成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

《二元一次方程組》教學(xué)設(shè)計(jì)

時(shí)間:2024-04-17 14:05:20 藝詩(shī) 教學(xué)資源 投訴 投稿

《二元一次方程組》教學(xué)設(shè)計(jì)(精選10篇)

  在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,時(shí)常需要用到教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以促進(jìn)我們快速成長(zhǎng),使教學(xué)工作更加科學(xué)化。教學(xué)設(shè)計(jì)應(yīng)該怎么寫呢?以下是小編為大家整理的《二元一次方程組》教學(xué)設(shè)計(jì),希望能夠幫助到大家。

《二元一次方程組》教學(xué)設(shè)計(jì)(精選10篇)

  《二元一次方程組》教學(xué)設(shè)計(jì) 1

  教學(xué)目標(biāo)

  1.會(huì)用代入法解二元一次方程組;

  2.體會(huì)解二元一次方程組的 “消元思想”和“化未知數(shù)為已知”的化歸思想.

  3.通過對(duì)方程中未知數(shù)特點(diǎn)的觀察和分析明,確解二元一次方程組的主要思路 是 “消元思想”和“化二元為一元”的化歸思想.

  教學(xué)重難點(diǎn)

  1.熟練的用代入法解二元一次方程組。

  2.探索如何用代入法將“二元”轉(zhuǎn)化為“一元”的消元過程。

  教學(xué)過程

  一、創(chuàng)設(shè)問題,引入新課

  1.問題1:籃球聯(lián)賽中,每場(chǎng)比賽都要分出勝負(fù),每隊(duì)勝一場(chǎng)得2分,負(fù)一場(chǎng)得1分.某隊(duì)為了爭(zhēng)取較好的名次,想在全部20場(chǎng)比賽中得到38分,那么這個(gè)隊(duì)勝、負(fù)場(chǎng)數(shù)分別是多少?

  解:設(shè)勝場(chǎng)數(shù)是x則負(fù)的場(chǎng)數(shù)是20-x 列方程為:2x+(20-x)=38.解得x=18,則負(fù)的場(chǎng)數(shù)為

  20-x=20-18=2

  2.問題2:在上述問題中,我們可以設(shè)出兩個(gè)未知數(shù),列出二元一次方程組,若設(shè)勝的場(chǎng)數(shù)是x,負(fù)的場(chǎng)數(shù)是y,則

  x+y=20

  2x+y=38

  那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系呢?

  設(shè)計(jì)意圖:通過創(chuàng)設(shè)同一問題分別列出一元一次方程與二元一次方程組 ,引導(dǎo)學(xué)生對(duì)兩者關(guān)聯(lián)認(rèn)識(shí),為后續(xù)代入消元法解二元一次方程作鋪墊。

  二、學(xué)生探索,嘗試解決

  交流問題2:可以發(fā)現(xiàn),二元一次方程組中第一個(gè)方程x+y=20可的到y(tǒng)=20-x,將第2個(gè)方程2x+y=38中y換為20-x,這個(gè)方程就化為一元一次方程2x+(20-x)=38.

  歸納:

  二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),將二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程,我們就可以先解出一個(gè)未知數(shù),然后再設(shè)法求另一個(gè)未知數(shù).這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想方法,叫做消元思想.

  歸納小結(jié):上面的解法,是把二元一次方程組中一個(gè)方程中的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的 解.這種方法叫做代入消元法,簡(jiǎn)稱代入法.

  設(shè)計(jì)意圖:通過交流問題2,引導(dǎo)學(xué)生將心中所想顯現(xiàn)出來,代入消元法的步驟和功效逐步顯現(xiàn)出來。

  三、典例交流,揭示規(guī)律

  例1:用代入法解二元一次方程組x=y+3(1)

  3x-8y=14(2)

  解:把①代入②,得3(y+3)-8y=14,解得y=-1.把y=-1代人①,解得x=2,所以這個(gè)方程組的解是 x=2,y=-1

  思考下列問題

 。1)選擇哪個(gè)方程代入另一個(gè)方程?目的是什么?

 。2)為什么能代入?目的達(dá)到了嗎?

  (3)只求出 y=-1 ,方程組解完了嗎? 把y=-1 代入哪個(gè)方程求x的值較簡(jiǎn)單?

  (4)怎樣知道你運(yùn)算的結(jié)果是否正確?

  反思:需檢驗(yàn),將 x=2,y=-1分別代入方程①②,看方程的左右兩邊是否相等,可以口算,也可以在 草稿紙上驗(yàn)算.【例2】用代入法解二元一次方程組x-y=3(1)

  3x-8y=14(2)

  思考:

  (1)例1與例2有什么不同?(例1是用①直接代入②的,而例2的兩個(gè)方程都不具備這樣的條件.)

  (2)如何變形?(把其中一個(gè)方程變形為例1中①的形式.)

  (3)選擇哪個(gè)方程變形較簡(jiǎn)單?(方程①中的x的.系數(shù)為1,故可以將方程①變形得x=3+y.)

 。▽W(xué)生口述,教師板書完成)

  用代入消元法解二元一次方程組的步驟:

  (1)從方程組中選取一個(gè)系數(shù)比較簡(jiǎn)單的方程,把其中的某一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來.(變)

  (2)把(1)中所得的方程代入另一個(gè)方程,消去一個(gè)未知數(shù).(代)

  (3)解所得到的一元一次方程,求得一個(gè)未知數(shù)的值.(求)

  (4)把所求得的一個(gè)未知數(shù)的值代入(1)中求得的方程,求出另一個(gè)未知數(shù)的值,從而確定方程組的解.(解)

  設(shè)計(jì)意圖:進(jìn)一步加強(qiáng)利用代入消元法解方程,逐步抽象出代入消元法解方程的一般步驟提高學(xué)生的分析能力。

  四、變式訓(xùn)練,深化提高

  用代入法解下面方程組

  設(shè)計(jì)意圖:通過學(xué)生演練展示,幫助學(xué)生鞏固用代入法解二元一次方程組的步驟。

  五、師生共進(jìn),反思小結(jié)

  1、本節(jié)主要學(xué)習(xí)用代入法解二元一次方程組

  2、主要的解題思想方法是消元思想。

  3、代入消元法解二元一次方程組需要注意的問題.

