函數(shù)數(shù)學(xué)教案
作為一位不辭辛勞的人民教師,就有可能用到教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。來參考自己需要的教案吧!下面是小編收集整理的函數(shù)數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。
函數(shù)數(shù)學(xué)教案1
教學(xué)目標(biāo)
(一)知道函數(shù)圖象的意義;
(二)能畫出簡(jiǎn)單函數(shù)的圖象,會(huì)列表、描點(diǎn)、連線;
(三)能從圖象上由自變量的值求出對(duì)應(yīng)的函數(shù)的近似值。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):認(rèn)識(shí)函數(shù)圖象的意義,會(huì)對(duì)簡(jiǎn)單的函數(shù)列表、描點(diǎn)、連線畫出函數(shù)圖象。
難點(diǎn):對(duì)已恬圖象能讀圖、識(shí)圖,從圖象解釋函數(shù)變化關(guān)系。
教學(xué)過程設(shè)計(jì)
(一)復(fù)習(xí)
1.什么叫函數(shù)?
2.什么叫平面直角坐標(biāo)系?
3.在坐標(biāo)平面內(nèi),什么叫點(diǎn)的橫坐標(biāo)?什么叫點(diǎn)的縱坐標(biāo)?
4.如果點(diǎn)A的橫坐標(biāo)為3,縱坐標(biāo)為5,請(qǐng)用記號(hào)表示A(3,5).
5.請(qǐng)?jiān)谧鴺?biāo)平面內(nèi)畫出A點(diǎn)。
6.如果已知一個(gè)點(diǎn)的坐標(biāo),可在坐標(biāo)平面內(nèi)畫出幾個(gè)點(diǎn)?反過來,如果坐標(biāo)平面內(nèi)的`一個(gè)點(diǎn)確定,這個(gè)點(diǎn)的坐標(biāo)有幾個(gè)?這樣的點(diǎn)和坐標(biāo)的對(duì)應(yīng)關(guān)系,叫做什么對(duì)應(yīng)?(答:叫做坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)一一對(duì)應(yīng))
(二)新課
我們?cè)谇皫坠?jié)課已經(jīng)知道,函數(shù)關(guān)系可以用解析式表示,像y=2x+1就表示以x 為自變量時(shí),y是x的函數(shù)。
這個(gè)函數(shù)關(guān)系中,y與x的函數(shù)。
這個(gè)函數(shù)關(guān)系中,y與x的對(duì)應(yīng)關(guān)系,我們還可通知在坐標(biāo)平面內(nèi)畫出圖象的方法來表示。
函數(shù)數(shù)學(xué)教案2
教學(xué)目標(biāo)
1.使學(xué)生了解反函數(shù)的概念,初步掌握求反函數(shù)的方法.
2.通過反函數(shù)概念的學(xué)習(xí),培養(yǎng)學(xué)生分析問題,解決問題的能力及抽象概括的能力.
3.通過反函數(shù)的學(xué)習(xí),幫助學(xué)生樹立辨證唯物主義的世界觀.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是反函數(shù)概念的形成與認(rèn)識(shí).
難點(diǎn)是掌握求反函數(shù)的方法.
教學(xué)用具
投影儀
教學(xué)方法
自主學(xué)習(xí)與啟發(fā)結(jié)合法
教學(xué)過程
一. 揭示課題
今天我們將學(xué)習(xí)函數(shù)中一個(gè)重要的概念----反函數(shù).
1.4. 反函數(shù)(板書)
(一)反函數(shù)的概念(板書)
二.講解新課
教師首先提出這樣一個(gè)問題:在函數(shù) 中,如果把 當(dāng)作因變量,把 當(dāng)作自變量,能否構(gòu)成一個(gè)函數(shù)呢?(讓學(xué)生思考后回答,要講明理由)可以根據(jù)函數(shù)的定義在 的允許取值范圍內(nèi)的任一值,按照法則 都有唯一的 與之相對(duì)應(yīng).(還可以讓學(xué)生畫出函數(shù)的圖象,從形的角度解釋“任一 對(duì)唯一 ”)
學(xué)生解釋后教師指出不管從哪個(gè)角度,它都是一個(gè)函數(shù),即 有反函數(shù),而且把這個(gè)函數(shù)稱為 的反函數(shù).那么這個(gè)反函數(shù)的解析式是什么呢?
