成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

《這才是好讀的數(shù)學史》讀后感

時間:2022-08-31 14:41:57 讀后感 投訴 投稿
  • 相關推薦

《這才是好讀的數(shù)學史》讀后感(通用10篇)

  當看完一本著作后,你有什么體會呢?是時候抽出時間寫寫讀后感了?靵韰⒖甲x后感是怎么寫的吧,以下是小編精心整理的《這才是好讀的數(shù)學史》讀后感,僅供參考,希望能夠幫助到大家。

《這才是好讀的數(shù)學史》讀后感(通用10篇)

  《這才是好讀的數(shù)學史》讀后感 篇1

  本書上篇數(shù)學簡史共12章節(jié),以時間順序講述。從3.7萬年到如今,人類在不斷進步,而數(shù)學也隨著人類的進步而進步。在這本書中,強調了數(shù)學的抽象性與神秘性。

  我們現(xiàn)在學習的知識都是先輩們經過漫長探索、研究、討論總結出的。書中出現(xiàn)的故事和公式使人眼前一新。比如古埃及人求圓的面積時,實際上是求圓的近似值。如今大家都知道π·r,古埃及人卻是用(8/9·d)求S圓的近似值?梢园l(fā)現(xiàn)古埃及人在這個公式里并沒有使用到“π”,這樣反而要方便些。

  我注意到的一個故事是:21世紀開始,克萊學院決定在克萊的領導下,選擇7個數(shù)學課題,并予每個課題100萬美金的獎金,而那7個數(shù)學課題是關于“千禧年問題”書中并沒有提到7個問題分別是什么,于是便上網(wǎng)查了查。分別是:戴雅猜想、霍奇猜想、納維爾-斯托克斯方程、P與NP問題、龐家萊猜想、黎曼假設、楊-米爾斯理論。這7個問題是真的難,連題目都看不懂的那種難.

  有一個問題與開普勒猜想有關:如何將最大數(shù)量的球體放置在最小的空間中,我認為這和奇點有些相似,但看起來不成立的樣子。但在那些數(shù)學家的眼里,這仿佛是一個十分有趣,又值得思考的問題。托馬斯·黑爾斯最終證明了它。

  數(shù)學是抽象的,也是無限的.,他們的出現(xiàn)大概是我們的祖先為了方便生活而發(fā)明出來的。到如今,數(shù)學在不斷的進步,但還是有許多十分困難的問題在等著我們去解答。數(shù)學不僅在生活中扮演著重要的角色,還是世界通用的語言。

  《這才是好讀的數(shù)學史》讀后感 篇2

  在任何起點上要想學好數(shù)學,我們需要先理解相關問題,然后才能賦予答案的意義

  ——引言

  數(shù)學,似乎是一個枯燥的學科,但卻是我們生活里最為有用的工具之一,它是物理化學生物的搖籃,是政治經濟學的基礎,是市場里的公平稱,是我們量化自己的必要工具...是的,數(shù)學是一個“工具箱”!那么,前人是怎么樣把這個工具弄得更為人性化,更能讓我們好好地使用呢?看完《這才是好讀的數(shù)學史》后,我知道了許多。

  《這才是好讀的數(shù)學史》介紹了數(shù)學從有記載的源頭,到最初的算數(shù),再到代數(shù)、幾何等領域不斷地深入化發(fā)展的歷史過程。本書按照歷史發(fā)展順序,先后介紹了數(shù)學的開端,古希臘的數(shù)學,古印度的數(shù)學,古阿拉伯的數(shù)學,中世紀歐洲的'數(shù)學,十五和十六世紀的代數(shù)學。