  (1)用代入法解二元一次方程組時(shí),常選用系數(shù)比較簡(jiǎn)單的方程變形,這有利于正確、簡(jiǎn)捷地消元.

  (2)由一個(gè)方程變形得到的只含有一個(gè)未知數(shù)的代數(shù)式必須代入到另一個(gè)方程中去,否則會(huì)出現(xiàn)一個(gè)恒等式.

  (3)方程組解的表示方法,應(yīng)該用大括號(hào)把一對(duì)未知數(shù)的值連在一起,表示同時(shí)成立,不要寫成x=?y=?

  六、布置作業(yè):

  習(xí)題8.2 1,2題

  《二元一次方程組》教學(xué)設(shè)計(jì) 2

  教學(xué)目標(biāo)

  1.認(rèn)識(shí)二元一次方程和二元一次方程組.

  2.了解二元一次方程和二元一次方程組的解,會(huì)求二元一次方程的正整數(shù)解.

  重點(diǎn)、難點(diǎn)

  重點(diǎn):理解二元一次方程組的解的意義

  難點(diǎn):求二元一次方程的正整數(shù)解

  教學(xué)過程

  一、復(fù)習(xí)導(dǎo)入

  什么是一元一次方程?“元”指什么?“次”指什么?

  什么是方程的解?

  設(shè)計(jì)意圖:通過學(xué)生復(fù)習(xí)以前的內(nèi)容,知道用元與次的含義,為這節(jié)課所學(xué)的二元一次方程組奠定基礎(chǔ)。

  二、觀看視頻

  觀看洋蔥視頻關(guān)于二元一次方程組的內(nèi)容,通過熟悉的雞兔同籠問題來引發(fā)思考。

  視頻內(nèi)容

  設(shè)計(jì)意圖:用視頻吸引學(xué)生注意力,引起學(xué)生的認(rèn)知沖突,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望,通過視頻內(nèi)容,學(xué)生已激發(fā)了強(qiáng)烈的求知欲望,產(chǎn)生了強(qiáng)勁的學(xué)習(xí)動(dòng)力,此時(shí)我把學(xué)生帶入下一環(huán)節(jié)。

  三、探究新知

  根據(jù)視頻內(nèi)容歸納出二元一次方程的定義:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程.

  把兩個(gè)二元一次方程合在一起,就組成了一個(gè)二元一次方程組.

  提問:對(duì)比兩個(gè)方程,你能發(fā)現(xiàn)它們之間的關(guān)系嗎?

  師生共同總結(jié)二元一次方程組的概念像這樣方程組中有兩個(gè)個(gè)未知數(shù),含有每個(gè)未知數(shù)的項(xiàng)的`次數(shù)都是1,并且一共有兩個(gè)方程,像這樣的方程組叫做二元一次方程組.

  探究二元一次方程組的解:

  滿足x+y=10的值有哪些?請(qǐng)?zhí)钊氡碇校?/p>

  使二元一次方程兩邊相等的未知數(shù)的值,叫做二元一次方程的解,記作.

  滿足方程2x+y=16且符合問題的實(shí)際意義的x 、y的值如下表:

  不難發(fā)現(xiàn)x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是說是這兩個(gè)方程的公共解,我們把它們叫做方程組的解。

  歸納二元一次方程組的解的定義:二元一次方程組中的兩個(gè)方程的公共解叫做二元一次方程組的解.

  思考:3x+y=10的解有多少個(gè)?一個(gè)解有幾個(gè)數(shù)?正整數(shù)解有幾個(gè)?

  帶著問題讓學(xué)生觀看洋蔥數(shù)學(xué)視頻二元一次方程組的解

  視頻內(nèi)容

  設(shè)計(jì)意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識(shí)的教學(xué)必須在學(xué)生自主探索,經(jīng)驗(yàn)歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過學(xué)習(xí)用坐標(biāo)表示平移觀察分析、獨(dú)立思考、小組交流等活動(dòng),引導(dǎo)學(xué)生歸納。

  四、例題講解

  例、若方程2x2m+3+3y3n-7=0是關(guān)于x、y的二元一次方程,求m+n的值。

  例2、暴風(fēng)雨即將來臨,一群螞蟻正忙著搬家.其中有大螞蟻和小螞蟻,已知大小螞蟻總共有1 00只,小螞蟻一次只能搬一粒食物,大螞蟻一次能搬兩粒,一場(chǎng)忙碌過后,洞里的160粒食物剛好一次被安全轉(zhuǎn)移,求大小螞蟻各有幾只?

  例3、

  學(xué)生思考,試著解答,最后共同宣布答案。

  設(shè)計(jì)意圖:在例題講解過程中,讓學(xué)生充分活動(dòng)起來,通過例題探究來進(jìn)行總結(jié),不要讓學(xué)生死記硬背,重點(diǎn)在理解,會(huì)靈活運(yùn)用。

  五、隨堂練習(xí)

  1.下列方程中,是二元一次方程的是( )

  A.3x-2y=4z B.6xy+9=0

  C.+4y=6 D.4x=

  2.下列方程組中,是二元一次方程組的是( )

  A. B.

  C. D.

  3.在方程(k-2)x2+(2-3k)x+(k+1)y+3k=0中,若此方程為關(guān)于x,y的二元一次方程,則k值為( )

  A.-2 B.2或-2 C.2 D.以上答案都不對(duì)

  4.二元一次方程x-2y=1有無數(shù)多個(gè)解,下列四組值中不是該方程的解的是( )

  A、 B、 C、 D、

  5.二元一次方程組的解為( )

  A. B. C. D.

  6.為了開展陽光體育活動(dòng),某班計(jì)劃購(gòu)買毽子和跳繩兩種體育用品,共花費(fèi)35元,毽子單價(jià)3元,跳繩單價(jià)5元,購(gòu)買方案有( )

  A.1種B.2種C.3種D.4種

  設(shè)計(jì)意圖:幾道練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標(biāo)提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計(jì)意圖是反饋教學(xué),升華知識(shí)

  六、拓展延伸

  1.有大小兩種貨車,2輛大貨車與3輛小貨車一次可以運(yùn)貨15.5噸,5輛大貨車與6輛小貨車一次可以運(yùn)貨35噸,設(shè)一輛大貨車一次可以運(yùn)貨x噸,一輛小貨車一次可以運(yùn)貨y噸,根據(jù)題意所列方程組正確的是( )

  A. B.

  C. D.

  2.甲、乙兩人共同解方程組由于甲看錯(cuò)了方程①中的a,得到方程組的解為乙看錯(cuò)了方程②中的b,得到方程組的解為試計(jì)算a2 016+(-b)2 017.