由學(xué)生回答出應(yīng)為 .教師再提出 它作為函數(shù)是沒有問題的,但不太符合我們的表示習(xí)慣,按習(xí)慣用 表示自變量,用 表示因變量,故它又可以改寫成 ,改動(dòng)之后帶來一個(gè)新問題: 和 是同一函數(shù)嗎?
由學(xué)生討論,并說明理由,要求學(xué)生能從函數(shù)三要素的角度去認(rèn)識(shí),并給出解釋,讓學(xué)生真正承認(rèn)它們是同一函數(shù).并把 叫做 的反函數(shù).繼而再提出: 有反函數(shù)嗎?是哪個(gè)函數(shù)?
學(xué)生很快會(huì)意識(shí)到 是 的反函數(shù),教師可再引申為 與 是互為反函數(shù)的.然后利用問題再引申:是不是所有的函數(shù)都有反函數(shù)呢?如果有,請(qǐng)舉出例子.在教師啟發(fā)下學(xué)生可以舉出象 這樣的函數(shù),若將 當(dāng)自變量, 當(dāng)作因變量,在 允許取值范圍內(nèi)一個(gè) 可能對(duì)兩個(gè) (可畫圖輔助說明,當(dāng) 時(shí),對(duì)應(yīng) ),不能構(gòu)成函數(shù),說明此函數(shù)沒有反函數(shù).
通過剛才的例子,了解了什么是反函數(shù),把對(duì) 的反函數(shù)的研究過程一般化,概括起來就可以得到反函數(shù)的定義,但這個(gè)數(shù)學(xué)的抽象概括,要求比較高,因此我們一起閱讀書上相關(guān)的內(nèi)容.
1. 反函數(shù)的定義:(板書)(用投影儀打出反函數(shù)的定義)
為了幫助學(xué)生理解,還可以把定義中的 換成某個(gè)具體簡(jiǎn)單的函數(shù)如 解釋每一步驟,如得 ,再判斷它是個(gè)函數(shù),最后改寫為 .給出定義后,再對(duì)概念作點(diǎn)深入研究.
2.對(duì)概念得理解(板書)
教師先提出問題:反函數(shù)的“反”字應(yīng)當(dāng)是相對(duì)原來給出的函數(shù)而言,指的是兩者的關(guān)系你能否從函數(shù)三要素的角度解釋“反”的含義呢?(仍可以 與 為例來說)
學(xué)生很容易先想到對(duì)應(yīng)法則是“反”過來的,把 與 的位置換位了,教師再追問它們的互換還會(huì)帶來什么變化?啟發(fā)學(xué)生找出另兩個(gè)要素之間的關(guān)系.最后得出結(jié)論: 的定義域和值域分別由 的值域和定義域決定的`.再把結(jié)論從特殊發(fā)展到一般,概括為:反函數(shù)的三要素是由原來函數(shù)的三要素決定的.給出的函數(shù)確定了,反函數(shù)的三要素就已經(jīng)確定了.簡(jiǎn)記為“三定”.
(1)“三定”(板書)
然后要求學(xué)生把剛才的三定具體化,也就是“反”字的具體體現(xiàn).由學(xué)生一一說出反函數(shù)的定義域是原來函數(shù)的值域,反函數(shù)的值域是原來函數(shù)的定義域,反函數(shù)的對(duì)應(yīng)法則就是把原來函數(shù)對(duì)應(yīng)法則中 與 的位置互換.(用投影儀打出互換過程)如圖
最后教師進(jìn)一步明確“反”實(shí)際體現(xiàn)為“三反”, “三反”中起決定作用的是 與 的位置的反置,正是由于它的反置,才把它的范圍也帶走了,引起了另外兩“反”.
(2)“三反”(板書)
此時(shí)教師可把問題再次引向深入,提出:如果一個(gè)函數(shù)存在反函數(shù),應(yīng)怎樣求這個(gè)反函數(shù)呢?下面我給出兩個(gè)函數(shù),請(qǐng)同學(xué)們根據(jù)自己對(duì)概念的理解來求一下它們的反函數(shù).
例1. 求 的反函數(shù).(板書)
(由學(xué)生說求解過程,有錯(cuò)或不規(guī)范之處,暫時(shí)不追究,待例2解完之后再一起講評(píng))
解:由 得 , 所求反函數(shù)為 .(板書)
例2. 求 , 的反函數(shù).(板書)
解:由 得 ,又 得 ,
故所求反函數(shù)為 .(板書)
求完后教師請(qǐng)同學(xué)們作評(píng)價(jià),學(xué)生之間可以討論,充分暴露表述中得問題,讓學(xué)生自行發(fā)現(xiàn),自行解決.最后找代表發(fā)表意見,指出例2中問題,結(jié)果應(yīng)為 , .
