸直線yx和yx(2)是軸對稱圖形,對稱k0時兩支曲線分別位于一、三象限且每一象限內y隨x的增大而減。3)
k0時兩支曲線分別位于二、四象限且每一象限內y隨x的增大而增大(4)過圖象上任一點作x軸與y軸的垂線與坐標軸構成的矩形面積為|k|。
P(1)應用在u3.應用(2)應用在(3)其它F上SS上t其要點是會進行“數結形合”來解決問題二、二次函數
1.定義:應注意的問題
(1)在表達式y=ax2+bx+c中(a、b、c為常數且a≠0)(2)二次項指數一定為22.圖象:拋物線
3.圖象的性質:分五種情況可用表格來說明表達式(1)y=ax2頂點坐標對稱軸(0,0)最大(。┲祔最小=0y最大=0(2)y=ax2+c(0,0)y最小=0y最大=0(3)y=a(x-(h,0)h)2直線x=hy最小=0y最大=0y隨x的變化情況隨x增大而增大隨x增大而減小隨x的增大而增大隨x的增大而減小隨x的增大而增大隨x的'增大而減小直線x=0(y軸)①若a>0,則x=0時,若a>0,則x>0時,y②若a0,則x=0時,①若a>0,則x>0時,y②若a0,則x=h時,①若a>0,則x>h時,y②若a學大教育
表達式h)2+k頂點坐標對稱軸直線x=h最大(。┲祔最小=ky最大=k(5)y=ax2+b(x+cb2ay隨x的變化情況隨x的增大而增大隨x的增大而減小b2a時,①若a>0,則x>b2a(4)y=a(x-(h,k)①若a>0,則x=h時,①若a>0,則x>h時,y②若a0,則x=4acb24ay最小=4acb24ab時,y隨x的增大而增大時,②若a2a2a時,y隨x的增大而減小b②若a學大教育
一次函數圖象和性質
【知識梳理】
1.正比例函數的一般形式是y=kx(k≠0),一次函數的一般形式是y=kx+b(k≠0).2.一次函數ykxb的圖象是經過(3.一次函數ykxb的圖象與性質
圖像的大致位置經過象限第象限第象限第象限第象限y隨x的增大y隨x的增大而y隨x的增大y隨x的增大性質而而而而
【思想方法】數形結合
k、b的符號k>0,b>0k>0,b<0k<0,b>0k<0,b<0b,0)和(0,b)兩點的一條直線.k反比例函數圖象和性質
【知識梳理】
1.反比例函數:一般地,如果兩個變量x、y之間的關系可以表示成y=或(k為常數,k≠0)的形式,那么稱y是x的反比例函數.2.反比例函數的圖象和性質
k的符號k>0yoxk<0yox
圖像的大致位置經過象限性質
第象限在每一象限內,y隨x的增大而第象限在每一象限內,y隨x的增大而3.k的幾何含義:反比例函數y=的幾何意義,即過雙曲線y=
k(k≠0)中比例系數kxk(k≠0)上任意一點P作x4
x軸、y軸垂線,設垂足分別為A、B,則所得矩形OAPB
函數學習方法學大教育
的面積為.
