- 相關(guān)推薦
因式分解優(yōu)秀教案(精選14篇)
作為一位優(yōu)秀的人民教師,就不得不需要編寫教案,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。那么優(yōu)秀的教案是什么樣的呢?下面是小編幫大家整理的因式分解優(yōu)秀教案,希望對(duì)大家有所幫助。
因式分解優(yōu)秀教案 篇1
【教學(xué)目標(biāo)】
1、了解因式分解的概念和意義;
2、認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的'相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)過(guò)程】
、、情境導(dǎo)入
看誰(shuí)算得快:(搶答)
(1)若a=101,b=99,則a2-b2=xxxxxxxxxxx;
(2)若a=99,b=-1,則a2-2ab+b2=xxxxxxxxxxxx;
(3)若x=-3,則20x2+60x=xxxxxxxxxxxx。
、、探究新知
1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)
3、類比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)
板書課題:6.1因式分解
因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。
、、前進(jìn)一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2(a+b)(a-b)
整式乘法
說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。
、琛㈧柟绦轮
1、下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。
㈤、應(yīng)用解釋
例檢驗(yàn)下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。
練習(xí)計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)
(1)872+87×13
(2)1012-992
、辍⑺季S拓展
1.若x2+mx-n能分解成(x-2)(x-5),則m=,n=
2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)(),且m=
、、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。
㈧、布置作業(yè)
作業(yè)本(1),一課一練
。ň牛┙虒W(xué)反思:
因式分解優(yōu)秀教案 篇2
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解
4、應(yīng)用因式分解來(lái)解決一些實(shí)際問(wèn)題
5、體驗(yàn)應(yīng)用知識(shí)解決問(wèn)題的樂(lè)趣
教學(xué)重點(diǎn):
靈活運(yùn)用因式分解解決問(wèn)題
教學(xué)難點(diǎn):
靈活運(yùn)用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能將一些復(fù)雜的運(yùn)算簡(jiǎn)單化,那么我們先來(lái)回顧一下什么是因式分解和怎樣來(lái)因式分解。
二、知識(shí)回顧
1、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問(wèn)講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法
(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解
(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解
(7).2πR+2πr=2π(R+r)因式分解
2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過(guò)程
分解因式要注意以下幾點(diǎn):
(1).分解的對(duì)象必須是多項(xiàng)式
(2).分解的結(jié)果一定是幾個(gè)整式的乘積的形式.
(3).要分解到不能分解為止
3、因式分解的.方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法
公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2
4、強(qiáng)化訓(xùn)練
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)
(3)(4)y2+y+例
2、分解因式
1、a3-ab2=
2、(a-b)(x-y)-(b-a)(x+y)=
3、(a+b)2+2(a+b)-15=
4、-1-2a-a2=
5、x2-6x+9-y2
6、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7)2
2、8a2b2-2a4b-8b3
三、知識(shí)應(yīng)用
1、(4x2-9y2)÷(2x+3y)
2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值.
5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?
四、拓展應(yīng)用
1.計(jì)算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對(duì)因式分解又有哪些新的認(rèn)識(shí)?
因式分解優(yōu)秀教案 篇3
教學(xué)目標(biāo):
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實(shí)際問(wèn)題。
2、經(jīng)歷探究分解因式方法的過(guò)程,體會(huì)整式乘法與分解因式之間的聯(lián)系。
3、通過(guò)對(duì)公式的探究,深刻理解公式的應(yīng)用,并會(huì)熟練應(yīng)用公式解決問(wèn)題。
4、通過(guò)探究平方差公式特點(diǎn),學(xué)生根據(jù)公式自己取值設(shè)計(jì)問(wèn)題,并根據(jù)公式自己解決問(wèn)題的過(guò)程,讓學(xué)生獲得成功的體驗(yàn),培養(yǎng)合作交流意識(shí)。
教學(xué)重點(diǎn):
應(yīng)用平方差公式分解因式.
教學(xué)難點(diǎn):
靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.
教學(xué)過(guò)程:
一、復(fù)習(xí)準(zhǔn)備導(dǎo)入新課
1、什么是因式分解?判斷下列變形過(guò)程,哪個(gè)是因式分解?
、(x+2)(x-2)=
2、我們已經(jīng)學(xué)過(guò)的因式分解的方法有什么?將下列多項(xiàng)式分解因式。
x2+2x
a2b-ab
3、根據(jù)乘法公式進(jìn)行計(jì)算:
(1)(x+3)(x-3)=(2)(2y+1)(2y-1)=(3)(a+b)(a-b)=
二、合作探究學(xué)習(xí)新知
(一)猜一猜:你能將下面的多項(xiàng)式分解因式嗎?
。1)=(2)=(3)=
(二)想一想,議一議:觀察下面的公式:
=(a+b)(a—b)(
這個(gè)公式左邊的多項(xiàng)式有什么特征:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
公式右邊是xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
這個(gè)公式你能用語(yǔ)言來(lái)描述嗎?xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
(三)練一練:
1、下列多項(xiàng)式能否用平方差公式來(lái)分解因式?為什么?
①②③④
2、你能把下列的數(shù)或式寫成冪的'形式嗎?
(1)()(2)()(3)()(4)=()(5)36a4=()2(6)0.49b2=()2(7)81n6=()2(8)100p4q2=()2
(四)做一做:
例3分解因式:
(1)4x2-9(2)(x+p)2-(x+q)2
。ㄎ澹┰囈辉嚕
例4下面的式子你能用什么方法來(lái)分解因式呢?請(qǐng)你試一試。
(1)x4-y4(2)a3b-ab
。┫胍幌耄
某學(xué)校有一個(gè)邊長(zhǎng)為85米的正方形場(chǎng)地,現(xiàn)在場(chǎng)地的四個(gè)角分別建一個(gè)邊長(zhǎng)為5米的正方形花壇,問(wèn)場(chǎng)地還剩余多大面積供學(xué)生課間活動(dòng)使用?
因式分解優(yōu)秀教案 篇4
教學(xué)目標(biāo):
1、知識(shí)與技能:掌握運(yùn)用提公因式法、公式法分解因式,培養(yǎng)學(xué)生應(yīng)用因式分解解決問(wèn)題的能力。
2、過(guò)程與方法:經(jīng)歷探索因式分解方法的過(guò)程,培養(yǎng)學(xué)生研討問(wèn)題的方法,通過(guò)猜測(cè)、推理、驗(yàn)證、歸納等步驟,得出因式分解的方法。
3、情感態(tài)度與價(jià)值觀:通過(guò)因式分解的學(xué)習(xí),使學(xué)生體會(huì)數(shù)學(xué)美,體會(huì)成功的自信和團(tuán)結(jié)合作精神,并體會(huì)整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想。
教學(xué)重、難點(diǎn):
用提公因式法和公式法分解因式。
教具準(zhǔn)備:
多媒體課件(小黑板)
教學(xué)方法:
活動(dòng)探究法
教學(xué)過(guò)程:
引入:在整式的變形中,有時(shí)需要將一個(gè)多項(xiàng)式寫成幾個(gè)整式的乘積的.形式,這種變形就是因式分解。什么叫因式分解?
