成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

《正弦定理和余弦定理》復(fù)習(xí)課教學(xué)設(shè)計(jì)

時(shí)間:2022-07-12 17:25:08 教學(xué)資源 投訴 投稿
  • 相關(guān)推薦

《正弦定理和余弦定理》復(fù)習(xí)課教學(xué)設(shè)計(jì)

  作為一名為他人授業(yè)解惑的教育工作者,常常要根據(jù)教學(xué)需要編寫(xiě)教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)把教學(xué)各要素看成一個(gè)系統(tǒng),分析教學(xué)問(wèn)題和需求,確立解決的程序綱要,使教學(xué)效果最優(yōu)化。教學(xué)設(shè)計(jì)要怎么寫(xiě)呢?下面是小編幫大家整理的《正弦定理和余弦定理》復(fù)習(xí)課教學(xué)設(shè)計(jì),僅供參考,歡迎大家閱讀。

《正弦定理和余弦定理》復(fù)習(xí)課教學(xué)設(shè)計(jì)

  教材分析這是高三一輪復(fù)習(xí),內(nèi)容是必修5第一章解三角形。本章內(nèi)容準(zhǔn)備復(fù)習(xí)兩課時(shí)。本節(jié)課是第一課時(shí)。標(biāo)要求本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后應(yīng)落實(shí)在解三角形的應(yīng)用上。通過(guò)本節(jié)學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

 。1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理解三角形。

 。2)能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法判斷三角形形狀的問(wèn)題。本章內(nèi)容與三角函數(shù)、向量聯(lián)系密切。

  作為復(fù)習(xí)課一方面將本章知識(shí)作一個(gè)梳理,另一方面通過(guò)整理歸納幫助學(xué)生進(jìn)一步達(dá)到相應(yīng)的學(xué)習(xí)目標(biāo)。

  學(xué)情分析學(xué)生通過(guò)必修5的學(xué)習(xí),對(duì)正弦定理、余弦定理的內(nèi)容已經(jīng)了解,但對(duì)于如何靈活運(yùn)用定理解決實(shí)際問(wèn)題,怎樣合理選擇定理進(jìn)行邊角關(guān)系轉(zhuǎn)化從而解決三角形綜合問(wèn)題,學(xué)生還需通過(guò)復(fù)習(xí)提點(diǎn)有待進(jìn)一步理解和掌握。

  教學(xué)目標(biāo)知識(shí)目標(biāo):

  (1)學(xué)生通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦、余弦定理的內(nèi)容及其證明方法;會(huì)運(yùn)用正、余弦定理與三角形內(nèi)角和定理,面積公式解斜三角形的兩類(lèi)基本問(wèn)題。

 。2)學(xué)生學(xué)會(huì)分析問(wèn)題,合理選用定理解決三角形綜合問(wèn)題。

  能力目標(biāo):

  培養(yǎng)學(xué)生提出問(wèn)題、正確分析問(wèn)題、獨(dú)立解決問(wèn)題的能力,培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問(wèn)題的運(yùn)算能力,培養(yǎng)學(xué)生合情推理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思維能力。

  情感目標(biāo):

  通過(guò)生活實(shí)例探究回顧三角函數(shù)、正余弦定理,體現(xiàn)數(shù)學(xué)來(lái)源于生活,并應(yīng)用于生活,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,在教學(xué)過(guò)程中激發(fā)學(xué)生的探索精神。

  教學(xué)方法探究式教學(xué)、講練結(jié)合

  重點(diǎn)難點(diǎn)

  1、正、余弦定理的對(duì)于解解三角形的合理選擇;

  2、正、余弦定理與三角形的有關(guān)性質(zhì)的綜合運(yùn)用。

  教學(xué)策略

  1、重視多種教學(xué)方法有效整合;

  2、重視提出問(wèn)題、解決問(wèn)題策略的指導(dǎo)。

  3、重視加強(qiáng)前后知識(shí)的密切聯(lián)系。

  4、重視加強(qiáng)數(shù)學(xué)實(shí)踐能力的培養(yǎng)。

  5、注意避免過(guò)于繁瑣的形式化訓(xùn)練

  6、教學(xué)過(guò)程體現(xiàn)“實(shí)踐→認(rèn)識(shí)→實(shí)踐”。

  設(shè)計(jì)意圖:

  學(xué)生通過(guò)必修5的學(xué)習(xí),對(duì)正弦定理、余弦定理的內(nèi)容已經(jīng)了解,但對(duì)于如何靈活運(yùn)用定理解決實(shí)際問(wèn)題,怎樣合理選擇定理進(jìn)行邊角關(guān)系轉(zhuǎn)化從而解決三角形綜合問(wèn)題,學(xué)生還需通過(guò)復(fù)習(xí)提點(diǎn)有待進(jìn)一步理解和掌握。作為復(fù)習(xí)課一方面要將本章知識(shí)作一個(gè)梳理,另一方面要通過(guò)整理歸納幫助學(xué)生學(xué)會(huì)分析問(wèn)題,合理選用并熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決三角形綜合問(wèn)題和實(shí)際應(yīng)用問(wèn)題。

  數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。雖然是復(fù)習(xí)課,但我們不能一味的講題,在教學(xué)中應(yīng)體現(xiàn)以下教學(xué)思想:

 、胖匾暯虒W(xué)各環(huán)節(jié)的合理安排:

  在生活實(shí)踐中提出問(wèn)題,再引導(dǎo)學(xué)生帶著問(wèn)題對(duì)新知進(jìn)行探究,然后引導(dǎo)學(xué)生回顧舊知識(shí)與方法,引出課題。激發(fā)學(xué)生繼續(xù)學(xué)習(xí)新知的欲望,使學(xué)生的知識(shí)結(jié)構(gòu)呈一個(gè)螺旋上升的狀態(tài),符合學(xué)生的認(rèn)知規(guī)律。

 、浦匾暥喾N教學(xué)方法有效整合,以講練結(jié)合法、分析引導(dǎo)法、變式訓(xùn)練法等多種方法貫穿整個(gè)教學(xué)過(guò)程。

 、侵匾曁岢鰡(wèn)題、解決問(wèn)題策略的指導(dǎo)。共3頁(yè),當(dāng)前第1頁(yè)123

 、戎匾暭訌(qiáng)前后知識(shí)的密切聯(lián)系。對(duì)于新知識(shí)的探究,必須增加足夠的預(yù)備知識(shí),做好銜接。要對(duì)學(xué)生已有的知識(shí)進(jìn)行分析、整理和篩選,把對(duì)學(xué)生后繼學(xué)習(xí)中有需要的知識(shí)選擇出來(lái),在新知識(shí)介紹之前進(jìn)行復(fù)習(xí)。

 、勺⒁獗苊膺^(guò)于繁瑣的形式化訓(xùn)練。從數(shù)學(xué)教學(xué)的傳統(tǒng)上看解三角形內(nèi)容有不少高度技巧化、形式化的問(wèn)題,我們?cè)诮虒W(xué)過(guò)程中應(yīng)該注意盡量避免這一類(lèi)問(wèn)題的出現(xiàn)。

  二、實(shí)施教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情境、揭示提出課題

  引例:要測(cè)量南北兩岸a、b兩個(gè)建筑物之間的距離,在南岸選取相距a點(diǎn)km的c點(diǎn),并通過(guò)經(jīng)緯儀測(cè)的,你能計(jì)算出a、b之間的距離嗎?若人在南岸要測(cè)量對(duì)岸b、d兩個(gè)建筑物之間的距離,該如何進(jìn)行?

 。ǘ⿵(fù)習(xí)回顧、知識(shí)梳理

  1.正弦定理:

  正弦定理的變形:

  利用正弦定理,可以解決以下兩類(lèi)有關(guān)三角形的問(wèn)題。

 。1)已知兩角和任一邊,求其他兩邊和一角;

 。2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角。(從而進(jìn)一步求出其他的邊和角)

  2.余弦定理:

  a2=b2+c2-2bccosa;

  b2=c2+a2-2cacosb;

  c2=a2+b2-2abcosc。

  cosa=;

  cosb=;

  cosc=。

  利用余弦定理,可以解決以下兩類(lèi)有關(guān)三角形的問(wèn)題:

  (1)已知三邊,求三個(gè)角;