  設(shè)計(jì)意圖:這個(gè)環(huán)節(jié)是鞏固本課知識(shí)點(diǎn),通過設(shè)置練習(xí),來檢測(cè)學(xué)生的掌握情況,在這部分的設(shè)計(jì)中,主要是發(fā)揮學(xué)生作為教學(xué)主體的主動(dòng)性,讓學(xué)生感受學(xué)習(xí)的樂趣和成功的喜悅。

  七、課堂小結(jié)

  以提問進(jìn)行:

  (1)、二元一次方程(組)的特征是什么?

 。2)、二元一次方程組的解要滿足什么條件?

  設(shè)計(jì)意圖:通過共同小結(jié)使學(xué)生歸納、梳理總結(jié)本節(jié)的知識(shí)、技能、方法,將本課所學(xué)的知識(shí)與以前所學(xué)的知識(shí)進(jìn)行緊密聯(lián)結(jié),再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),改善學(xué)生的學(xué)習(xí)方式。有利于培養(yǎng)學(xué)生數(shù)學(xué)思想、數(shù)學(xué)方法、數(shù)學(xué)能力和對(duì)數(shù)學(xué)的積極情感.同時(shí)為以后的學(xué)習(xí)作知識(shí)儲(chǔ)備.

  八、教學(xué)反思

  1.概念課教學(xué)模式:本節(jié)課的主要內(nèi)容是二元一次方程(組)的有關(guān)概念,設(shè)計(jì)時(shí)按照“實(shí)例研究,初步體會(huì)——比較分析,把握實(shí)質(zhì)——?dú)w納概括,形成定義——應(yīng)用提高,發(fā)展能力”的思路進(jìn)行,讓學(xué)生體會(huì)到是因?yàn)椤靶枰倍鴮W(xué)習(xí)新知識(shí),逐步滲透應(yīng)用意識(shí)。

  2.類比法的運(yùn)用:二元一次方程及其解的意義類比一元一次方程學(xué)習(xí),一方面加深學(xué)生對(duì)于方程中“元”與“次”的理解,另一方面易于理清一元一次方程與二元一次方程“解”的相關(guān)知識(shí)的異同,同時(shí)為二元一次方程組相關(guān)概念掃清障礙。

  3.分層遞進(jìn),循環(huán)上升:學(xué)生對(duì)知識(shí)的理解,教師對(duì)學(xué)生的要求,都是由低到高,逐步提升,題目的設(shè)計(jì)從單一知識(shí)點(diǎn)的直接運(yùn)用,逐漸到多個(gè)知識(shí)點(diǎn)的靈活運(yùn)用,給學(xué)生設(shè)計(jì)必要的臺(tái)階,使其一步步向前,最終達(dá)到教學(xué)目標(biāo)。

  《二元一次方程組》教學(xué)設(shè)計(jì) 3

  一、教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)

  1、代入消元法解二元一次方程組。

  2、解二元一次方程組時(shí)的消元思想,化未知為已知的化歸思想。

 。ǘ┠芰τ(xùn)練要求

  1、會(huì)用代入消元法解二元一次方程組。

  2、了解解二元一次方程組的消元思想,初步體會(huì)數(shù)學(xué)研究中化未知為已知的化歸思想。

 。ㄈ┣楦信c價(jià)值觀要求

  1、在學(xué)生了解二元一次方程組的消元思想,從而初步理解化未知為已知和化復(fù)雜問題為簡(jiǎn)單問題的化歸思想中,享受學(xué)習(xí)數(shù)學(xué)的樂趣,提高學(xué)習(xí)數(shù)學(xué)的信心。

  2、培養(yǎng)學(xué)生合作交流,自主探索的良好習(xí)慣。

  二、教學(xué)重點(diǎn)

  1、會(huì)用代入消元法解二元一次方程組。

  2、了解解二元一次方程組的消元思想,初步體現(xiàn)數(shù)學(xué)研究中化未知為已知的化歸思想。

  三、教學(xué)難點(diǎn)

  1、消元的思想。

  2、化未知為已知的化歸思想。

  四、教學(xué)方法

  啟發(fā)自主探索相結(jié)合。

  教師引導(dǎo)學(xué)生回憶一元一次方程解決實(shí)際問題的方法并從中啟發(fā)學(xué)生如果能將二元一次方程組轉(zhuǎn)化為一元一次方程。二元一次方程便可獲解,從而通過學(xué)生自主探索總結(jié)用代入消元法解二元一次方程組的步驟。

  五、教具準(zhǔn)備

  投影片兩張:

  第一張:例題(記作7。2 A);

  第二張:?jiǎn)栴}串(記作7。2 B)。

  六、教學(xué)過程

 、瘛⑻岢鲆蓡,引入新課

  [師生共憶]上節(jié)課我們討論過一個(gè)希望工程義演的問題;沒去觀看義演的成人有x個(gè),兒童有y個(gè),我們得到了方程組 成人和兒童到底去了多少人呢?

  [生]在上一節(jié)課的做一做中,我們通過檢驗(yàn) 是不是方程x+y=8和方程5x+3y=34,得知這個(gè)解既是x+y=8的解,也是5x+3y=34的解,根據(jù)二元一次方程組解的定義得出 是方程組 的解。所以成人和兒童分別去了5個(gè)人和3個(gè)人。

  [師]但是,這個(gè)解是試出來的。我們知道二元一次方程的解有無數(shù)個(gè)。難道我們每個(gè)方程組的解都去這樣試?