教師可先明知故問 ,與 , 有什么不同?讓學(xué)生明確指出兩個(gè)函數(shù)定義域分別是 和 ,所以它們是不同的函數(shù).再追問 從何而來呢?讓學(xué)生能從三定和三反中找出理由,是從原來函數(shù)的值域而來.
在此基礎(chǔ)上,教師最后明確要求,由于反函數(shù)的定義域必是原來函數(shù)的值域,而不是從自身解析式出發(fā)尋求滿足的條件,所以求反函數(shù),就必須先求出原來函數(shù)的值域.之后由學(xué)生調(diào)整剛才的求解過程.
解: 由 得 ,又 得 ,
又 的值域是 ,
故所求反函數(shù)為 , .
(可能有的學(xué)生會(huì)提出例1中為什么不求原來函數(shù)的值域的問題,此時(shí)不妨讓學(xué)生去具體算一算,會(huì)發(fā)現(xiàn)原來函數(shù)的值域域求出的函數(shù)解析式中所求定義域時(shí)一致的,所以使得最后結(jié)果沒有出錯(cuò).但教師必須指出結(jié)論得一致性只是偶然,而不是必然,因此為規(guī)范求解過程要求大家一定先求原來函數(shù)的值域,并且在最后所求結(jié)果上注明反函數(shù)的定義域,同時(shí)讓學(xué)生調(diào)整例的表述,將過程補(bǔ)充完整)
最后讓學(xué)生一起概括求反函數(shù)的步驟.
3.求反函數(shù)的步驟(板書)
(1) 反解:
(2) 互換
(3) 改寫:
對(duì)以上環(huán)節(jié)教師可稍作解釋,然后提出再通過下面的練習(xí)來檢驗(yàn)是否真正理解了.
三.鞏固練習(xí)
練習(xí):求下列函數(shù)的反函數(shù).
(1) (2) .(由兩名學(xué)生上黑板寫)
解答過程略.
教師可針對(duì)學(xué)生解答中出現(xiàn)的問題,進(jìn)行講評(píng).(如正負(fù)的選取,值域的計(jì)算,符號(hào)的使用)
四.小結(jié)
1. 對(duì)反函數(shù)概念的認(rèn)識(shí):
2. 求反函數(shù)的基本步驟:
五.作業(yè)
課本第68頁(yè)習(xí)題2.4第1題中4,6,8,第2題.
六.板書設(shè)計(jì)
2.4反函數(shù) 例1. 練習(xí).
一. 反函數(shù)的概念 (1) (2)
1. 定義
2. 對(duì)概念的理解 例2.
(1) 三定(2)三反
3. 求反函數(shù)的步驟
(1)反解(2)互換(3)改寫
函數(shù)數(shù)學(xué)教案3
教學(xué)目標(biāo):
、僬莆諏(duì)數(shù)函數(shù)的性質(zhì)。
②應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)
合函數(shù)的定義域、值 域及單調(diào)性。
、 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高
解題能力。
教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過程設(shè)計(jì):
⒈復(fù)習(xí)提問:對(duì)數(shù)函數(shù)的概念及性質(zhì)。
⒉開始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
、舕oga5。1 ,loga5。9 (a>0,a≠1)
、苐og0。50。6 ,logЛ0。5 ,lnЛ
師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?
生:這兩個(gè)對(duì)數(shù)底相等。
師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?