知識(shí)詳解
知識(shí)點(diǎn)1因式分解的定義
把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式。
【說(shuō)明】
。1)因式分解與整式乘法是相反方向的變形。
例如:
。2)因式分解是恒等變形,因此可以用整式乘法來(lái)檢驗(yàn)。
怎樣把一個(gè)多項(xiàng)式分解因式?
知識(shí)點(diǎn)2提公因式法
多項(xiàng)式ma+mb+mc中的各項(xiàng)都有一個(gè)公共的因式m,我們把因式m叫做這個(gè)多項(xiàng)式的公因式。ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個(gè)因式乘積的形式,其中一個(gè)因式是各項(xiàng)的公因式m,另一個(gè)因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法。例如:x2—x=x(x—1),8a2b—4ab+2a=2a(4ab—2b+1)。
探究交流
下列變形是否是因式分解?為什么?
。1)3x2y—xy+y=y(3x2—x);(2)x2—2x+3=(x—1)2+2;
。3)x2y2+2xy—1=(xy+1)(xy—1);(4)xn(x2—x+1)=xn+2—xn+1+xn。
典例剖析師生互動(dòng)
例1用提公因式法將下列各式因式分解。
。1)—x3z+x4y;(2)3x(a—b)+2y(b—a);
分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃危侔裝—a化成—(a—b),然后再提取公因式。
小結(jié)運(yùn)用提公因式法分解因式時(shí),要注意下列問(wèn)題:
。1)因式分解的結(jié)果每個(gè)括號(hào)內(nèi)如有同類項(xiàng)要合并,而且每個(gè)括號(hào)內(nèi)不能再分解。
(2)如果出現(xiàn)像(2)小題需統(tǒng)一時(shí),首先統(tǒng)一,盡可能使統(tǒng)一的個(gè)數(shù)少。這時(shí)注意到(a—b)n=(b—a)n(n為偶數(shù))。
。3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式。
學(xué)生做一做把下列各式分解因式。
。1)(2a+b)(2a—3b)+(2a+5b)(2a+b);(2)4p(1—q)3+2(q—1)2
知識(shí)點(diǎn)3公式法
。1)平方差公式:a2—b2=(a+b)(a—b)。即兩個(gè)數(shù)的平方差,等于這兩個(gè)數(shù)的和與這個(gè)數(shù)的差的積。例如:4x2—9=(2x)2—32=(2x+3)(2x—3)。
。2)完全平方公式:a2±2ab+b2=(a±b)2。其中,a2±2ab+b2叫做完全平方式。即兩個(gè)數(shù)的平方和加上(或減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或差)的平方。例如:4x2—12xy+9y2=(2x)2—2·2x·3y+(3y)2=(2x—3y)2。
探究交流
下列變形是否正確?為什么?
(1)x2—3y2=(x+3y)(x—3y);(2)4x2—6xy+9y2=(2x—3y)2;(3)x2—2x—1=(x—1)2。
例2把下列各式分解因式。
。1)(a+b)2—4a2;(2)1—10x+25x2;(3)(m+n)2—6(m+n)+9。
分析:本題旨在考查用完全平方公式分解因式。
學(xué)生做一做把下列各式分解因式。
。1)(x2+4)2—2(x2+4)+1;(2)(x+y)2—4(x+y—1)。
綜合運(yùn)用
例3分解因式。
。1)x3—2x2+x;(2)x2(x—y)+y2(y—x);
分析:本題旨在考查綜合運(yùn)用提公因式法和公式法分解因式。
小結(jié)解因式分解題時(shí),首先考慮是否有公因式,如果有,先提公因式;如果沒(méi)有公因式是兩項(xiàng),則考慮能否用平方差公式分解因式。是三項(xiàng)式考慮用完全平方式,最后,直到每一個(gè)因式都不能再分解為止。
探索與創(chuàng)新題
例4若9x2+kxy+36y2是完全平方式,則k=。
分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個(gè)數(shù)乘積的2倍的和(或差)。
學(xué)生做一做若x2+(k+3)x+9是完全平方式,則k=。
課堂小結(jié)
用提公因式法和公式法分解因式,會(huì)運(yùn)用因式分解解決計(jì)算問(wèn)題。
各項(xiàng)有"公"先提"公",首項(xiàng)有負(fù)常提負(fù),某項(xiàng)提出莫漏"1",括號(hào)里面分到"底"。
自我評(píng)價(jià)知識(shí)鞏固
1、若x2+2(m—3)x+16是完全平方式,則m的值等于()
A、3B、—5C、7D、7或—1
2、若(2x)n—81=(4x2+9)(2x+3)(2x—3),則n的值是()
A、2B、4C、6D、8
3、分解因式:4x2—9y2=。
4、已知x—y=1,xy=2,求x3y—2x2y2+xy3的值。
5、把多項(xiàng)式1—x2+2xy—y2分解因式
思考題分解因式(x4+x2—4)(x4+x2+3)+10。
因式分解優(yōu)秀教案 篇5
知識(shí)點(diǎn):
因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟。
教學(xué)目標(biāo):
理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項(xiàng)式的方法,能把簡(jiǎn)單多項(xiàng)式分解因式。
考查重難點(diǎn)與常見(jiàn)題型:
考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
教學(xué)過(guò)程:
因式分解知識(shí)點(diǎn)
多項(xiàng)式的因式分解,就是把一個(gè)多項(xiàng)式化為幾個(gè)整式的積。分解因式要進(jìn)行到每一個(gè)因式都不能再分解為止。分解因式的常用方法有:
(1)提公因式法
如多項(xiàng)式
其中m叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,m既可以是一個(gè)單項(xiàng)式,也可以是一個(gè)多項(xiàng)式。
(2)運(yùn)用公式法,即用
寫出結(jié)果。
(3)十字相乘法
對(duì)于二次項(xiàng)系數(shù)為l的二次三項(xiàng)式尋找滿足ab=q,a+b=p的.a,b,如有,則對(duì)于一般的二次三項(xiàng)式尋找滿足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則
。4)分組分解法:把各項(xiàng)適當(dāng)分組,先使分解因式能分組進(jìn)行,再使分解因式在各組之間進(jìn)行。
分組時(shí)要用到添括號(hào):括號(hào)前面是“+”號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);括號(hào)前面是“-”號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào)。
。5)求根公式法:如果有兩個(gè)根X1,X2,那么
2、教學(xué)實(shí)例:學(xué)案示例
3、課堂練習(xí):學(xué)案作業(yè)
4、課堂:
5、板書:
6、課堂作業(yè):學(xué)案作業(yè)
因式分解優(yōu)秀教案 篇6
教學(xué)目標(biāo)
1、會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。
2、會(huì)運(yùn)用因式分解解簡(jiǎn)單的方程。
二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):
教學(xué)重點(diǎn)
因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。
教學(xué)難點(diǎn):
應(yīng)用因式分解解方程涉及較多的推理過(guò)程。
三、教學(xué)過(guò)程
。ㄒ唬┮胄抡n
1、知識(shí)回顧(1)因式分解的幾種方法:①提取公因式法:ma+mb=m(a+b)②應(yīng)用平方差公式:=(a+b)(a—b)③應(yīng)用完全平方公式:a2ab+b=(ab)(2)課前熱身:①分解因式:(x+4)y—16xy
。ǘ⿴熒(dòng),講授新課
1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例1計(jì)算:(1)(2ab—8ab)(4a—b)(2)(4x—9)(3—2x)解:(1)(2ab—8ab)(4a—b)=—2ab(4a—b)(4a—b)=—2ab(2)(4x—9)(3—2x)=(2x+3)(2x—3)[—(2x—3)]=—(2x+3)=—2x—3
一個(gè)小問(wèn)題:這里的x能等于3/2嗎?為什么?