  在人類對于數(shù)學漫漫求索之路上,誕生了許多古代文化,而這些古代文化發(fā)展了各種各樣的數(shù)學。其中,古代伊拉克的歷史跨越了數(shù)千年,它包括了許多文明,如蘇美爾,巴比倫,亞述,波斯和希臘文明。所偶有這些文明都了解并使用數(shù)學,但有很多變化。在這兒不得不提到的是古希臘數(shù)學。在此之前,各個文明運用數(shù)學僅僅是用來協(xié)助、解決一些簡單的生活問題,有時不就此滿足的人們也會有簡單的探索,但希臘的數(shù)學家們是獨一無二的,他們將邏輯推理和證明作為數(shù)學中心,也是正因如此,他們永遠改變了運用數(shù)學的意義。

  數(shù)學源于生活卻高于生活。如今的數(shù)學在生活中被廣泛的運用,一起熱愛數(shù)學吧!向為數(shù)學做出巨大奉獻的前人們致敬!

  《這才是好讀的數(shù)學史》讀后感 篇3

  數(shù)學也許對我們來說僅僅是一門枯燥且乏味的科目,但在學習數(shù)學這門科目的時候,誰又曾想過數(shù)學是從何而來的,數(shù)學的發(fā)展歷程又是怎么樣的……

  本來我并不知道這些,或者用詞恰當一些,數(shù)學對于我來說是熟悉卻陌生的:說熟悉,從最初的小學一年級接觸數(shù)學,可以說到現(xiàn)在時間已經蠻久了;說陌生,從最初接觸數(shù)學以來,我并不了解關于數(shù)學的發(fā)展經過以及數(shù)學的由來。

  《數(shù)學史》這本書概括了數(shù)學的出現(xiàn)以及發(fā)展,將數(shù)學發(fā)展的幾千年的歷史寫以書的形式,讓人們更加容易理解。同時,《數(shù)學史》也在講述發(fā)展史的同時,將數(shù)學概念本身講解的十分清楚。

  從希臘人到哥德爾,在數(shù)學的發(fā)展中一直人才輩出。數(shù)學的.發(fā)展雖追蹤歐洲數(shù)學的發(fā)展,但也不失中國,印度和阿拉伯文明!稊(shù)學史》將世界上的數(shù)學文明都總結在了書中,十分經典。

  在書中,我了解到:在早期人類社會中,數(shù)學史抽象的科學,恩格斯指出:“數(shù)學在一門科學中的應用程度,標志著這門科學的成熟程度!钡浆F(xiàn)如今,數(shù)學對科學和社會提供著不可缺的技術與理論支持。

  數(shù)學也是一門累積性強的學科,重大的數(shù)學理論總是在繼承和發(fā)展原有理論的基礎上建立起來的,他們不僅不會推翻原有理論,反而總是包容它們,在原有的基礎上再做更多的鉆研。

  讀了這本書,讓我對數(shù)學有了新的認識和感悟,也讓我從更深層次了解到了數(shù)學的魅力與偉大以及對前輩的深深崇敬!稊(shù)學史》這本書是一本十分難得的記錄數(shù)學發(fā)展史的書,它不僅條理清晰且易讀,實為優(yōu)秀的數(shù)學史教材。

  《這才是好讀的數(shù)學史》讀后感 篇4

  數(shù)學是神秘的,古老而明亮,在人類歷史長河中,閃閃發(fā)光,我讀了數(shù)學史后,知道了數(shù)學的起源,發(fā)展與未來的走向,其中,《微積分與應用數(shù)學》給我留下深刻印象

  16世紀到17世紀,可以說是一個數(shù)學史路上一個里程碑,在16世紀早期,學者們創(chuàng)造了代數(shù),他們被稱為“未知數(shù)計算家”,在那個時期,代數(shù)占據(jù)了數(shù)學史的中心位置,而到了16世紀末17世紀初,人類開始了新的探索,代數(shù)與幾何共存,以此來研究天文,工程,航海,甚至是政治上的一些問題:開勒普用希臘圓錐描述太陽系,托馬斯·哈里奧特則發(fā)展代數(shù),笛卡爾把代數(shù)和幾何結合,從而開始理解彗星,光等現(xiàn)象,這一時期,可以說是各種數(shù)學成就在此出生,但最出名的,還是微積分,當時人們無法用數(shù)字表現(xiàn)出天體的運動,無法表現(xiàn)一些抽象的物體,于是牛頓與萊布尼茨發(fā)明了微積分,但微積分始終還是較為抽象,不就后,當時最著名的數(shù)學家——歐拉也做出了一系列成就:三角形中的幾何學,多面體的基本定理,有趣的`是,歐拉甚至將數(shù)應用于船舶,中彩票或是過橋,歐拉將自己生活的方方面面都往數(shù)學上想,在他的世界中,數(shù)學無處不在。