生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。
師:對(duì),請(qǐng)敘述一下這道題的解題過程。
生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大。寒(dāng)0 調(diào)遞減,所以loga5。1>loga5。9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞 增,所以loga5。1 板書: 解:Ⅰ)當(dāng)0 ∵5。1<5。9 1="">loga5。9 Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù), ∵5。1<5。9 ∴l(xiāng)oga5。1 師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征? 生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。 師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大? 生:找“中間量”, log0。50。6>0,lnЛ>0,logЛ0。5<0;lnл>1,log0。50。6<1,所以logЛ0。5< log0。50。6< lnЛ。 板書:略。 師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函 數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù) 函數(shù)圖象的位置關(guān)系來比大小。 2 函數(shù)的定義域, 值 域及單調(diào)性。 例 2 ⑴求函數(shù)y=的定義域。 、平獠坏仁絣og0。2(x2+2x-3)>log0。2(3x+3) 師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要 使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式, 被開方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于 零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求 它們共同作用的結(jié)果。) 生:分母2x-1≠0且偶次根式的被開方式log0。8x-1≥0,且真數(shù)x>0。 板書: 解:∵ 2x-1≠0 x≠0。5 log0。8x-1≥0 , x≤0。8 x>0 x>0 ∴x(0,0。5)∪(0。5,0。8〕 師:接下來我們一起來解這個(gè)不等式。 分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零, 再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。 師:請(qǐng)你寫一下這道題的解題過程。 生:<板書> 解: x2+2x-3>0 x<-3 x="">1 (3x+3)>0 , x>-1 x2+2x-3<(3x+3) -2 不等式的`解為:1 ⒊小結(jié) 這堂課主要講解如何應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問題,希望能通過這堂課使同學(xué)們對(duì)等價(jià)轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。 ⒋作業(yè) 、沤獠坏仁 、賚g(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù)) 、埔阎瘮(shù)y=loga(x2-2x),(a>0,a≠1) x -3 -2 -1 0 1 2 3 Y=x2 9 4 1 0 1 4 9 二、描點(diǎn)、連線: 按照表格,描出各點(diǎn)。然后用光滑的.曲線,按照x(點(diǎn)的橫坐標(biāo))由小到大的順序把各點(diǎn)連結(jié)起來。 對(duì)照教師畫的圖象一一分析學(xué)生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點(diǎn)注意。 練習(xí):畫出函數(shù);的圖象(請(qǐng)兩個(gè)同學(xué)板演) X -3 -2 -1 0 1 2 3 Y=0。5X2 4。5 2 0。5 0 0。5 02 4。5 Y=-X2 -9 -4 -1 0 -1 -4 -9 畫好之后教師根據(jù)情況講評(píng),并引導(dǎo)學(xué)生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。 (這里,教師在學(xué)生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學(xué)生學(xué)會(huì)畫圖象的方法;并及時(shí)安排練習(xí)鞏固剛剛學(xué)到的新知識(shí),通過觀察,感悟拋物線名稱的由來。) 三 運(yùn)用新知、變式探究 畫出函數(shù) y=5x2圖象 學(xué)生在畫圖象的過程當(dāng)中遇到函數(shù)值較大的困難,不知如何是好。 