  [生]太麻煩啦。

  [生]不可能。

  [師]這就需要我們學(xué)習(xí)二元一次方程組的解法。

 、颉⒅v授新課

  [師]在七年級(jí)第一學(xué)期我們學(xué)過一元一次方程,也曾碰到過希望工程義演問題,當(dāng)時(shí)是如何解的呢?

  [生]解:設(shè)成人去了x個(gè),兒童去了(8—x)個(gè),根據(jù)題意,得:

  5x+3(8—x)=34

  解得x=5

  將x=5代入8—x=8—5=3

  答:成人去了5個(gè),兒童去了3個(gè)。

  [師]同學(xué)們可以比較一下:列二元一次方程組和列一元一次方程設(shè)未知數(shù)有何不同?列出的方程和方程組又有何聯(lián)系?對(duì)你解二元一次方程組有何啟示?

  [生]列二元一次方程組設(shè)出有兩個(gè)未知數(shù)成人去了x個(gè),兒童去了y個(gè)。列一元一次方程設(shè)成人去了x個(gè),兒童去了(8—x)個(gè)。y應(yīng)該等于(8—x)。而由二元一次方程組的一個(gè)方程x+y=8根據(jù)等式的性質(zhì)可以推出y=8—x。

  [生]我還發(fā)現(xiàn)一元一次方程中5x+3(8—x)=34與方程組中的第二個(gè)方程5x+3y=34相比較,把5x+3y=34中的y用8—x代替就轉(zhuǎn)化成了一元一次方程。

  [師]太好了。我們發(fā)現(xiàn)了新舊知識(shí)之間的聯(lián)系,便可尋求到解決新問題的方法即將新知識(shí)轉(zhuǎn)化為舊知識(shí)便可。如何轉(zhuǎn)化呢?

  [生]上一節(jié)課我們就已知道方程組的兩個(gè)未知數(shù)所包含的意義是相同的。所以將 中的①變形,得y=8—x ③我們把y=8—x代入方程②,即將②中的y用8—x代替,這樣就有5x+3(8—x)=34。二元化成一元。

  [師]這位同學(xué)很善于思考。他用了我們?cè)跀?shù)學(xué)研究中化未知為已知的化歸思想,從而使問題得到解決。下面我們完整地解一下這個(gè)二元一次方程組。

  解:

  由①得 y=8—x ③

  將③代入②得

  5x+3(8—x)=34

  解得x=5

  把x=5代入③得y=3。

  所以原方程組的解為

  下面我們?cè)囍眠@種方法來解答上一節(jié)的誰的包裹多的問題。

  [師生共析]解二元一次方程組:

  分析:我們解二元一次方程組的第一步需將其中的一個(gè)方程變形用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),把表示了的未知數(shù)代入未變形的方程中,從而將二元一次方程組轉(zhuǎn)化為一元一次方程。

  解:由①得x=2+y ③

  將③代入②得(2+y)+1=2(y—1)

  解得y=5

  把y=5代入③,得

  x=7。

  所以原方程組的`解為 即老牛馱了7個(gè)包裹,小馬馱了5個(gè)包裹。

  [師]在解上面兩個(gè)二元一次方程組時(shí),我們都是將其中的一個(gè)方程變形,即用其中一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后代入第二個(gè)未變形的方程,從而由二元轉(zhuǎn)化為一元而得到消元的目的。我們將這種方法叫代入消元法。這種解二元一次方程組的思想為消元思想。我們?cè)賮砜磧蓚(gè)例子。

  出示投影片(7.2 A)

  [例題]解方程組

 。1)

 。2)

  (由學(xué)生自己完成,兩個(gè)同學(xué)板演)。

  解:(1)將②代入①,得

  3 +2y=8

  3y+9+4y=16

  7y=7

  y=1

  將y=1代入②,得

  x=2

  所以原方程組的解是

  (2)由②,得x=13—4y ③

  將③代入①,得

  2(13—4y)+3y=16

  —5y=—10

  y=2

  將y=2代入③,得

  x=5

  所以原方程組的解是

  [師]下面我們來討論幾個(gè)問題:

  出示投影片(7.2 B)

 。1)上面解方程組的基本思路是什么?

 。2)主要步驟有哪些?

 。3)我們觀察例1和例2的解法會(huì)發(fā)現(xiàn),我們?cè)诮夥匠探M之前,首先要觀察方程組中未知數(shù)的特點(diǎn),盡可能地選擇變形后的方程較簡(jiǎn)單和代入后化簡(jiǎn)比較容易的方程變形,這是關(guān)鍵的一步。你認(rèn)為選擇未知數(shù)有何特點(diǎn)的方程變形好呢?

 。ㄓ蓪W(xué)生分組討論,教師深入?yún)⑴c到學(xué)生討論中,發(fā)現(xiàn)學(xué)生在自主探索、討論過程中的獨(dú)特想法)

  [生]我來回答第一問:解二元一次方程組的基本思路是消元,把二元變?yōu)橐辉?/p>

  [生]我們組總結(jié)了一下解上述方程組的步驟:第一步:在已知方程組的兩個(gè)方程中選擇一個(gè)適當(dāng)?shù)姆匠蹋阉冃螢橛靡粋(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)。

  第二步:把表示另一個(gè)未知數(shù)的代數(shù)式代入沒有變形的另一個(gè)方程,可得一個(gè)一元一次方程。

  第三步:解這個(gè)一元一次方程,得到一個(gè)未知數(shù)的值。

  第四步:把求得的未知數(shù)的值代回到原方程組中的任意一個(gè)方程或變形后的方程(一般代入變形后的方程),求得另一個(gè)未知數(shù)的值。

  第五步:用{把原方程組的解表示出來。

  第六步:檢驗(yàn)(口算或筆算在草稿紙上進(jìn)行)把求得的解代入每一個(gè)方程看是否成立。

  [師]這個(gè)組的同學(xué)總結(jié)的步驟真棒,甚至連我們平時(shí)容易忽略的檢驗(yàn)問題也提了出來,很值得提倡。在我們數(shù)學(xué)學(xué)習(xí)的過程中,應(yīng)該養(yǎng)成反思自己解答過程,檢驗(yàn)自己答案正確與否的習(xí)慣。

  [生]老師,我代表我們組來回答第三個(gè)問題。我們認(rèn)為用代入消元法解二元一次方程組時(shí),盡量選取一個(gè)未知數(shù)的分?jǐn)?shù)是1的方程進(jìn)行變形;若未知數(shù)的系數(shù)都不是1,則選取系數(shù)的絕對(duì)值較小的方程變形。但我們也有一個(gè)問題要問:在例2中,我們選擇②變形這是無可厚非的,把②變形后代入①中消元得到的是一元一次方程系數(shù)都為整數(shù)也較簡(jiǎn)便?衫1中,雖然可直接把②代入①中消去x,可得到的是含有分母的一元一次方程,并不簡(jiǎn)便,有沒有更簡(jiǎn)捷的方法呢?