【思想方法】數形結合
二次函數圖象和性質
【知識梳理】
1.二次函數ya(xh)2k的圖像和性質
圖象開口對稱軸頂點坐標最值增減性
在對稱軸左側在對稱軸右側當x=時,y有最值y隨x的增大而y隨x的增大而a>0yOa<0x當x=時,y有最值y隨x的增大而y隨x的增大而銳角三角函數
【思想方法】
1.常用解題方法設k法2.常用基本圖形雙直角
【例題精講】例題1.在△ABC中,∠C=90°.(1)若cosA=
14,則tanB=______;(2)若cosA=,則tanB=______.255
函數學習方法學大教育
例題2.(1)已知:cosα=
23,則銳角α的取值范圍是()A.0°
函數知識點總結11
【—正比例函數公式】正比例函數要領:一般地,兩個變量x,y之間的關系式可以表示成形如y=kx(k為常數,且k≠0)的函數,那么y就叫做x的正比例函數。
正比例函數的性質
定義域:R(實數集)
值域:R(實數集)
奇偶性:奇函數
單調性:
當>0時,圖像位于第一、三象限,從左往右,y隨x的增大而增大(單調遞增),為增函數;
當k<0時,圖像位于第二、四象限,從左往右,y隨x的增大而減小(單調遞減),為減函數。
周期性:不是周期函數。
對稱性:無軸對稱性,但關于原點中心對稱。
正比例函數圖像的作法
1、在x允許的`范圍內取一個值,根據解析式求出y的值;
2、根據第一步求的x、y的值描出點;
3、作出第二步描出的點和原點的直線(因為兩點確定一直線)。
函數知識點總結12
倍角公式
二倍角公式
正弦形式:sin2α=2sinαcosα
正切形式:tan2α=2tanα/(1-tan^2(α))
余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
半角公式
正弦
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
余弦
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
正切
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=[cos(a-b)-cos(a+b)]/2
和差化積
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
誘導公式
任意角α與-α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
拓展閱讀:三角函數常用知識點
1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。
2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數為(∠A可換成∠B)
3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
4、任意銳角的正切值等于它的余角的`余切值;任意銳角的余切值等于它的余角的正切值。
5、正弦、余弦的增減性:當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。
6、正切、余切的增減性:當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。
函數知識點總結13
教學目標:
(1)能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。
(2)注重學生參與,聯系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣
教學重點:能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。
教學難點:求出函數的自變量的取值范圍。
教學過程:
一、問題引新
1.設矩形花圃的垂直于墻(墻長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,
AB長_(m) 1 2 3 4 5 6 7 8 9
BC長(m) 12
面積y(m2) 48
2._的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現,當AB的長(_)確定后,矩形的面積(y)也隨之確定,y是_的.函數,試寫出這個函數的關系式,教師可提出問題,(1)當AB=_m時,BC長等于多少m?(2)面積y等于多少? y=_(20-2_)
二、提出問題,解決問題
1、引導學生看書第二頁問題一、二
2、觀察概括
y=6_2 d= n /2 (n-3) y= 20 (1-_)2
以上函數關系式有什么共同特點? (都是含有二次項)
3、二次函數定義:形如y=a_2+b_+c(a、b、、c是常數,a≠0)的函數叫做_的二次函數,a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.
4、課堂練習
(1) (口答)下列函數中,哪些是二次函數?
(1)y=5_+1 (2)y=4_2-1
(3)y=2_3-3_2 (4)y=5_4-3_+1
(2).P3練習第1,2題。
五、小結敘述二次函數的定義.
第二課時:26.1二次函數(2)
教學目標:
1、使學生會用描點法畫出y=a_2的圖象,理解拋物線的有關概念。
2、使學生經歷、探索二次函數y=a_2圖象性質的過程,培養(yǎng)學生觀察、思考、歸納的良好思維習慣。
教學重點:使學生理解拋物線的有關概念,會用描點法畫出二次函數y=a_2的圖象
教學難點:用描點法畫出二次函數y=a_2的圖象以及探索二次函數性質。
函數知識點總結14
第一、求函數定義域題忽視細節(jié)函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。
在求一般函數定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數大于0以及0的0次冪無意義。函數的定義域是非空的數集,在解答函數定義域類的題時千萬別忘了這一點。復合函數要注意外層函數的定義域由內層函數的值域決定。