x -0。5 -0。4 -0。3 -0。2 -0。1 0 0。1 0。2 0。3 0。4 0。5 Y=5x2 1。25 0。8 0。45 0。2 0。05 0 0。05 0。2 0。45 0。8 1。25 教師出示已畫好的圖象讓學(xué)生觀察 注意:1。 畫圖象應(yīng)描7個(gè)左右的點(diǎn),描的點(diǎn)越多圖象越準(zhǔn)確。 2。 自變量X的取值應(yīng)注意關(guān)于Y軸對(duì)稱。 3。 對(duì)于不同的二次函數(shù)自變量X的取值應(yīng)更加靈活,例如可以取分?jǐn)?shù)。 四。 四。 歸納小結(jié)、延續(xù)探究 教師引導(dǎo)學(xué)生觀察表格及圖象,歸納y=ax2的性質(zhì),學(xué)生們暢所欲言,各抒己見;互相改進(jìn),互相完善。最終得到如下性質(zhì): 一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對(duì)稱軸是Y軸,頂點(diǎn)是坐標(biāo)原點(diǎn);當(dāng)a>0時(shí),圖象的開口向上,最低點(diǎn)為(0,0);當(dāng)a<0時(shí),圖象的開口向下,最高點(diǎn)為(0,0)。 五 回顧反思、總結(jié)收獲 在這一環(huán)節(jié)中,教師請(qǐng)同學(xué)們回顧一節(jié)課的學(xué)習(xí)暢談自己的收獲或多、或少、或幾點(diǎn)、或全面,總之是人人有所得,個(gè)個(gè)有提高。這也正是新課標(biāo)中所倡導(dǎo)的新的理念——不同的人在數(shù)學(xué)上得到不同的發(fā)展。 。ㄔ谡麄(gè)一節(jié)課上,基本上是學(xué)生講為主,教師講為輔。一些較為困難的問題,我也鼓勵(lì)學(xué)生大膽思考,積極嘗試,不怕困難,一個(gè)人完不成,講不透,第二個(gè)人、第三個(gè)人補(bǔ)充,直到完成整個(gè)例題。這樣上課氣氛非;钴S,學(xué)生之間常會(huì)因?yàn)槟硞(gè)觀點(diǎn)的不同而爭(zhēng)論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時(shí)地對(duì)某些觀點(diǎn)作出判斷,或與學(xué)生一同討論。) 學(xué)習(xí)目標(biāo): 1、能解釋二次函數(shù) 的圖像的位置關(guān)系; 2、體會(huì)本節(jié)中圖形的變化與 圖形上的點(diǎn)的坐標(biāo)變化之間的關(guān)系(轉(zhuǎn)化),感受形數(shù) 結(jié)合的數(shù)學(xué)思想等。 學(xué)習(xí)重點(diǎn)與難點(diǎn): 對(duì)二次函數(shù) 的圖像的位置關(guān)系解釋和研究問題的數(shù)學(xué)方法的感受是學(xué)習(xí)重點(diǎn);難點(diǎn)是對(duì)數(shù)學(xué)問題研究問題方法的感受和領(lǐng)悟。 學(xué)習(xí)過程: 一、知識(shí)準(zhǔn)備 本節(jié)課的學(xué)習(xí)的內(nèi)容是課本P12-P14的內(nèi)容,內(nèi)容較長(zhǎng),課本上問題較多,需要你操作、觀察、思考和概括,請(qǐng)你注意:學(xué)習(xí)時(shí)要圈、點(diǎn)、勾、畫,隨時(shí)記錄甚至批注課本,想想那個(gè)人是如何研究出來的。你有何新的發(fā)現(xiàn)呢? 二、學(xué)習(xí)內(nèi)容 1.思考:二次函數(shù) 的圖象是個(gè)什么圖形?是拋物線嗎?為什么?(請(qǐng)你仔細(xì)看課本P12-P13,作出合理的解釋) x -3 -2 -1 0 1 2 3 類似的:二次函數(shù) 的圖象與函數(shù) 的圖象有什么關(guān)系? 它的對(duì)稱軸、頂點(diǎn)、最值、增減性如何? 2.想一想:二次函數(shù) 的圖象是拋物線嗎?如果結(jié)合下表和看課本P13-P14你的解釋是什么? x -8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6 類似的:二次函數(shù) 的圖象與二次函數(shù) 的圖象有什么關(guān)系 ?它的對(duì)稱軸、頂點(diǎn)呢?它的對(duì)稱軸、頂點(diǎn)、最值、增減性如何呢 三、知識(shí)梳理 1、二次函數(shù) 圖像的形狀,位置的關(guān)系是: 2、它們的性質(zhì)是: 四、達(dá)標(biāo)測(cè)試 、睂佄锞y=4x2向上平移3個(gè)單位,所得的拋物線的函數(shù)式是 。 將拋物線y=-5x2+1向下平移5個(gè)單位,所得的拋物線的.函數(shù)式是 。 將函數(shù)y=-3x2+4的圖象向 平移 個(gè)單位可得y=-3x2的圖象; 將y=2x2-7的圖象向 平移 個(gè)單位得到可由 y=2x2的圖象。 將y=x2-7的圖象向 平移 個(gè)單位 可得到 y=x2+2的圖象。 2.拋物線y=-3(x-1)2可以看作是拋物線y=-3x2沿x 軸 平移了 個(gè)單位; 拋物線y=-3(x+1)2可以看作是拋物線y=-3x2沿x軸 平移了 個(gè)單位. 