  [師]這個(gè)問題提的太好了。下面同學(xué)們分組討論一下。如果你發(fā)現(xiàn)了更好的解法,請(qǐng)把你的解答過程寫到黑板上來。

  [生]解:由②得2x=y+3 ③

 、蹆蛇呁瑫r(shí)乘以2,得

  4x=2y+6 ④

  由④得2y=4x—6

  把⑤代入①得

  3x+(4x—6)=8

  解得7x=14,x=2

  把x=2代入③得y=1、

  所以原方程組的解為

  [師]真了不起,能把我們所學(xué)的知識(shí)靈活應(yīng)用,而且不拘一格,將2y整體上看作一個(gè)未知數(shù)代入方程①,這是一個(gè)科學(xué)的發(fā)明。

 、蟆kS堂練習(xí)

  課本P192

  1、用代入消元法解下列方程組

  解:(1)

  將①代入②,得

  x+2x=12

  x=4。

  把x=4代入①,得

  y=8

  所以原方程組的解為

 。2)

  將①代入②,得

  4x+3(2x+5)=65

  解得x=5

  把x=5代入①得

  y=15

  所以原方程組的解為

 。3)

  由①,得x=11—y ③

  把③代入②,得

  11—y—y=7

  y=2

  把y=2代入③,得

  x=9

  所以原方程組的解為

  (4)

  由②,得x=3—2y ③

  把③代入①,得

  3(3—2y)—2y=9

  得y=0

  把y=0代入③,得x=3

  所以原方程組的解為

  注:在隨堂練習(xí)中,可以鼓勵(lì)學(xué)生通過自主探索與交流,各個(gè)學(xué)生消元的具體方法可能不同,不必強(qiáng)調(diào)解答過程統(tǒng)一。

 、簟⒄n時(shí)小結(jié)

  這節(jié)課我們介紹了二元一次方程組的第一種解法代入消元法。了解到了解二元一次方程組的基本思路是消元即把二元變?yōu)橐辉。主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程。解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值。即求得了方程的解。

 、、課后作業(yè)

  1、課本習(xí)題7。2

  2、解答習(xí)題7。2第3題

 、、活動(dòng)與探究

  已知代數(shù)式x2+px+q,當(dāng)x=—1時(shí),它的值是—5;當(dāng)x=—2時(shí),它的值是4,求p、q的值。

  過程:根據(jù)代數(shù)式值的意義,可得兩個(gè)未知數(shù)都是p、q的方程,即

  當(dāng)x=—1時(shí),代數(shù)式的值是—5,得

 。ā1)2+(—1)p+q=—5 ①

  當(dāng)x=—2時(shí),代數(shù)式的值是4,得

 。ā2)2+(—2)p+q=4 ②

  將①、②兩個(gè)方程整理,并組成方程組

  解方程組,便可解決。

  結(jié)果:由④得q=2p

  把q=2p代入③,得

  —p+2p=—6

  解得p=—6

  把p=—6代入q=2p=—12

  所以p、q的值分別為—6、—12、

  七、板書設(shè)計(jì)

  7.1 解二元一次方程組(一)

  一、希望工程義演

  二、誰的包裹多問題

  三、例題

  四、解方程組的基本思路:消元即二元一元

  五、解二元一次方程組的基本步驟

  《二元一次方程組》教學(xué)設(shè)計(jì) 4

  一、教材分析

  本課內(nèi)容是在學(xué)生掌握了二元一次方程組有關(guān)概念之后的學(xué)習(xí)內(nèi)容,用代入消元法解二元一次方程組是學(xué)生接觸到的解方程組的第一種方法,是解二元一次方程組的方法之一,消元體現(xiàn)了“化未知為已知”的重要思想,它是學(xué)習(xí)本章的重點(diǎn)和難點(diǎn)。學(xué)完以后可以幫助我們解決一些實(shí)際的問題,也是為了今后學(xué)習(xí)函數(shù)、線性方程組及高次方程組奠定了基礎(chǔ)。

  二、教學(xué)目標(biāo)

  1.使學(xué)生學(xué)會(huì)用代入消元法解二元一次方程組.

  2.理解代入消元法的基本思想;了解化“未知為已知”的轉(zhuǎn)化過程,體會(huì)化歸思想.

  三、教學(xué)重難點(diǎn)

  1.重點(diǎn):用代入法解二元一次方程組.

  2.難點(diǎn):在“消元”的過程中能夠判斷消去哪個(gè)未知數(shù),使得解方程組的運(yùn)算轉(zhuǎn)為較簡(jiǎn)便的過程。

  四、教學(xué)過程

 。1)復(fù)習(xí)引入

  在上節(jié)課中我們學(xué)習(xí)了二院一次方程組的有關(guān)概念,并學(xué)習(xí)了二元一次方程組的概念還學(xué)會(huì)判斷一組值是否是二元一次方程組的解的問題,同學(xué)們還記得二元一次方程組和二元一次方程組的解的概念嗎?追問二元一次方程組既然有解那么它們的解又怎么求呢?