想一想:那么(4x—9)(3—2x)呢?練習(xí):課本P162課內(nèi)練習(xí)
合作學(xué)習(xí)
想一想:如果已知()()=0,那么這兩個(gè)括號(hào)內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢?(讓學(xué)生自己思考、相互之間討論。┦聦(shí)上,若AB=0,則有下面的結(jié)論:
。1)A和B同時(shí)都為零,即A=0,且B=0
。2)A和B中有一個(gè)為零,即A=0,或B=0
試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0嗎?
3、運(yùn)用因式分解解簡(jiǎn)單的方程例2解下列方程:(1)2x+x=0(2)(2x—1)=(x+2)解:x(x+1)=0解:(2x—1)—(x+2)=0則x=0,或2x+1=0(3x+1)(x—3)=0原方程的根是x1=0,x2=則3x+1=0,或x—3=0原方程的根是x1=,x2=3注:只含有一個(gè)未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個(gè)時(shí),常用帶足標(biāo)的字母表示,比如:x1,x2
課本P162課內(nèi)練習(xí)2
做一做!對(duì)于方程:x+2=(x+2),你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?
教師總結(jié):運(yùn)用因式分解解方程的基本步驟
。1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個(gè)一元一次方程;
(2)如果方程的`兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時(shí)除以公因式!
4、知識(shí)延伸解方程:(x+4)—16x=0解:將原方程左邊分解因式,得(x+4)—(4x)=0(x+4+4x)(x+4—4x)=0(x+4x+4)(x—4x+4)=0(x+2)(x—2)=0接著繼續(xù)解方程,
5、練一練①已知a、b、c為三角形的三邊,試判斷a—2ab+b—c大于零?小于零?等于零?解:a—2ab+b—c=(a—b)—c=(a—b+c)(a—b—c)∵a、b、c為三角形的三邊a+c﹥ba﹤b+ca—b+c﹥0a—b—c﹤0即:(a—b+c)(a—b—c)﹤0,因此a—2ab+b—c小于零。
6、挑戰(zhàn)極限①已知:x=2004,求∣4x—4x+3∣—4∣x+2x+2∣+13x+6的值。解:∵4x—4x+3=(4x—4x+1)+2=(2x—1)+20x+2x+2=(x+2x+1)+1=(x+1)+10∣4x—4x+3∣—4∣x+2x+2∣+13x+6=4x—4x+3—4(x+2x+2)+13x+6=4x—4x+3—4x—8x—8+13x+6=x+1即:原式=x+1=2004+1=2005
(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:
。1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法
(2)運(yùn)用因式分解解簡(jiǎn)單的方程
。ㄋ模┎贾谜n后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
因式分解優(yōu)秀教案 篇7
15.1.1整式
教學(xué)目標(biāo)
1.單項(xiàng)式、單項(xiàng)式的定義.
2.多項(xiàng)式、多項(xiàng)式的次數(shù).
3、理解整式概念.
教學(xué)重點(diǎn)
單項(xiàng)式及多項(xiàng)式的有關(guān)概念.
教學(xué)難點(diǎn)
單項(xiàng)式及多項(xiàng)式的有關(guān)概念.
教學(xué)過(guò)程
、瘢岢鰡(wèn)題,創(chuàng)設(shè)情境
在七年級(jí),我們已經(jīng)學(xué)習(xí)了用字母可以表示數(shù),思考下列問(wèn)題
1.要表示△ABC的周長(zhǎng)需要什么條件?要表示它的面積呢?
2.小王用七小時(shí)行駛了Skm的路程,請(qǐng)問(wèn)他的平均速度是多少?
結(jié)論:
1、要表示△ABC的周長(zhǎng),需要知道它的各邊邊長(zhǎng).要表示△ABC的面積需要知道一條邊長(zhǎng)和這條邊上的高.如果設(shè)BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長(zhǎng)可以表示為a+b+c;△ABC的面積可以表示為?c?h.
2.小王的平均速度是.
問(wèn)題:這些式子有什么特征呢?
。1)有數(shù)字、有表示數(shù)字的字母.
。2)數(shù)字與字母、字母與字母之間還有運(yùn)算符號(hào)連接.
歸納:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘、除、乘方與開(kāi)方)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫做代數(shù)式.
判斷上面得到的三個(gè)式子:a+b+c、ch、是不是代數(shù)式?(是)
代數(shù)式可以簡(jiǎn)明地表示數(shù)量和數(shù)量的關(guān)系.今天我們就來(lái)學(xué)習(xí)和代數(shù)式有關(guān)的整式.
、颍鞔_和鞏固整式有關(guān)概念
。ǔ鍪就队埃
結(jié)論:(1)正方形的周長(zhǎng):4x.
(2)汽車走過(guò)的路程:vt.
。3)正方體有六個(gè)面,每個(gè)面都是正方形,這六個(gè)正方形全等,所以它的表面積為6a2;正方體的體積為長(zhǎng)×寬×高,即a3.
(4)n的相反數(shù)是-n.
分析這四個(gè)數(shù)的特征.
它們符合代數(shù)式的定義.這五個(gè)式子都是數(shù)與字母或字母與字母的積,而a+b+c、ch、中還有和與商的運(yùn)算符號(hào).還可以發(fā)現(xiàn)這五個(gè)代數(shù)式中字母指數(shù)各不相同,字母的個(gè)數(shù)也不盡相同.