  我們不難看出這些數(shù)學家的發(fā)明的確大大改變了人們的生活,他們掌握了探索世界的鑰匙——數(shù)學,將數(shù)學應用到方方面面,我們現(xiàn)代生活不也是如此,處處是數(shù)學,但最重要的是,我們熱愛數(shù)學。

  《這才是好讀的數(shù)學史》讀后感 篇5

  數(shù)學,一根串著文明歷史發(fā)展的閃耀金繩,它與文學物理學藝術經濟學或音樂一樣,是人類不斷發(fā)展,努力的結果。

  對數(shù)學不太敏感的我,拿起這本數(shù)學史,一開始是不愿意翻開的,認為它語言生澀,一定有很多的生僻又陌生的專有名詞,幾乎滿篇皆是,所以從收到這本書之后2天內都沒有看過。但是為了完成劉老師的作業(yè),我硬著頭皮翻開了這本陌生的書。這本書是以時間發(fā)展為主線進行編布的。

  讀開端的時候我就覺得這本書很不一樣語言是親切、嚴謹?shù)挠^點是新穎的。作者“從歷史開始學數(shù)學”的觀點讓我對這本書產生了興趣。變得愿意與他一起跟隨數(shù)學的腳步,一頁一頁翻下去,讀下去。在書本中,有許多我認識的老朋友,他們曾經在小學或是初中課本上出現(xiàn)過。像歐幾里得、笛卡爾。他們是數(shù)學的奠基人,為數(shù)學之路鋪上卵石。在這本書中也出現(xiàn)過一些我不熟悉的.偉大數(shù)學家,他們在認真探究,證明的場景一幕幕浮現(xiàn)在腦海,令人心生敬畏。

  我記憶最深刻的就是一位打破了“數(shù)學家都是男性”觀念的法國優(yōu)秀女數(shù)學家———索菲.熱爾曼!

  她在所謂的“啟蒙運動”中成長,懷揣著熾熱的想成為數(shù)學家的愿望,在困難重重克服了社會對女性知識分子的偏見,在彈性理論上取得重要結果。實在令人佩服!

  當今社會,數(shù)學在多領域工作,在工地、廣場、車站、實驗室......

  我們需要數(shù)學,今天需要數(shù)學,未來也一樣需要數(shù)學,因為“數(shù)學不是被發(fā)現(xiàn)出來的,而是被發(fā)明出來的!”

  學好數(shù)學就是走好未來的一大步!

  《這才是好讀的數(shù)學史》讀后感 篇6

  在我閱讀數(shù)學史之前,數(shù)學在我的腦子里,就是一個很難很難的學科。數(shù)學漂浮在我的腦海里,像一只枯萎的蝴蝶,死板而又無味。

  但是在閱讀數(shù)學史之后我知道了,數(shù)學的歷史源遠流長。我了解到,在早期的人類社會中,是數(shù)學與語言、藝術以及宗教一并構成了最早的人類文明。數(shù)學是最抽象的科學,而最抽象的數(shù)學卻能催生出人類文明的絢爛的花朵。這便使數(shù)學成為人類文化中最基礎的工具。而在現(xiàn)代社會中,數(shù)學正在對科學和社會的發(fā)展提供著不可或缺的理論和技術支持。