拋物線y=-3(x-1)2的頂點(diǎn)是 ;對(duì)稱軸 是 ; 拋物線y=-3(x+1)2的頂點(diǎn)是 ;對(duì)稱軸是 . 3.拋物線y=-3(x-1)2在對(duì)稱軸(x=1)的左側(cè),即當(dāng)x 時(shí), y隨著x的增大而 ; 在對(duì)稱軸(x=1)右側(cè),即當(dāng)x 時(shí), y隨著x的增大而 .當(dāng)x= 時(shí),函數(shù)y有最 值,最 值是 ; 二次 函數(shù)y=2x2+5的圖像是 ,開口 ,對(duì)稱軸是 ,當(dāng)x= 時(shí),y有最 值,是 。 4.將函數(shù)y=3 (x-4)2的圖象沿x軸對(duì)折后得到的函數(shù)解析式是 ; 將函數(shù)y=3(x-4)2的 圖象沿y軸對(duì)折后得到的函數(shù)解析式是 ; 5.把拋物線y=a(x-4)2向左平移6個(gè)單位后得到拋物線y=- 3(x-h)2的圖象,則a= ,h= . 函數(shù)y=(3x+6)2的圖象是由函數(shù) 的圖象向左平移5個(gè)單位得到的,其圖象開口向 ,對(duì)稱軸是 ,頂點(diǎn)坐標(biāo)是 ,當(dāng)x 時(shí),y隨x的增大而增大,當(dāng)x= 時(shí),y有最 值是 . 6.已知二次函數(shù)y=ax2+c ,當(dāng)x取x1,x2(x1x2), x1,x2分別是A,B兩點(diǎn)的橫坐標(biāo))時(shí),函數(shù)值相等, 則當(dāng)x取x1+x2時(shí),函數(shù)值為 ( ) A. a+c B. a-c C. c D. c 7.已知二次函數(shù)y=a(x-h)2, 當(dāng)x=2時(shí)有最大值,且此函數(shù)的圖象經(jīng)過點(diǎn)(1,-3),求此函數(shù)的解析式,并指出當(dāng)x為何值時(shí),y隨x的增大而增大? 學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。 學(xué)習(xí)難點(diǎn):認(rèn)識(shí)函數(shù),領(lǐng)會(huì)函數(shù)的意義。 【自主復(fù)習(xí)知識(shí)準(zhǔn)備】 請(qǐng)你舉出生活中含有兩個(gè)變量的變化過程,說明其中的常量和變量。 【自主探究知識(shí)應(yīng)用】 請(qǐng)看書72——74頁(yè)內(nèi)容,完成下列問題: 1、 思考書中第72頁(yè)的問題,歸納出變量之間的關(guān)系。 2、 完成書上第73頁(yè)的思考,體會(huì)圖形中體現(xiàn)的變量和變量之間的關(guān)系。 3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。 歸納:一般的,在一個(gè)變化過程中,如果有______變量x和y,并且對(duì)于x的_______,y都有_________與其對(duì)應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。 補(bǔ)充小結(jié): (1)函數(shù)的定義: (2)必須是一個(gè)變化過程; (3)兩個(gè)變量;其中一個(gè)變量每取一個(gè)值 ,另一個(gè)變量有且有唯一值對(duì)它對(duì)應(yīng)。 三、鞏固與拓展: 例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。 (1)寫出表示y與x的函數(shù)關(guān)系式. (2)指出自變量x的取值范圍. (3) 汽車行駛200千米時(shí),油箱中還有多少汽油? 【當(dāng)堂檢測(cè)知識(shí)升華】 1、判斷下列變量之間是不是函數(shù)關(guān)系: (1)長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積; (2)等腰三角形的底邊長(zhǎng)與面積; (3)某人的年齡與身高; 2、寫出下列函數(shù)的解析式. (1)一個(gè)長(zhǎng)方體盒子高3cm,底面是正方形,這個(gè)長(zhǎng)方體的體積為y(cm3),底面邊長(zhǎng)為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子. (2)汽車加油時(shí),加油槍的流量為10L/min. 、偃绻佑颓,油箱里還有5 L油,寫出在加油過程中,油箱中的`油量y(L)與加油時(shí)間x(min)之間的函數(shù)關(guān)系; 、谌绻佑蜁r(shí),油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系. (3)某種活期儲(chǔ)蓄的月利率為0.16%,存入10000元本金,按國(guó)家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲(chǔ)蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式. (4)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式. 