  設(shè)計(jì)意圖:讓學(xué)生復(fù)習(xí)鞏固二元一次方程組和二元一次方程組解的概念,追問其他一個(gè)拋磚引玉的效果,激起學(xué)生的學(xué)習(xí)興趣,引出課題。

 。2)探究新知

  此過程通過播放洋蔥視頻中的代入消元法片段視頻,播放致列出二元一次方程組和一元一次后點(diǎn)擊暫停,先讓學(xué)生考慮想清楚兩個(gè)問題。

  一個(gè)問題是為什么能用一元一次方程解決的實(shí)際問題我們要用二元一次方程組來解決?第二個(gè)問題觀察二元一次方程組和一元一次方程組之間有何異同?學(xué)生想清楚這兩個(gè)問題后,滲透消元的思想,然后繼續(xù)播放視頻讓學(xué)生知道二元一次方程組完整的解題過程,并在每一步做出相應(yīng)的解釋,怎么變化而來。

  播放視頻完后先讓學(xué)生自主總結(jié)歸納解二元一次方程組的基本步驟,教師引導(dǎo)總結(jié)。接著完成配套的3個(gè)習(xí)題,強(qiáng)化訓(xùn)練。

 。3)例題講解

  讓學(xué)生嘗試解答

  設(shè)計(jì)意圖:讓學(xué)生通過例1和例2的對(duì)比,引出如何選擇變化有利于計(jì)算的問題。

  預(yù)想大部分學(xué)生例2會(huì)存在這樣的問題到底選擇哪個(gè)方程變形,當(dāng)學(xué)生做出例1,猶豫例2時(shí),提出這樣兩個(gè)問題:

  (1)在解二元一次方程組的步驟中變形的過程我們應(yīng)當(dāng)如何變形?把一個(gè)方程變形為用含x的式子表示y(或含y的式子表示x)

  (2)選擇哪個(gè)方程變形比較簡(jiǎn)便呢?

  再一次激起學(xué)生的學(xué)習(xí)興趣,接著播放洋蔥視頻繼續(xù)代入消元法片段視頻,讓學(xué)生清楚的`知道在不同的二元一次方程組中在變形的過程選擇那一個(gè)方程,選擇那一個(gè)未知數(shù)變形能簡(jiǎn)便的進(jìn)行運(yùn)算。

  五、課堂小結(jié)

  1.這節(jié)課你學(xué)到了哪些知識(shí)和方法?

  2.你還有什么問題或想法需要和大家交流分享?

  六、課后作業(yè)布置:

  xxx

  七、課后反思

  通過洋蔥視頻輔助教學(xué),使得學(xué)生容易體會(huì)到“消元”思想的滲透,學(xué)生能夠?qū)W會(huì)規(guī)范解題。通過視頻的講解能夠準(zhǔn)確的選擇要變形的方程,如果是傳統(tǒng)的教學(xué)方式可能會(huì)出現(xiàn)很多學(xué)生不理解的地方,但通過洋蔥數(shù)學(xué)短小精辟的視頻講解一下子讓學(xué)生理解透!

  《二元一次方程組》教學(xué)設(shè)計(jì) 5

  學(xué)習(xí)目標(biāo)

  1、認(rèn)識(shí)并會(huì)判斷二元一次方程和二元一次方程組。

  2、了解二元一次方程和二元一次方程組的解并會(huì)檢驗(yàn)一對(duì)數(shù)值是不是二元一次方程(組)的解。

  重點(diǎn)難點(diǎn)

  重點(diǎn):二元一次方程(組)的含義及檢驗(yàn)一對(duì)數(shù)是否是某個(gè)二元一次方程(組)的.解。

  難點(diǎn):求二元一次方程的正整數(shù)解。

  學(xué)前準(zhǔn)備

  1、知識(shí)回顧:

 。1)方程的概念;

 。2)一元一次方程的概念;

 。3)什么是方程的解?

  (4)一元一次方程的解如何表示?

  2、合作學(xué)習(xí):

  ①小紅到郵局寄掛號(hào)信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少?gòu)堖@兩種面額的郵票?這個(gè)問題中有幾個(gè)未知數(shù),能列一元一次方程求解嗎?

  如果設(shè)需要票額為6角的郵票x張,需要票額為8角的郵票y張,你能列出方程嗎?

 、谠诟咚俟飞希惠v轎車行駛2時(shí)的路程比一輛卡車行駛3時(shí)的路程還多20千米,如果設(shè)轎車的速度是a千米/小時(shí),卡車的速度是b千米/小時(shí),你能列出方程嗎?

  《二元一次方程組》教學(xué)設(shè)計(jì) 6

  教學(xué)目標(biāo):

  1.會(huì)用加減消元法解二元一次方程組.

  2.能根據(jù)方程組的特點(diǎn),適當(dāng)選用代入消元法和加減消元法解二元一次方程組.

  3.了解解二元一次方程組的消元方法,經(jīng)歷從“二元”到“一元”的轉(zhuǎn)化過程,體會(huì)解二元一次方程組中化“未知”為“已知”的“轉(zhuǎn)化”的思想方法.

  教學(xué)重點(diǎn):

  加減消元法的理解與掌握

  教學(xué)難點(diǎn):

  加減消元法的靈活運(yùn)用

  教學(xué)方法:

  引導(dǎo)探索法,學(xué)生討論交流

  教學(xué)過程:

  一、情境創(chuàng)設(shè)

  買3瓶蘋果汁和2瓶橙汁共需要23元,買5瓶蘋果汁和2瓶橙汁共需33元,每瓶蘋果汁和每瓶橙汁售價(jià)各是多少?

  設(shè)蘋果汁、橙汁單價(jià)為x元,y元.

  我們可以列出方程3x+2y=23

  5x+2y=33

  問:如何解這個(gè)方程組?

  二、探索活動(dòng)

  活動(dòng)一:1、上面“情境創(chuàng)設(shè)”中的方程,除了用代入消元法解以外,還有其他方法求解嗎?

  2、這些方法與代入消元法有何異同?

  3、這個(gè)方程組有何特點(diǎn)?

  解法一:3x+2y=23①

  5x+2y=33②

  由①式得③

  把③式代入②式

  33

  解這個(gè)方程得:y=4

  把y=4代入③式

  則

  所以原方程組的解是x=5

  y=4

  解法二:3x+2y=23①

  5x+2y=33②

  由①—②式:

  3x+2y-(5x+2y)=23-33

  3x-5x=-10

  解這個(gè)方程得:x=5

  把x=5代入①式,3×5+2y=23

  解這個(gè)方程得y=4

  所以原方程組的解是x=5

  y=4

  把方程組的兩個(gè)方程(或先作適當(dāng)變形)相加或相減,消去其中一個(gè)未知數(shù),把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解方程組的'方法叫做加減消元法,簡(jiǎn)稱加減法.