  就像書中所寫的一樣,或許在數(shù)學課上講一些有趣的小故事,可以提高學生的'專注力和興趣,然后引入課堂。

  可能是由于我見識短淺(?)我一直認為中國數(shù)學是非常高深,深不可測的那種,認為中國數(shù)學在世界有最高的影響力和地位。但其實中數(shù)是非常具有影響力(九九乘法表,11的兩邊一拉中間相加)但希臘數(shù)學是獨一無二的,盡管在現(xiàn)在的數(shù)學之中,希臘數(shù)學家的邏輯推理和證明都是擺在數(shù)學中心的。數(shù)學家或許有許多不同,但他們絕對擁有財力·時間和數(shù)學天賦。他們的嚴謹性和專業(yè)精神恐怕是我畢生難以追求的吧。

  總的來說,數(shù)學是人類創(chuàng)造活動的過程,而不單純是一種形式化的結果;運用辨證唯物主義的觀點看待數(shù)學科學及數(shù)學教育,在他們的形成和發(fā)展過程中,不但表現(xiàn)出矛盾運動的特點,而且它們與社會、政治、經濟以及一般人類的文化有著密切的聯(lián)系,而這些聯(lián)系就像龍須酥一樣香濃醇厚,萬般絲滑,密不可分,是不能夠輕易斬斷的關系!

  數(shù)學史不僅僅是單純的數(shù)學成就的編年記錄。數(shù)學的發(fā)展決不是一帆風順的,在跟讀的情況下是充滿猶豫、徘徊,要經歷艱難曲折,甚至會面臨困難和戰(zhàn)盛危機的斗爭記錄。無理量的發(fā)現(xiàn)、微積分和非歐幾何的創(chuàng)立…這些例子可以幫助人們了解數(shù)學創(chuàng)造的真實過程,而這種真實的過程是在教科書里以定理到定理的形式被包裝起來的。對這種創(chuàng)造過程的了解則可以使人們探索與奮斗中汲取教益,獲得鼓舞和增強信心。

  我相信在未來,數(shù)學史帶給我的影響,會影響到我的一生,我也希望中國數(shù)學能夠源遠流長,從《九章算術》到《周髀算經》呈現(xiàn)出更多的”東方數(shù)學“的色彩!

  《這才是好讀的數(shù)學史》讀后感 篇7

  在這個寒假里,我接觸到了《數(shù)學史》這本書。這本書介紹了數(shù)學從有記載的源頭向最初的算術、幾何、統(tǒng)計學、運籌學等領域不斷深化發(fā)展的歷史進程,以及如今數(shù)學的發(fā)展。

  這本書分為兩篇,上篇是數(shù)學簡史,下篇是數(shù)學概念小史。這本書中令我印象最深的數(shù)學家就是費馬。皮埃爾·德·費馬是屬于文藝復興時期傳統(tǒng)的人,他處于重新發(fā)掘古希臘知識的中心,但是他卻問了一個希臘人沒有想到過要問的問題—費馬大定理。這個問題困惑了世人358年,直到1994年的9月19日安德魯·懷爾斯才宣布解開這個問題。這個問題起源于古希臘時代,它聯(lián)系著畢達哥拉斯所建立的數(shù)學的基礎和現(xiàn)代數(shù)學中各種最復雜的思想。費馬大定理的故事和數(shù)學的歷史有著密不可分的聯(lián)系,它對于“是什么推動著數(shù)學發(fā)展”,或者是“是什么激勵著數(shù)學家們”提供了一個獨特的見解。費馬大定理是一個充滿勇氣、欺詐、狡猾和悲慘的英雄傳奇的`核心,牽涉到數(shù)學王國中所有最偉大的英雄。巴里·梅休爾評論說,在某種意義上每個人都在研究費馬問題,但只是零星地而沒有把它作為目標,因為這個證明需要把現(xiàn)代數(shù)學的整個力量聚集起來才能完全解答。安德魯所做的就是再一次把似乎是相隔很遠的一些數(shù)學領域結合在一起。因而,他的工作似乎證明了自費馬問題提出以來數(shù)學所經歷的多元化過程是合理的。