八年級(jí)變量與函數(shù)(2)數(shù)學(xué)教案的全部?jī)?nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個(gè)問題,每一個(gè)環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對(duì)性的設(shè)置,希望大家喜歡! 一:【課前預(yù)習(xí)】 (一):【知識(shí)梳理】 1.直角三角形的邊角關(guān)系(如圖) (1)邊的關(guān)系(勾股定理):AC2+BC2=AB2; (2)角的關(guān)系:B= (3)邊角關(guān)系: 、伲 ②:銳角三角函數(shù): A的正弦= ; A的余弦= , A的正切= 注:三角函數(shù)值是一個(gè)比值. 2.特殊角的三角函數(shù)值. 3.三角函數(shù)的關(guān)系 (1) 互為余角的三角函數(shù)關(guān)系. sin(90○-A)=cosA, cos(90○-A)=sin A tan(90○-A)= cotA (2) 同角的三角函數(shù)關(guān)系. 平方關(guān)系:sin2 A+cos2A=l 4.三角函數(shù)的大小比較 、僬、正切是增函數(shù).三角函數(shù)值隨角的增大而增大,隨角的減小而減小. 、谟嘞沂菧p函數(shù).三角函數(shù)值隨角的增大而減小,隨角的減小而增大。 (二):【課前練習(xí)】 1.等腰直角三角形一個(gè)銳角的余弦為( ) A. D.l 2.點(diǎn)M(tan60,-cos60)關(guān)于x軸的對(duì)稱點(diǎn)M的坐標(biāo)是( ) 3.在 △ABC中,已知C=90,sinB=0.6,則cosA的值是( ) 4.已知A為銳角,且cosA0.5,那么( ) A.060 B.6090 C.030 D.3090 二:【經(jīng)典考題剖析】 1.如圖,在Rt△ABC中,C=90,A=45,點(diǎn)D在AC上,BDC=60,AD=l,求BD、DC的長(zhǎng). 2.先化簡(jiǎn),再求其值, 其中x=tan45-cos30 3. 計(jì)算:①sin248○+ sin242○-tan44○tan45○tan 46○ ②cos 255○+ cos235○ 4.比較大小(在空格處填寫或或=) 若=45○,則sin________cos 若45○,則sin cos 若45,則 sin cos. 5.⑴如圖①、②銳角的正弦值和余弦值都隨著銳角的確定而確定,變化而變化,試探索隨著銳角度數(shù)的增大,它的正弦值和余弦值變化的規(guī)律; ⑵根據(jù)你探索到的規(guī)律,試比較18○、34○、50○、61○、88○這些銳角的正弦值的大小和余弦值的大小. 三:【課后訓(xùn)練】 1. 2sin60-cos30tan45的結(jié)果為( ) A. D.0 2.在△ABC中,A為銳角,已知 cos(90-A)= ,sin(90-B)= ,則△ABC一定是( ) A.銳角三角形;B.直角三角形;C.鈍角三角形;D.等腰三角形 3.如圖,在平面直角坐標(biāo)系中,已知A(3,0)點(diǎn)B(0,-4),則cosOAB等于__________ 4.cos2+sin242○ =1,則銳角=______. 5.在下列不等式中,錯(cuò)誤的是( ) A.sin45○sin30○;B.cos60○tan30○;D.cot30○ 6.如圖,在△ABC中,AC=3,BC=4,AB=5,則tanB的值是() 7.如圖所示,在菱形ABCD中,AEBC于 E點(diǎn),EC=1,B=30,求菱形ABCD的周長(zhǎng). 8.如圖所示,在△ABC中,ACB=90,BC=6,AC=8 ,CDAB,求:①sinACD 的'值;②tanBCD的值 9.如圖 ,某風(fēng)景區(qū)的湖心島有一涼亭A,其正東方向有一棵大樹B,小明想測(cè)量A/B之間的距離,他從湖邊的C處測(cè)得A在北偏西45方向上,測(cè)得B在北偏東32方向上,且量得B、C之間的距離為100米,根據(jù)上述測(cè)量結(jié)果,請(qǐng)你幫小明計(jì)算A山之間的距離是多少?(結(jié)果精確至1米.參考數(shù)據(jù):sin32○0.5299,cos32○0.8480) 10.某住宅小區(qū)修了一個(gè)塔形建筑物AB,如圖所示,在與建筑物底部同一水平線的C處,測(cè)得點(diǎn)A的仰角為45,然后向塔方向前進(jìn)8米到達(dá)D處,在D處測(cè)得點(diǎn)A的仰角為60,求建筑物的高度.(精確0.1米) 【函數(shù)數(shù)學(xué)教案】相關(guān)文章: 高一數(shù)學(xué)教案函數(shù)范文10-12 函數(shù)概念教案11-26 《函數(shù)的應(yīng)用》教案02-26 冪函數(shù)教案04-07 函數(shù)教學(xué)設(shè)計(jì)07-28 函數(shù)的概念教學(xué)反思04-03
函數(shù)數(shù)學(xué)教案13
函數(shù)數(shù)學(xué)教案14
函數(shù)數(shù)學(xué)教案15