  三、例題教學(xué):

  例1.解方程組x+2y=1①

  3x-2y=5②

  解:①+②得,4x=6

  將代入①,得

  解這個(gè)方程得:

  所以原方程組的解是

  鞏固練習(xí)(一):練一練1.(1)

  例2.解方程組5x-2y=4①

  2x-3y=-5②

  解:①×3,得

  15x-6y=12③

 、凇3,得

  4x-6y=-10④

 、邸,得:

  11x=22

  解這個(gè)方程得x=2

  將x=2代入①,得

  5×2-2y=4

  解這個(gè)方程得:y=3

  所以原方程組的解是x=2

  y=3

  鞏固練習(xí)(二):練一練1.(2)(3)(4)2.

  四、思維拓展

  解方程組:

  五、小結(jié):

  1、掌握加減消元法解二元一次方程組

  2、靈活選用代入消元法和加減消元法解二元一次方程組

  六、作業(yè)

  習(xí)題10.31.(3)(4)2.

  《二元一次方程組》教學(xué)設(shè)計(jì) 7

  教學(xué)目標(biāo)

  知識(shí)與技能

  掌握二元一次方程和二元一次方程組及它們的解的概念,會(huì)用消元法解方程組。

  過程與方法

  能根據(jù)方程組的特點(diǎn)選擇合適的方法解方程組;并能把相應(yīng)問題轉(zhuǎn)化為解方程組

  情感、態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生分析問題,解決問題的'能力,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的快樂。

  重點(diǎn):

  掌握二元一次方程和二元一次方程組及它們的解的概念,會(huì)用消元法解方程組。

  難點(diǎn):

  選擇合適的方法解方程組;并能把相應(yīng)問題轉(zhuǎn)化為解方程組。

  教學(xué)手段

  多媒體,小組評(píng)比。

  教學(xué)過程

  一、知識(shí)梳理

  以小組為單位討論二元一次方程組已經(jīng)學(xué)了哪些知識(shí)?

  1、什么是二元一次方程?什么是二元一次方程的解?

  2、什么是二元一次方程組?什么是二元一次方程組的解?

  3、解二元一次方程組的基本思想是什么?消元的方法有哪些?

  設(shè)計(jì)意圖:知識(shí)回顧,掌握知識(shí)要點(diǎn),為順利完成練習(xí)打下基礎(chǔ)

  二、基礎(chǔ)訓(xùn)練

  教學(xué)手段與方法:每小組必答題,答對(duì)為小組的一分,調(diào)動(dòng)學(xué)習(xí)的積極性。

  設(shè)計(jì)意圖:

  基礎(chǔ)知識(shí)達(dá)標(biāo)訓(xùn)練。

  教學(xué)手段與方法:

  毎小組選代表講解為小組加分,充分調(diào)動(dòng)學(xué)生的積極性。學(xué)生講解不到位的老師補(bǔ)充。

  設(shè)計(jì)意圖:

  對(duì)二元一次方程組解法的靈活應(yīng)用。

  《二元一次方程組》教學(xué)設(shè)計(jì) 8

  教學(xué)目標(biāo):

  1、使學(xué)生會(huì)借助二元一次方程組解決簡(jiǎn)單的實(shí)際問題,讓學(xué)生再次體會(huì)二元一次方程組與現(xiàn)實(shí)生活的聯(lián)系和作用

  2、通過應(yīng)用題教學(xué)使學(xué)生進(jìn)一步使用代數(shù)中的方程去反映現(xiàn)實(shí)世界中等量關(guān)系,體會(huì)代數(shù)方法的優(yōu)越性

  3、體會(huì)列方程組比列一元一次方程容易

  4、進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問題為數(shù)學(xué)問題的能力和分析問題,解決問題的`能力

  重點(diǎn)與難點(diǎn):

  重點(diǎn):能根據(jù)題意列二元一次方程組;根據(jù)題意找出等量關(guān)系;

  難點(diǎn):正確發(fā)找出問題中的兩個(gè)等量關(guān)系

  課前自主學(xué)習(xí)

  1.列方程組解應(yīng)用題是把未知轉(zhuǎn)化為已知的重要方法,它的關(guān)鍵是把已知量和未知量聯(lián)系起來,找出題目中的( )

  2.一般來說,有幾個(gè)未知量就必須列幾個(gè)方程,所列方程必須滿足:

  (1)方程兩邊表示的是( )量

  (2)同類量的單位要( )

  (3)方程兩邊的數(shù)值要相符。

  3.列方程組解應(yīng)用題要注意檢驗(yàn)和作答,檢驗(yàn)不僅要求所得的解是否( ),更重要的是要檢驗(yàn)所求得的結(jié)果是否( )

  4.一個(gè)籠中裝有雞兔若干只,從上面看共42個(gè)頭,從下面看共有132只腳,則雞有( ),兔有( )

  新課探究

  看一看

  課本113頁(yè)探究1

  問題:

  1 題中有哪些已知量?哪些未知量?

  2 題中等量關(guān)系有哪些?

  3如何解這個(gè)應(yīng)用題?

  本題的等量關(guān)系是(1)( )

  (2)( )

  解:設(shè)平均每只母牛和每只小牛1天各需用飼料為xkg和ykg

  根據(jù)題意列方程,得

  解這個(gè)方程組得

  答:每只母牛和每只小牛1天各需用飼料為()和(),飼料員李大叔估計(jì)每天母牛需用飼料1820千克,每只小牛一天需用7到8千克與計(jì)算( )出入。(有或沒有)

  練一練:

  1、某所中學(xué)現(xiàn)在有學(xué)生4200人,計(jì)劃一年后初中在樣生增加8%,高中在校生增加11%,這樣全校學(xué)生將增加10%,這所學(xué),F(xiàn)在的初中在校生和高中在校生人數(shù)各是多少人?