請(qǐng)同學(xué)們閱讀課本P160~P161單項(xiàng)式有關(guān)概念.
根據(jù)這些定義判斷4x、vt、6a2、a3、-n、a+b+c、ch、這些代數(shù)式中,哪些是單項(xiàng)式?是單項(xiàng)式的,寫出它的系數(shù)和次數(shù).
結(jié)論:4x、vt、6a2、a3、-n、ch是單項(xiàng)式.它們的系數(shù)分別是4、1、6、1、-1、.它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項(xiàng)式;vt、6a2、ch都是二次單項(xiàng)式;a3是三次單項(xiàng)式.
問(wèn)題:vt中v和t的指數(shù)都是1,它不是一次單項(xiàng)式嗎?
結(jié)論:不是.根據(jù)定義,單項(xiàng)式vt中含有兩個(gè)字母,所以它的次數(shù)應(yīng)該是這兩個(gè)字母的指數(shù)的和,而不是單個(gè)字母的指數(shù),所以vt是二次單項(xiàng)式而不是一次單項(xiàng)式.
生活中不僅僅有單項(xiàng)式,像a+b+c,它不是單項(xiàng)式,和單項(xiàng)式有什么聯(lián)系呢?
寫出下列式子(出示投影)
結(jié)論:(1)t-5.(2)3x+5y+2z.
。3)三角尺的.面積應(yīng)是直角三角形的面積減去圓的面積,即ab-3.12r2.
。4)建筑面積等于四個(gè)矩形的面積之和.而右邊兩個(gè)已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.
我們可以觀察下列代數(shù)式:
a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項(xiàng)式的和組成的式子.是多個(gè)單項(xiàng)式的和,能不能叫多項(xiàng)式?
這樣推理合情合理.請(qǐng)看投影,熟悉下列概念.
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5y+2z、ab-3.12r2、x2+2x+18都是多項(xiàng)式.請(qǐng)分別指出它們的項(xiàng)和次數(shù).
a+b+c的項(xiàng)分別是a、b、c.
t-5的項(xiàng)分別是t、-5,其中-5是常數(shù)項(xiàng).
3x+5y+2z的項(xiàng)分別是3x、5y、2z.
ab-3.12r2的項(xiàng)分別是ab、-3.12r2.
x2+2x+18的項(xiàng)分別是x2、2x、18.找多項(xiàng)式的次數(shù)應(yīng)抓住兩條,一是找準(zhǔn)每個(gè)項(xiàng)的次數(shù),二是取每個(gè)項(xiàng)次數(shù)的最大值.根據(jù)這兩條很容易得到這五個(gè)多項(xiàng)式中前三個(gè)是一次多項(xiàng)式,后兩個(gè)是二次多項(xiàng)式.
這節(jié)課,通過(guò)探究我們得到單項(xiàng)式和多項(xiàng)式的有關(guān)概念,它們可以反映變化的世界.同時(shí),我們也到符號(hào)的魅力所在.我們把單項(xiàng)式與多項(xiàng)式統(tǒng)稱為整式.
Ⅲ.隨堂練習(xí)
1.課本P162練習(xí)
課時(shí)小結(jié)
通過(guò)探究,我們了解了整式的概念.理解并掌握單項(xiàng)式、多項(xiàng)式的有關(guān)概念是本節(jié)的重點(diǎn),特別是它們的次數(shù).在現(xiàn)實(shí)情景中進(jìn)一步理解了用字母表示數(shù)的意義,發(fā)展符號(hào)感.
課后作業(yè)
1.課本P165~P166習(xí)題15.1─1、5、8、9題.
2.預(yù)習(xí)“整式的加減”.
課后作業(yè):《課堂感悟與探究》
因式分解優(yōu)秀教案 篇8
教學(xué)目標(biāo):
1.會(huì)進(jìn)行整式加減的運(yùn)算,并能說(shuō)明其中的算理,發(fā)展有條理的思考及其語(yǔ)言表達(dá)能力。
2.通過(guò)探索規(guī)律的問(wèn)題,進(jìn)一步符號(hào)表示的意義,發(fā)展符號(hào)感,發(fā)展推理能力。
教學(xué)重點(diǎn):
整式加減的.運(yùn)算。
教學(xué)難點(diǎn):
探索規(guī)律的猜想。
教學(xué)方法:
嘗試練習(xí)法,討論法,歸納法。
教學(xué)用具:
投影儀
教學(xué)過(guò)程:
擺第1個(gè)“小屋子”需要5枚棋子,擺第2個(gè)需要枚棋子,擺第3個(gè)需要枚棋子。按照這樣的方式繼續(xù)擺下去。
(1)擺第10個(gè)這樣的“小屋子”需要枚棋子
。2)擺第n個(gè)這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個(gè)問(wèn)題嗎?小組討論。
二、例題講解:
三、鞏固練習(xí)
1、計(jì)算:
。1)(14x3-2x2)+2(x3-x2)(2)(3a2+2a-6)-3(a2-1)
。3)x-(1-2x+x2)+(-1-x2)(4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計(jì)算:(1)B-A(2)A-3B
3、列方程解應(yīng)用題:三角形三個(gè)內(nèi)角的和等于180°,如果三角形中第一個(gè)角等于第二個(gè)角的3倍,而第三個(gè)角比第二個(gè)角大15°,那么
。1)第一個(gè)角是多少度?
。2)其他兩個(gè)角各是多少度?
四、提高練習(xí)
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問(wèn)C是什么樣的多項(xiàng)式?
2、設(shè)A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+
。▂+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點(diǎn))的對(duì)應(yīng)點(diǎn)如圖:
試化簡(jiǎn):│a│-│a+b│+│c-a│+│b+c│
小結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對(duì)整式加減進(jìn)行運(yùn)算。
作業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。
因式分解優(yōu)秀教案 篇9
教學(xué)目標(biāo):
1、理解運(yùn)用平方差公式分解因式的方法。
2、掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。
3、進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問(wèn)題的能力。
教學(xué)重點(diǎn):
運(yùn)用平方差公式分解因式。
教學(xué)難點(diǎn):
高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。
教學(xué)案例:
我們數(shù)學(xué)組的觀課議課主題:
1、關(guān)注學(xué)生的合作交流
2、如何使學(xué)困生能積極參與課堂交流。
在精心備課過(guò)程中,我設(shè)計(jì)了這樣的自學(xué)提示:
1、整式乘法中的平方差公式是xxx,如何用語(yǔ)言描述?把上述公式反過(guò)來(lái)就得到xxxxx,如何用語(yǔ)言描述?
2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫出分解過(guò)程,若不能,說(shuō)出為什么?
①-x2+y2②-x2-y2③4-9x2
、(x+y)2-(x-y)2⑤a4-b4
3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結(jié)因式分解的.步驟是什么?