  讀了數(shù)學史后,我認為數(shù)學在我們的生活中扮演著不可或缺的角色,只有學好數(shù)學,學會應用數(shù)學,我們才能在這個正在向數(shù)字化發(fā)展的社會穩(wěn)穩(wěn)地站住腳跟。

  《這才是好讀的數(shù)學史》讀后感 篇8

  在這個寒假,我閱讀了一本名叫《這才是好讀的數(shù)學史》這本書叫這個名字確實是名副其實,他為人們介紹了最全面的數(shù)學史,以及名人與數(shù)學之前的故事,還有各國數(shù)學的起源到發(fā)展。

  數(shù)學的形狀和名稱以及關于計數(shù)和算數(shù)運算的基本概念似乎是人類的遺產。早在公元前500年,數(shù)學就出現(xiàn)了,隨著社會的'不斷發(fā)展,就需要一些方法來統(tǒng)計拖款欠稅的數(shù)額等等,這時候數(shù)學就開始出現(xiàn)了。那時候的古埃及人用墨水在紙草上書寫這種,這種材料是不易保存數(shù)千年的。大多數(shù)?脊偶彝诰虻氖^都是在神廟和陵墓附近,而不是在古城遺址。因此我們只能通過少量的資料來考察古埃及的數(shù)學發(fā)展史。

  許多古代文化發(fā)展了各式各樣的數(shù)學,但是希臘數(shù)學家們是獨一無二的,他們將邏輯推理和證明擺在數(shù)學的中心位置。希臘數(shù)學傳統(tǒng)的保持和發(fā)展一直延續(xù)到公元400年。我們了解的希臘數(shù)學最早是歐幾里得的《幾何原本》,可我們也只了解這一本著名的書。希臘數(shù)學的優(yōu)勢便是幾何,盡管希臘人也研究了整數(shù),天文學,力學。但是根據(jù)古希臘幾何學史學家的說法,最早的希臘數(shù)學家是600年前的泰勒斯,畢達哥拉斯都要比他晚一個世紀,當記錄歷史時,泰勒斯和畢達哥拉斯都成為了遠古時期的神話級人物。

  又在20世紀初,希伯爾特提出了一系列重要問題,又在21世紀開始在克萊數(shù)學學院的帶領下,選擇7個數(shù)學課題,并且提供的100萬美金來解決每一個問題數(shù)論則是另一個發(fā)展方向。正如我們的數(shù)學概念小史中解釋的,費馬的最后定理在1994年得到了證明。

  在今天的數(shù)學中涉及了許多不同的領域,所以我們要好好學習數(shù)學,并且多看有關數(shù)學的書,才能使我們的數(shù)學成績突飛猛進。

  《這才是好讀的數(shù)學史》讀后感 篇9

  讀完《這才是好讀的數(shù)學史》之后,我最想表達的就是對數(shù)學悠長的歷史的感嘆,這本書讓我了解到從3.7萬年前到現(xiàn)在21世紀的數(shù)學的發(fā)展與進步,也明白了數(shù)學在生活中的重要性。

  下面我將介紹幾點我印象最深刻的內容:

  在書中第一章:開端中介紹了四大文明古國的數(shù)學文化,包括當時的人們用什么材質的東西來記錄數(shù)學,用數(shù)學干什么以及保存情況如何。在這一章講述古巴比倫的數(shù)學是寫了他們數(shù)學中幾個特征,包括以60的冪表示數(shù)字,所以接近4000年后的今天為什么仍然把一小時分成60分,把一分鐘分成60秒。在這一章中也講了我國古代的數(shù)學文化,在書中介紹了《算經十書》《九章算術》等中國古代的數(shù)學經典,由于種種原因導致當時的'數(shù)學文化的損失,但作者實事求是,沒有寫一些沒有歷史根據(jù)的東西,再一次讓我感受到這本書的嚴謹。