  2、有大小兩輛貨車,兩輛大車與3輛小車一次可以支貨15。50噸,5輛大車與6輛小車一次可以支貨35噸,求3輛大車與5輛小車一次可以運(yùn)貨多少噸?

  3、某工廠第一車間比第二車間人數(shù)的 少30人,如果從第二車間調(diào)出10人到第一車間,則第一車間的人數(shù)是第二車間的 ,問這兩車間原有多少人?

  4、某運(yùn)輸隊(duì)送一批貨物,計(jì)劃20天完成,實(shí)際每天多運(yùn)送5噸,結(jié)果不但提前2天完成任務(wù)并多運(yùn)了10噸,求這批貨物有多少噸?原計(jì)劃每天運(yùn)輸多少噸?

  小結(jié)

  用方程組解應(yīng)用題的一般步驟是什么?

  《二元一次方程組》教學(xué)設(shè)計(jì) 9

  教學(xué)目標(biāo)

  1.會(huì)列出二元一次方程組解簡(jiǎn)單應(yīng)用題,并能檢驗(yàn)結(jié)果的合理性。

  2.知道二元一次方程組是反映現(xiàn)實(shí)世界量之間相等關(guān)系的一種有效的數(shù)學(xué)模型。

  3.引導(dǎo)學(xué)生關(guān)注身邊的`數(shù)學(xué),滲透將來未知轉(zhuǎn)達(dá)化為已知的辯證思想。

  教學(xué)重點(diǎn)

  1.列二元一次方程組解簡(jiǎn)單問題。

  2.徹底理解題意

  教學(xué)難點(diǎn)

  找等量關(guān)系列二元一次方程組。

  教學(xué)過程

  一、情境引入。

  小剛與小玲一起在水果店買水果,小剛買了3千克蘋果,2千克梨,共花了18.8元。小玲買了2千克蘋果,3千克梨,共花了18.2元;丶衣飞希麄冇錾狭撕门笥研≤,小軍問蘋果、梨各多少錢1千克?他們不講,只講各自買的幾千克水果和總共的錢,要小軍猜。聰明的同學(xué)們,小軍能猜出來嗎?

  二、建立模型。

  1.怎樣設(shè)未知數(shù)?

  2.找本題等量關(guān)系?從哪句話中找到的?

  3.列方程組。

  4.解方程組。

  5.檢驗(yàn)寫答案。

  思考:怎樣用一元一次方程求解?

  比較用一元一次方程求解,用二元一次方程組求解誰更容易?

  三、練習(xí)。

  1.根據(jù)問題建立二元一次方程組。

 。1)甲、乙兩數(shù)和是40差是6,求這兩數(shù)。

 。2)80班共有64名學(xué)生,其中男生比女生多8人,求這個(gè)班男生人數(shù),女生人數(shù)。

  (3)已知關(guān)于求x、y的方程,是二元一次方程。求a、b的值。

  2.P38練習(xí)第1題。

  四、小結(jié)。

  小組討論:列二元一次方程組解應(yīng)用題有哪些基本步驟?

  五、作業(yè)。

  P42。習(xí)題2.3A組第1題。

  后記:

  2.3二元一次方程組的應(yīng)用(2)

  《二元一次方程組》教學(xué)設(shè)計(jì) 10

  教學(xué)目標(biāo)

  1.會(huì)列二元一次方程組解簡(jiǎn)單的應(yīng)用題并能檢驗(yàn)結(jié)果的合理性。

  2.提高分析問題、解決問題的能力。

  3.體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值。

  教學(xué)重點(diǎn)

  根據(jù)實(shí)際問題列二元一次方程組。

  教學(xué)難點(diǎn)

  1.找實(shí)際問題中的相等關(guān)系。

  2.徹底理解題意。

  教學(xué)過程

  一、引入。

  本節(jié)課我們繼續(xù)學(xué)習(xí)用二元一次方程組解決簡(jiǎn)單實(shí)際問題。

  二、新課。

  例1. 小琴去縣城,要經(jīng)過外祖母家,頭一天下午從她家走到個(gè)祖母家里,第二天上午,從外外祖母家出發(fā)勻速前進(jìn),走了2小時(shí)、5小時(shí)后,離她自己家分別為13千米、25千米。你能算出她的.速度嗎?還能算出她家與外祖母家相距多遠(yuǎn)嗎?

  探究: 1. 你能畫線段表示本題的數(shù)量關(guān)系嗎?

  2.填空:(用含S、V的代數(shù)式表示)

  設(shè)小琴速度是V千米/時(shí),她家與外祖母家相距S千米,第二天她走2小時(shí)趟的路程是______千米。此時(shí)她離家距離是______千米;她走5小時(shí)走的路程是______千米,此時(shí)她離家的距離是________千米

  3.列方程組。

  4.解方程組。

  5.檢驗(yàn)寫出答案。

  討論:本題是否還有其它解法?

  三、練習(xí)。

  1.建立方程模型。

 。1)兩在相距280千米,一般順流航行需14小時(shí),逆流航行需20小時(shí),求船在靜水中速度,水流的速度

 。2)420個(gè)零件由甲、乙兩人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,還需3天完成。問:甲、乙每天各做多少個(gè)零件?

  2.P38練習(xí)第2題。

  3.小組合作編應(yīng)用題:兩個(gè)寫一方程組,另兩人根據(jù)方程組編應(yīng)用題。

  四、小結(jié)。

  本節(jié)課你有何收獲?

【《二元一次方程組》教學(xué)設(shè)計(jì)】相關(guān)文章:

二元一次方程組教學(xué)設(shè)計(jì)06-05

《二元一次方程組》教學(xué)設(shè)計(jì)5篇06-12

一次函數(shù)與二元一次方程組教學(xué)設(shè)計(jì)03-14

解二元一次方程組教學(xué)反思04-07

《加減法解二元一次方程組》教學(xué)反思07-24

二元一次方程組教后反思10-06

二元一次方程教學(xué)設(shè)計(jì)04-06

《加減法解二元一次方程組》的教學(xué)反思范文10-19

《實(shí)際問題與二元一次方程組》教案03-11