師巡回指導(dǎo),生自主探究后交流合作。
生交流熱情很高,但把全部問(wèn)題分析完已用了30分鐘。
生展示自學(xué)成果。
生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。
生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。
生5:a4-b4可分解為(a2+b2)(a2-b2)
生6:不對(duì),a2-b2還能繼續(xù)分解為a+b)(a-b)
師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的形式,另因式分解必須分解到不能再分解為止!
反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的條件,我設(shè)計(jì)了問(wèn)題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問(wèn)題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒(méi)有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問(wèn)題:
(1)我在備課時(shí),過(guò)高估計(jì)了學(xué)生的能力,問(wèn)題2中的③、④、⑤多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問(wèn)題2改為:
下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。
(2)教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過(guò)于心急,過(guò)分追求課堂容量、習(xí)題類型全等等,例如在問(wèn)題2的設(shè)計(jì)時(shí)可寫一些簡(jiǎn)單的,像④、⑤可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問(wèn)題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。
我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來(lái):“我們?cè)僮鰩最}試試。”生又開(kāi)始緊張地練習(xí)下課后,無(wú)意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒(méi)做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒(méi)時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒(méi)改正,原因是上課慌著展示自己,沒(méi)顧上改……?磥(lái),以后上課不能單聽(tīng)學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過(guò)關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。
確實(shí),“學(xué)海無(wú)涯,教海無(wú)邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對(duì)不同的學(xué)生,不同的學(xué)情,仍然會(huì)產(chǎn)生新的問(wèn)題,“沒(méi)有最好,只有更好!”我會(huì)一直探索、努力,不斷完善教學(xué)設(shè)計(jì),更新教育觀念,直到永遠(yuǎn)……
因式分解優(yōu)秀教案 篇10
背景介紹
因式分解是代數(shù)式中的重要內(nèi)容,它與前一章整式和后一章分式聯(lián)系極為密切。因式分解的教學(xué)是在整式四則運(yùn)算的基礎(chǔ)上進(jìn)行的,因式分解方法的理論依據(jù)就是多項(xiàng)式乘法的逆變形。它不僅在多項(xiàng)式的除法、簡(jiǎn)便運(yùn)算中有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三角函數(shù)式的恒等變形提供了必要的基礎(chǔ)。因此,學(xué)好因式分解對(duì)于代數(shù)知識(shí)的后續(xù)學(xué)習(xí),具有相當(dāng)重要的意義。
【教學(xué)內(nèi)容分析】
因式分解的概念是把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,它是因式分解方法的理論基礎(chǔ),也是本章中一個(gè)重要概念。教材在引入中是結(jié)合剪紙拼圖來(lái)闡述這一概念的,也可以與小學(xué)數(shù)學(xué)里因數(shù)分解的概念類比予以說(shuō)明。在教學(xué)時(shí)對(duì)因式分解這一概念不宜要求學(xué)生一次徹底了解,應(yīng)該在講授因式分解的三種基本方法時(shí),結(jié)合具體例題的'分解過(guò)程和分解結(jié)果,說(shuō)明這一概念的意義,以達(dá)到逐步了解這一概念的教學(xué)目的。
【教學(xué)目標(biāo)】
1、認(rèn)知目標(biāo):
。1)理解因式分解的概念和意義
。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——相反變形,并會(huì)運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
2、能力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、判斷能力和創(chuàng)新能力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維能力和綜合運(yùn)用能力。
3、情感目標(biāo):培養(yǎng)學(xué)生接受矛盾的對(duì)立統(tǒng)一觀點(diǎn),獨(dú)立思考,勇于探索的精神和實(shí)事求是的科學(xué)態(tài)度。
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn)是因式分解的概念,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,并運(yùn)用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)準(zhǔn)備】
實(shí)物投影儀、多媒體輔助教學(xué)。
【教學(xué)過(guò)程】
㈠、情境導(dǎo)入
看誰(shuí)算得快:(搶答)
(1)若a=101,b=99,則a2-b2=xxxxxxxxxxx;
(2)若a=99,b=-1,則a2-2ab+b2=xxxxxxxxxxxx;
(3)若x=-3,則20x2+60x=xxxxxxxxxxxx。
【初一年級(jí)學(xué)生活波好動(dòng),好表現(xiàn),爭(zhēng)強(qiáng)好勝。情境導(dǎo)入借助搶答的方式進(jìn)行,引進(jìn)競(jìng)爭(zhēng)機(jī)制,可以使學(xué)生在參與的過(guò)程中提高興趣,并增強(qiáng)競(jìng)爭(zhēng)意識(shí)和探究欲望!
、妗⑻骄啃轮
1、請(qǐng)每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
【“與其拉馬喝水,不如讓它口渴”。探索最佳解題方法的過(guò)程,就是學(xué)生“口渴”的地方。由此引起學(xué)生的求知欲!
2、觀察:a2-b2=(a+b)(a-b),
a2-2ab+b2=(a-b)2,
20x2+60x=20x(x+3),找出它們的特點(diǎn)。(等式的左邊是一個(gè)什么式子,右邊又是什么形式?)
【利用教師的主導(dǎo)作用,把學(xué)生的無(wú)意識(shí)的觀察轉(zhuǎn)變?yōu)橛幸庾R(shí)的觀察,同時(shí)教師應(yīng)鼓勵(lì)學(xué)生大膽描述自己的觀察結(jié)果,并及時(shí)予以肯定!
3、類比小學(xué)學(xué)過(guò)的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補(bǔ)充。)
【讓學(xué)生自己概括出所感知的知識(shí)內(nèi)容,有利于學(xué)生在實(shí)踐中感悟知識(shí)的生成過(guò)程,培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力!
板書課題:6.1因式分解
因式分解概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進(jìn)一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)=a2-b2,
(a-b)2=a2-2ab+b2,
20x(x+3)=20x2+60x,它們是什么運(yùn)算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
(要注意讓學(xué)生區(qū)分因式分解與整式乘法的區(qū)別,防止學(xué)生出現(xiàn)在進(jìn)行因式分解當(dāng)中,半路又做乘法的錯(cuò)誤。)
【注重?cái)?shù)學(xué)知識(shí)間的聯(lián)系,給學(xué)生提供探索與交流的空間,讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的生成過(guò)程,由學(xué)生發(fā)現(xiàn)整式乘法與因式分解的相互關(guān)系,培養(yǎng)學(xué)生觀察、分析問(wèn)題的能力和逆向思維能力及創(chuàng)新能力。】
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2=========(a+b)(a-b)
整式乘法
說(shuō)明:從左到右是因式分解其特點(diǎn)是:由和差形式(多項(xiàng)式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點(diǎn)是:由整式積的形式轉(zhuǎn)化成和差形式(多項(xiàng)式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。(多媒體展示學(xué)生得出的成果)
、、鞏固新知
1、下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1;
(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;
(4)4x2-4x+1=(2x-1)2;
(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;
(7)k2++2=(k+)2;
(8)18a3bc=3a2b?6ac。
【針對(duì)學(xué)生易犯的錯(cuò)誤,制造認(rèn)知沖突,讓學(xué)生充分暴露錯(cuò)誤,然后通過(guò)分析、討論,達(dá)到理解的效果!