  書中是按國家的順序進行安排的,因為如果按時間順序安排的話,很容易弄混淆,作者按照時間線上在某個時間點上最重要的事情的國家來安排,體現(xiàn)了本書“好讀”的特點。

  在書中有一個細節(jié)讓我注意,每一章最后都會有一段來推薦一些關于本章內容更詳細的講解的書目,甚至詳細到了具體在哪一章,在書的最后把對應的書名寫了出來(雖然是英語的,我看不懂)從中可以看到作者對待數(shù)學的嚴謹和細致。

  我非常喜歡在書中的一句話“學習數(shù)學就像認識一個人一樣,你對他(她)的過去了解的越多,你現(xiàn)在和將來就能越理解他(她),并與其互動!边@句話感覺就像說中了我的感受,我認為閱讀完之后,自己不僅會對數(shù)學更有興趣,而且在以后學習數(shù)學的時候更加認真對待。

  《這才是好讀的數(shù)學史》讀后感 篇10

  首先,看到這本書后,第一個感覺是這本書太厚了,肯定無聊。而第二個印象是在每一個概念后的“見數(shù)學概念小史某某頁”,然后這最重要的事是這書講了這我不曾了解的事。

  從過去到現(xiàn)在,先是古埃及人,他們的方法對于現(xiàn)代太不實用了,但是他們還是聰明,知道用符號,用兩個符號來表示1和10,這東西就是冪,在生活中肯定很少用,而且我還發(fā)現(xiàn)這數(shù)學呢我一直認為是想從簡單到復雜,但是并不是如此,可以說是相反的。

  比巴倫的數(shù)學家們特別有趣,造的題目也有趣,不實用,但是很好玩,在本書的15頁,有這原題,這大概就是用一根蘆葦去測量田有多大,其實就是二元一次方程,但是看完頭都大了,不知到底在講什么。

  繼續(xù)讀著,誒!看見了老熟人——歐幾里得,從小學周圍的人都在談論著他,給我講他的曠世巨作《幾何原本》,過去經常說“好,好,好,《幾何原本》好!钡俏也⒉恢肋@書居然是公元前三千多年左右寫的,我一直認為他是希臘人,但是他居然是埃及人,這好奇怪,據(jù)書中說有很多的希臘數(shù)學家都不是希臘人。

  繼續(xù)讀,數(shù)學也和天文學有關,從天文學中又出現(xiàn)了三角學,原來三角學是從天文學出來的,在讀阿拉伯數(shù)學時,看見了“楊輝”三角形,但是這書中的'是“帕斯卡三角形”,其實也是“楊輝”三角形,所以后者好記些。

  微積分里面看見了伽利略,但是似乎不是他的主場,所以不管他,微積分這里知道了流數(shù)和微分基本上都是我們現(xiàn)在所稱的導數(shù)。他們的發(fā)明者分別是牛頓和萊布尼茨。牛頓這特別熟悉了,這萊布尼茨是個律師和數(shù)學家,他最可以的是他的公式幾乎都是在顛簸的馬車上寫下。在各個學科每每留下了著作。

  還有一個人讓我記住了,叫做歐拉,不光名字好記,他自己也是一個喜歡記的人,據(jù)書上所說,他可以說是一個論文天才也是數(shù)學天才,因為只要他有一個好的方法,自己馬上就寫一篇論文,來記下自己的觀念。

  這便是這《這才是好讀的數(shù)學史》上篇的讀后感,不是特別無聊,反而還有一些有趣,整體的布局也不錯,讓讀者一步步深入,有特別強的吸引力,可能因人而異吧,下篇就是純數(shù)學了,所以這便是我的讀后感了。

【《這才是好讀的數(shù)學史》讀后感】相關文章:

這才是青春作文02-12

彎路才是常態(tài)作文09-11

讀好書好讀書作文02-14

好讀書讀好書作文02-12

這山這水這方情散文(精選22篇)08-01

這世界作文04-17

簡單甚好讀后感11-08

周國平把心安頓好讀后感09-23

哪兒才是我們的家作文04-17