 。2)已知兩邊和它們的夾角,求第三邊和其他兩個(gè)角。

  3.三角形面積公式:

 。ㄈ┳灾鳈z測(cè)、知識(shí)鞏固

  (四)典例導(dǎo)航、知識(shí)拓展

  【例1】 △abc的三個(gè)內(nèi)角a、b、c的對(duì)邊分別是a、b、c,如果a2=b(b+c),求證:a=2b。

  剖析:研究三角形問(wèn)題一般有兩種思路。一是邊化角,二是角化邊。

  證明:用正弦定理,a=2rsina,b=2rsinb,c=2rsinc,代入a2=b(b+c)中,得sin2a=sinb(sinb+sinc)sin2a-sin2b=sinbsinc

  因?yàn)閍、b、c為三角形的三內(nèi)角,所以sin(a+b)≠0。所以sin(a-b)=sinb。所以只能有a-b=b,即a=2b。

  評(píng)述:利用正弦定理,將命題中邊的關(guān)系轉(zhuǎn)化為角間關(guān)系,從而全部利用三角公式變換求解。

  思考討論:該題若用余弦定理如何解決?

  【例2】已知a、b、c分別是△abc的三個(gè)內(nèi)角a、b、c所對(duì)的邊,

 。1)若△abc的面積為,c=2,a=600,求邊a,b的值;

 。2)若a=ccosb,且b=csina,試判斷△abc的形狀。

 。ㄎ澹┳兪接(xùn)練、歸納整理

  【例3】已知a、b、c分別是△abc的三個(gè)內(nèi)角a、b、c所對(duì)的邊,若bcosc=(2a—c)cosb

 。1)求角b

  (2)設(shè),求a+c的值。

  剖析:同樣知道三角形中邊角關(guān)系,利用正余弦定理邊化角或角化邊,從而解決問(wèn)題,此題所變化的是與向量相結(jié)合,利用向量的模與數(shù)量積反映三角形的邊角關(guān)系,把本質(zhì)看清了,問(wèn)題與例2類(lèi)似解決。

  此題分析后由學(xué)生自己作答,利用實(shí)物投影集體評(píng)價(jià),再做歸納整理。

  (解答略)

  課時(shí)小結(jié)(由學(xué)生歸納總結(jié),教師補(bǔ)充)

  1、解三角形時(shí),找三邊一角之間的關(guān)系常用余弦定理,找兩邊兩角之間的關(guān)系常用正弦定理

  2、根據(jù)所給條件確定三角形的形狀,主要有兩種途徑:①化邊為角;②化角為邊。并常用正余弦定理實(shí)施邊角轉(zhuǎn)化。

  3、用正余弦定理解三角形問(wèn)題可適當(dāng)應(yīng)用向量的數(shù)量積求三角形內(nèi)角與應(yīng)用向量的模求三角形的邊長(zhǎng)。

  4、應(yīng)用問(wèn)題可利用圖形將題意理解清楚,然后用數(shù)學(xué)模型解決問(wèn)題。

  5、正余弦定理與三角函數(shù)、向量、不等式等知識(shí)相結(jié)合,綜合運(yùn)用解決實(shí)際問(wèn)題。

  課后作業(yè):

  材料三級(jí)跳

  創(chuàng)設(shè)情境,提出實(shí)際應(yīng)用問(wèn)題,揭示課題

  學(xué)生在探究問(wèn)題時(shí)發(fā)現(xiàn)是解三角形問(wèn)題,通過(guò)問(wèn)答將知識(shí)作一梳理。

  學(xué)生通過(guò)課前預(yù)熱1、2、3、的快速作答,對(duì)正余弦定理的基本運(yùn)用有了一定的回顧

  學(xué)生探討

  知識(shí)的關(guān)聯(lián)與拓展

  正余弦定理與三角形內(nèi)角和定理,面積公式的綜合運(yùn)用對(duì)學(xué)生來(lái)說(shuō)也是難點(diǎn),尤其是根據(jù)條件判斷三角形形狀。此處列舉例2讓學(xué)生進(jìn)一步體會(huì)如何選擇定理進(jìn)行邊角互化。