2、你能寫出整式相乘(其中至少一個(gè)是多項(xiàng)式)的兩個(gè)例子,并由此得到相應(yīng)的兩個(gè)多項(xiàng)式的因式分解嗎?把結(jié)果與你的同伴交流。
【學(xué)生出題熱情、積極性高,因初一學(xué)生好表現(xiàn),因而能激發(fā)學(xué)生學(xué)習(xí)興趣,激活學(xué)生的思維!
㈤、應(yīng)用解釋
例檢驗(yàn)下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);
(2)2x2-1=(2x+1)(2x-1);
(3)x2+3x+2=(x+1)(x+2).
分析:檢驗(yàn)因式分解是否正確,只要看等式右邊幾個(gè)整式相乘的積與右邊的多項(xiàng)式是否相等。
練習(xí)計(jì)算下列各題,并說(shuō)明你的算法:(請(qǐng)學(xué)生板演)
(1)872+87×13
(2)1012-992
、、思維拓展
1.若x2+mx-n能分解成(x-2)(x-5),則m=,n=
2.機(jī)動(dòng)題:(填空)x2-8x+m=(x-4)(),且m=
【進(jìn)一步拓展學(xué)生在數(shù)學(xué)領(lǐng)域內(nèi)的視野,增強(qiáng)學(xué)生對(duì)數(shù)學(xué)的興趣,使學(xué)生從小熱衷于數(shù)學(xué)的學(xué)習(xí)和探索。通過(guò)機(jī)動(dòng)題,了解學(xué)生對(duì)概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造能力,及時(shí)評(píng)價(jià),及時(shí)矯正!
㈦、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識(shí)?有哪些收獲與感受?說(shuō)出來(lái)大家分享。
、、布置作業(yè)
教科書第153的作業(yè)題。
【設(shè)計(jì)思想】
葉圣陶先生曾說(shuō)過(guò)課堂教學(xué)的最高藝術(shù)是看學(xué)生,而不是看教師,看學(xué)生能否在課堂中煥發(fā)生命的活力。因此本教學(xué)是按“投疑——感知——概括——鞏固、應(yīng)用和拓展”的敘述模式呈現(xiàn)教學(xué)內(nèi)容的,這種呈現(xiàn)方式符合七年級(jí)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)規(guī)律,使學(xué)生從被動(dòng)的學(xué)習(xí)到主動(dòng)探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學(xué)習(xí)與探索的樂(lè)趣。本堂課先采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性,再把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,使學(xué)生能順利地掌握重點(diǎn),突破難點(diǎn),提高能力。并在課堂教學(xué)中,引導(dǎo)學(xué)生體會(huì)知識(shí)的發(fā)生發(fā)展過(guò)程,堅(jiān)持啟發(fā)式的教學(xué)方法,鼓勵(lì)學(xué)生充分地動(dòng)腦、動(dòng)口、動(dòng)手,積極參與到教學(xué)中來(lái),充分體現(xiàn)了學(xué)生的主動(dòng)性原則。并改變了傳統(tǒng)的言傳身教的方式,恰當(dāng)?shù)剡\(yùn)用了現(xiàn)代教育技術(shù),展現(xiàn)了一個(gè)平等、互動(dòng)的民主課堂。
因式分解優(yōu)秀教案 篇11
一、教學(xué)目標(biāo)
(一)、知識(shí)與技能:
。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。
(二)、過(guò)程與方法:
。1)由學(xué)生自主探索解題途徑,在此過(guò)程中,通過(guò)觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。
(2)由整式乘法的逆運(yùn)算過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
。3)通過(guò)對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問(wèn)題能力與綜合應(yīng)用能力。
。ㄈ⑶楦袘B(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):因式分解的概念及提公因式法。
難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學(xué)過(guò)程
教學(xué)環(huán)節(jié):
活動(dòng)1:復(fù)習(xí)引入
看誰(shuí)算得快:用簡(jiǎn)便方法計(jì)算:
。1)7/9×13-7/9×6+7/9×2=;
。2)-2.67×132+25×2.67+7×2.67=;
。3)992–1=。
設(shè)計(jì)意圖:
如果說(shuō)學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過(guò)回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過(guò)類比很自然地過(guò)渡到正確理解因式分解的'概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.
注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過(guò)的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。
活動(dòng)2:導(dǎo)入課題
P165的探究(略);
2.看誰(shuí)想得快:993–99能被哪些數(shù)整除?你是怎么得出來(lái)的?
設(shè)計(jì)意圖:
引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。
活動(dòng)3:探究新知
看誰(shuí)算得準(zhǔn):
計(jì)算下列式子:
(1)3x(x-1)=;
(2)(a+b+c)=;
。3)(+4)(-4)=;
。4)(-3)2=;
。5)a(a+1)(a-1)=;
根據(jù)上面的算式填空:
。1)a+b+c=;
。2)3x2-3x=;
。3)2-16=;
。4)a3-a=;
。5)2-6+9=。
在第一組的整式乘法的計(jì)算上,學(xué)生通過(guò)對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過(guò)對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過(guò)渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動(dòng)4:歸納、得出新知
比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:
a(a+1)(a-1)=a3-a
a3-a=a(a+1)(a-1)
在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
因式分解優(yōu)秀教案 篇12
教學(xué)準(zhǔn)備
知識(shí)與能力
1.了解多項(xiàng)式公因式的意義,初步會(huì)用提公因式法分解因式;
2.通過(guò)找公因式,培養(yǎng)觀察能力.
過(guò)程與方法
1.了解因式分解的概念,以及因式分解與整式乘法的關(guān)系;
2.了解公因式概念和提取公因式的方法;會(huì)用提取公因式法分解因式.
情感態(tài)度與價(jià)值觀
1.在探索提公因式法分解因式的過(guò)程中學(xué)會(huì)逆向思維,滲透化歸的思想方法;
2.培養(yǎng)觀察、聯(lián)想能力,進(jìn)一步了解換元的思想方法;
教學(xué)重難點(diǎn)
重點(diǎn):能觀察出多項(xiàng)式的公因式,并根據(jù)分配律把公因式提出來(lái).
難點(diǎn):識(shí)別多項(xiàng)式的公因式.