第二、帶絕對值的函數單調性判斷錯誤帶絕對值的函數實質上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個段上根據函數的解析式所表示的函數的單調性求出單調區(qū)間,然后對各個段上的單調區(qū)間進行整合;第二,畫出這個分段函數的圖象,結合函數圖象、性質能夠進行直觀的判斷。函數題離不開函數圖象,而函數圖象反應了函數的所有性質,考生在解答函數題時,要第一時間在腦海中畫出函數圖象,從圖象上分析問題,解決問題。
對于函數不同的單調遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個區(qū)間是該函數的單調遞增(減)區(qū)間即可。
第三、求函數奇偶性的常見錯誤求函數奇偶性類的題最常見的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的'定義域,一個函數具備奇偶性的必要條件是這個函數的定義域區(qū)間關于原點對稱,如果不具備這個條件,函數一定是非奇非偶的函數。在定義域區(qū)間關于原點對稱的前提下,再根據奇偶函數的定義進行判斷。
在用定義進行判斷時,要注意自變量在定義域區(qū)間內的任意性。
第四、抽象函數推理不嚴謹很多抽象函數問題都是以抽象出某一類函數的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數中一些具體函數的性質去解決抽象函數。多用特殊賦值法,通過特殊賦可以找到函數的不變性質,這往往是問題的突破口。
抽象函數性質的證明屬于代數推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數零點定理使用不當若函數y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)<0。那么函數y=f(x)在區(qū)間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數的零點定理,分為“變號零點”和“不變號零點”,而對于“不變號零點”,函數的零點定理是“無能為力”的,在解決函數的零點時,考生需格外注意這類問題。
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。
因此,考生在求解曲線的切線問題時,首先要區(qū)分是什么類型的切線。
第七、混淆導數與單調性的關系一個函數在某個區(qū)間上是增函數的這類題型,如果考生認為函數的導函數在此區(qū)間上恒大于0,很容易就會出錯。
解答函數的單調性與其導函數的關系時一定要注意,一個函數的導函數在某個區(qū)間上單調遞增(減)的充要條件是這個函數的導函數在此區(qū)間上恒大(小)于等于0,且導函數在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導數與極值關系不清考生在使用導數求函數極值類問題時,容易出現的錯誤就是求出使導函數等于0的點,卻沒有對這些點左右兩側導函數的符號進行判斷,誤以為使導函數等于0的點就是函數的極值點,往往就會出錯,出錯原因就是考生對導數與極值關系沒搞清楚?蓪Ш瘮翟谝粋點處的導函數值為零只是這個函數在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數求函數極值時,一定要對極值點進行仔細檢查。
函數知識點總結15
一次函數:一次函數圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。
主要考察內容:
①會畫一次函數的圖像,并掌握其性質。
②會根據已知條件,利用待定系數法確定一次函數的解析式。
、勰苡靡淮魏瘮到鉀Q實際問題。
、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關系。
突破方法:
①正確理解掌握一次函數的概念,圖像和性質。
、谶\用數學結合的思想解與一次函數圖像有關的問題。
、壅莆沼么ㄏ禂捣ㄇ蛞淮魏瘮到馕鍪健
、茏鲆恍┚C合題的'訓練,提高分析問題的能力。
函數性質:
1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。
2.當x=0時,b為函數在y軸上的點,坐標為(0,b)。
3當b=0時(即y=kx),一次函數圖像變?yōu)檎壤瘮,正比例函數是特殊的一次函數?/p>
4.在兩個一次函數表達式中:
當兩一次函數表達式中的k相同,b也相同時,兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時,兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時,兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時,兩一次函數圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱y是x的一次函數圖像性質
1、作法與圖形:通過如下3個步驟:
。1)列表.
(2)描點;[一般取兩個點,根據“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。
正比例函數y=kx(k≠0)的圖象是過坐標原點的一條直線,一般。0,0)和(1,k)兩點。(3)連線,可以作出一次函數的圖象一條直線。因此,作一次函數的圖象只需知道2點,并連成直線即可。(通常找函數圖象與x軸和y軸的交點分別是-k分之b與0,0與b).
2、性質:
。1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過原點。
3、函數不是數,它是指某一變化過程中兩個變量之間的關系。
4、k,b與函數圖像所在象限:
y=kx時(即b等于0,y與x成正比例):
當k>0時,直線必通過第一、三象限,y隨x的增大而增大;當k0,b>0,這時此函數的圖象經過第一、二、三象限;當k>0,b
【函數知識點總結】相關文章:
初中函數知識點總結01-12
高一函數知識點總結12-01
初二函數知識點總結05-30
三角函數公式知識點總結08-04
一次函數基本知識點總結05-03
高一數學必修一函數圖像知識點總結07-13
初二數學一次函數知識點總結04-15
初中數學函數總結04-09
高一數學函數知識總結02-25