  本課是在學(xué)生學(xué)習(xí)了三角函數(shù)、平面幾何、平面向量、正弦和余弦定理的基礎(chǔ)上而設(shè)置的復(fù)習(xí)內(nèi)容,因此本課的教學(xué)有較多的處理辦法。從解三角形的問(wèn)題出發(fā),對(duì)學(xué)過(guò)的知識(shí)進(jìn)行分類(lèi),采用的例題是精心準(zhǔn)備的,講解也是至關(guān)重要的。一開(kāi)始的復(fù)習(xí)回顧學(xué)生能夠很好的回答正弦定理和余弦定理的基本內(nèi)容,但對(duì)于兩個(gè)定理的變形公式不知,也就是說(shuō)對(duì)于公式的應(yīng)用不熟練。設(shè)計(jì)中的自主檢測(cè)幫助學(xué)生回顧記憶公式,對(duì)學(xué)生更有針對(duì)性的進(jìn)行了訓(xùn)練。學(xué)生還是出現(xiàn)了問(wèn)題,在遇到第一個(gè)正弦方程時(shí),是只有一組解還是有兩組解,這是難點(diǎn)。例1、例2是常規(guī)題,讓學(xué)生應(yīng)用數(shù)學(xué)知識(shí)求解問(wèn)題,可用正弦定理,也可用余弦定理,幫助學(xué)生鞏固正弦定理、余弦定理知識(shí)。

  本節(jié)課授課對(duì)象為高三6班的學(xué)生,上課氛圍非常活躍?紤]到這是一節(jié)復(fù)習(xí)課,學(xué)生已經(jīng)知道了定理的內(nèi)容,沒(méi)有經(jīng)歷知識(shí)的發(fā)生與推導(dǎo),所以興趣不夠,較沉悶。奧蘇貝爾指出,影響學(xué)習(xí)的最重要因素是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識(shí)狀況去進(jìn)行教學(xué)。因而,在教學(xué)中,教師了解學(xué)生的真實(shí)的思維活動(dòng)是一切教學(xué)工作的實(shí)際出發(fā)點(diǎn)。教師應(yīng)當(dāng)"接受"和"理解"學(xué)生的真實(shí)思想,盡管它可能是錯(cuò)誤的或幼稚的,但卻具有一定的"內(nèi)在的"合理性,教師不應(yīng)簡(jiǎn)單否定,而應(yīng)努力去理解這些思想的產(chǎn)生與性質(zhì)等等,只有真正理解了學(xué)生思維的發(fā)生發(fā)展過(guò)程,才能有的放矢地采取適當(dāng)?shù)慕虒W(xué)措施以便幫助學(xué)生不斷改進(jìn)并最終實(shí)現(xiàn)自己的目標(biāo)。由于這種探究課型在平時(shí)的教學(xué)中還不夠深入,有些學(xué)生往往以一種觀賞者的身份參與其中,主動(dòng)探究意識(shí)不強(qiáng),思維水平?jīng)]有達(dá)到足夠的提升。這些都是不足之處,比較遺憾。但相信隨著課改實(shí)驗(yàn)的深入,這種狀況會(huì)逐步改善。畢竟輕松愉快的課堂是學(xué)生思維發(fā)展的天地,是合作交流、探索創(chuàng)新的主陣地,是思想教育的好場(chǎng)所。所以新課標(biāo)下的課堂將會(huì)是學(xué)生和教師共同成長(zhǎng)的舞臺(tái)!

【《正弦定理和余弦定理》復(fù)習(xí)課教學(xué)設(shè)計(jì)】相關(guān)文章:

《正弦定理、余弦定理》教學(xué)設(shè)計(jì)范文(通用10篇)05-10

余弦定理優(yōu)秀教學(xué)設(shè)計(jì)07-05

余弦定理教案01-11

復(fù)習(xí)課教學(xué)設(shè)計(jì)09-21

數(shù)學(xué)復(fù)習(xí)課教學(xué)設(shè)計(jì)03-21

《整理和復(fù)習(xí)》教學(xué)設(shè)計(jì)04-30

《勾股定理》教學(xué)設(shè)計(jì)04-28

《整理和復(fù)習(xí)》教學(xué)設(shè)計(jì)15篇06-15

《分子和原子》復(fù)習(xí)課教學(xué)反思范文07-22