教學(xué)過(guò)程
一、新課導(dǎo)入
請(qǐng)同學(xué)們想一想?993-99能被100整除嗎?
解法一:993-99=970299-99
=970200
解法二:993-99=99(992-1)
=99(99+1)(99-1)
=100×99×98
=970200
。1)已知:x=5,a-b=3,求ax2-bx2的值.
。2)已知:a=101,b=99,求a2-b2的值.
你能說(shuō)說(shuō)算得快的原因嗎?
解:(1)ax2-bx2=x2(a-b)
=25×3=75.
(2)a2-b2=(a+b)(a-b)
=(101+99)(101-99)
=400
二、新知探究
1、做一做:
計(jì)算下列各式:
、3x(x-2)=__3x2-6x
、趍(a+b+c)=ma+mb+mc
③(m+4)(m-4)=m2-16
、(x-2)2=x2-4x+4
⑤a(a+1)(a-1)=a3-a
根據(jù)左面的算式填空:
、3x2-6x=(_3x__)(_x-2__)
②ma+mb+mc=(_m_)(a+b+c_)
、踡2-16=(_m+4)(m-4_)
、躼2-4x+4=(x-2)2
、輆3-a=(a)(a+1)(a-1)
左邊一組的變形是什么運(yùn)算?右邊的變形與這種運(yùn)算有什么不同?右邊變形的結(jié)果有什么共同的'特點(diǎn)?
總結(jié):把一個(gè)多項(xiàng)式化成了幾個(gè)整式的積的形式,像這樣的式子變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式.
整式乘法因式分解與整式乘法是互逆過(guò)程因式分解
在am+bm=m(a+b)中,m叫做多項(xiàng)式各項(xiàng)的公因式.
公因式:
即每個(gè)單項(xiàng)式都含有的相同的因式.
提公因式法:
如果多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,將多項(xiàng)式寫成乘積的形式.這種分解因式的方法叫做提公因式法.
確定公因式的方法:
。1)公因式的系數(shù)是多項(xiàng)式各項(xiàng)系數(shù)的最大公約數(shù);
。2)字母取多項(xiàng)式各項(xiàng)中都含有的相同的字母;
。3)相同字母的指數(shù)取各項(xiàng)中最小的一個(gè),即最低次冪.
三、例題分析
例1把12a4b3+16a2b3c2分解因式.
解:12a4b3+16a2b3c2
=4a2b3·3a2+4a2b3·4c2
=4a2b3(3a2+4c2)
提公因式后,另一個(gè)因式:
、夙(xiàng)數(shù)應(yīng)與原多項(xiàng)式的項(xiàng)數(shù)一樣;
、诓辉俸泄蚴剑
例2把2ac(b+2c)-(b+2c)分解因式.
解:2ac(b+2c)-(b+2c)
=(b+2c)(2ac-1)
公因式可以是數(shù)字、字母,也可以是單項(xiàng)式,還可以是多項(xiàng)式.
例3把-x3+x2-x分解因式.
解:原式=-(x3-x2+x)
。剑瓁(x2-x+1)
多項(xiàng)式的第一項(xiàng)是系數(shù)為負(fù)數(shù)的項(xiàng),一般地,應(yīng)提出負(fù)系數(shù)的公因式.但應(yīng)注意,這時(shí)留在括號(hào)內(nèi)的每一項(xiàng)的符號(hào)都要改變,且最后一項(xiàng)“-x”提出時(shí),應(yīng)留有一項(xiàng)“+1”,而不能錯(cuò)解為-x(x2-x).
四、當(dāng)堂訓(xùn)練
1.(1)9x3y3-12x2y+18xy3中各項(xiàng)的公因式是3xy_.
(2)5x2-25x的公因式為5x.
。3)-2ab2+4a2b3的公因式為-2ab2.
。4)多項(xiàng)式x2-1與(x-1)2的公因式是x-1.
2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是(x-y)2
課后小結(jié)
1.分解因式
把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,叫做分解因式,分解因式和整式乘法互為逆運(yùn)算.
2.確定公因式的方法
一看系數(shù)二看字母三看指數(shù)
3.提公因式法分解因式步驟(分兩步)
第一步找出公因式;
第二步提公因式.
4.用提公因式法分解因式應(yīng)注意的問(wèn)題
。1)公因式要提盡;
。2)某一項(xiàng)全部提出時(shí),這一項(xiàng)除以公因
式時(shí)的商是1,這個(gè)1不能漏掉;
。3)多項(xiàng)式的首項(xiàng)取正號(hào).
板書
一、因式分解
把一個(gè)多項(xiàng)式化成了幾個(gè)整式的積的形式,像這樣的式子變形叫做把這個(gè)多項(xiàng)式因式分解,也叫做把這個(gè)多項(xiàng)式分解因式.
二、提公因式法
如果多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,將多項(xiàng)式寫成乘積的形式.這種分解因式的方法叫做提公因式法.
am+bm=m(a+b)
二、例題分析
例1、
例2、
例3、
三、當(dāng)堂訓(xùn)練
因式分解優(yōu)秀教案 篇13
【設(shè)計(jì)主題】
本微課選自人教版八年級(jí),教學(xué)內(nèi)容是讓學(xué)生復(fù)習(xí)因式分解基本方法。本微課通過(guò)典型例題,從提取公因式,到完全平方公式,平方差公式,層層遞進(jìn),讓學(xué)生能夠通過(guò)本微課,學(xué)會(huì)如何進(jìn)行多項(xiàng)式的因式分解,總結(jié)出相應(yīng)的規(guī)律。最后練習(xí)進(jìn)行檢測(cè),達(dá)到掌握因式分解法的基本方法。
【教學(xué)背景】
1.學(xué)情分析:授課對(duì)象為八年級(jí)上的學(xué)生,以前學(xué)習(xí)多項(xiàng)式運(yùn)算,現(xiàn)在進(jìn)行它的相逆過(guò)程。對(duì)部分學(xué)生有一定難度。
2.教學(xué)情況分析:為了讓學(xué)生能夠通過(guò)本微課掌握因式分解基本方法,通過(guò)相應(yīng)的變形整理達(dá)到可以提取公因式和運(yùn)用公式法進(jìn)行因式分解。超過(guò)四項(xiàng)的`多項(xiàng)式是學(xué)生學(xué)習(xí)難點(diǎn),如何進(jìn)行分組是關(guān)鍵。
【教學(xué)目標(biāo)】
1.能運(yùn)用提取公因式進(jìn)行因式分解;
2.能夠正確使用平方差和完全平方公式進(jìn)行因式分解;
3.能夠?qū)λ捻?xiàng)及以上的多項(xiàng)式進(jìn)行分組。
【學(xué)習(xí)任務(wù)】
通過(guò)例題一鞏固提取公因式進(jìn)行因式分解;
通過(guò)例題二鞏固應(yīng)用公式法進(jìn)行因式分解,并要求每個(gè)因式不能再進(jìn)行因式分解為止;
歸納總結(jié)因式分解方法:一提,二套,三分組,四要分解到各個(gè)因式不能再進(jìn)行因式分解為止
注意事項(xiàng):兩點(diǎn)
舉一反三,鞏固練習(xí)
對(duì)各題進(jìn)行講解,達(dá)到學(xué)習(xí)目的。
【教學(xué)小結(jié)】
通過(guò)本微課,學(xué)生能夠?qū)σ蚴椒纸庵R(shí)進(jìn)行歸納總結(jié)并運(yùn)用此方法來(lái)解決問(wèn)題。對(duì)學(xué)生因式分解由易到難,并重點(diǎn)對(duì)分組進(jìn)行大量的練習(xí),以達(dá)到知識(shí)技能的提升。學(xué)生在課后還需要通過(guò)練習(xí)加以鞏固復(fù)習(xí),才能做到應(yīng)用分組,提取公因式,應(yīng)用公式法進(jìn)行因式分解。
因式分解優(yōu)秀教案 篇14
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
用因式分解法解一元二次方程.
2.內(nèi)容解析
教材通過(guò)實(shí)際問(wèn)題得到方程
,讓學(xué)生思考解決方程的方法除了之前所學(xué)習(xí)過(guò)的配方法和公式法以外,是否還有更簡(jiǎn)單的方法解方程,接著思考為什么用這種方法可以求出方程的解,從而引出本節(jié)課的教學(xué)內(nèi)容.
解一元二次方程的基本策略是降次,因式分解法將一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一次式的乘積為零,是解某些一元二次方程較為簡(jiǎn)便靈活的一種特殊方法.體現(xiàn)了降次的思想,這種思想在以后處理高次方程時(shí)也很重要.
基于以上分析,確定出本節(jié)課的教學(xué)重點(diǎn):會(huì)用因式分解法解特殊的一元二次方程.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)了解用因式分解法解一元二次方程的概念;會(huì)用因式分解法解一元二次方程;
(2)學(xué)會(huì)觀察方程特征,選用適當(dāng)方法解決一元二次方程.
2.目標(biāo)解析
(1)學(xué)生能理解因式分解法的概念,掌握因式分解法解一元二次方程的一般步驟,會(huì)利用因式分解求解特殊的一元二次方程;
(2)學(xué)生通過(guò)對(duì)比一元二次方程的結(jié)構(gòu)類型,選用適當(dāng)?shù)姆椒ê侠淼慕夥匠,增?qiáng)解決問(wèn)題的靈活性.
三、教學(xué)問(wèn)題診斷分析
學(xué)生在此之前已經(jīng)學(xué)過(guò)了用配方法和公式法求一元二次方程的解,然后通過(guò)實(shí)際問(wèn)題,獲得一個(gè)顯然可以用“提取公因式法”而達(dá)到“降次”目的的方程,從而引出因式分解法解一元二次方程,體現(xiàn)了從簡(jiǎn)單的、特殊的問(wèn)題出發(fā),通過(guò)逐步推廣而獲得復(fù)雜的`、一般的問(wèn)題,符合學(xué)生的認(rèn)知規(guī)律.
在實(shí)際的教學(xué)中,學(xué)生在利用因式分解法解方程式往往會(huì)在因式分解上存在著一定的困難,從而不能將方程化成兩個(gè)一次式乘積的形式.另外在面對(duì)一元二次方程時(shí),缺乏對(duì)方程結(jié)構(gòu)的觀察,從而在方法的選擇上欠佳,缺乏解決問(wèn)題的靈活性,增加了計(jì)算的難度,降低了計(jì)算的準(zhǔn)確性.為了突破這一難點(diǎn),應(yīng)帶領(lǐng)學(xué)生認(rèn)真觀察方程的結(jié)構(gòu),對(duì)比方法的難易簡(jiǎn)便,從而選擇合理的方法解決一元二次方程.
本節(jié)課的難點(diǎn):學(xué)會(huì)觀察方程特征,選用適當(dāng)方法解決一元二次方程.
四、教學(xué)過(guò)程設(shè)計(jì)
1.創(chuàng)設(shè)情景,引出問(wèn)題
問(wèn)題一根據(jù)物理學(xué)規(guī)律,如果把一個(gè)物體從地面以10m/s的速度豎直上拋,那么物體經(jīng)過(guò)xs離地面的高度(單位:m)為
.根據(jù)上述規(guī)律,物體經(jīng)過(guò)多少秒落回地面(結(jié)果保留小數(shù)點(diǎn)后兩位)?
師生活動(dòng):學(xué)生積極思考并嘗試列方程,可有學(xué)生解釋如何理解“落回地面”.
【設(shè)計(jì)意圖】學(xué)生首先要理解實(shí)際問(wèn)題背景下代數(shù)式的意義,理解落回地面的意義就是高度為零,就是表示高度的代數(shù)式的值為零,從而列出方程.在閱讀并嘗試回答的過(guò)程中讓他們感受在生活、生產(chǎn)中需要用到方程,從而激發(fā)學(xué)生的求知欲.
2.觀察感知,理解方法
問(wèn)題二如何求出方程的解呢?
師生活動(dòng):學(xué)生從已有的知識(shí)出發(fā),考慮用配方法和公式法解決問(wèn)題,教師再一步引導(dǎo)學(xué)生觀察方程的結(jié)構(gòu),學(xué)生進(jìn)行深入的思考,努力發(fā)現(xiàn)因式分解法方法解方程.
【設(shè)計(jì)意圖】通過(guò)配方法和公式法的選擇,更好地讓學(xué)生對(duì)比感受因式分解法的簡(jiǎn)便,為本節(jié)課的教學(xué)內(nèi)容做好知識(shí)上的鋪墊和準(zhǔn)備.
問(wèn)題三如果,則有什么結(jié)論?對(duì)于你解方程有什么啟發(fā)嗎?
師生活動(dòng):學(xué)生很容易回答有或的結(jié)論.由此進(jìn)一步思考如何將一元二次方程化為兩個(gè)一次式的乘積.
【設(shè)計(jì)意圖】通過(guò)觀察,引導(dǎo)學(xué)生進(jìn)一步思考,發(fā)現(xiàn)用因式分解中提取公因式法解方程更加簡(jiǎn)便,從而學(xué)生會(huì)對(duì)方法的選擇有一定的理解.
問(wèn)題四上述方法是是如何將一元二次方程降為一次的?
師生活動(dòng):學(xué)生通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,體會(huì)到通過(guò)提取公因式將一元二次方程化為了兩個(gè)一次式的乘積的形式,得到兩個(gè)一元一次方程,教師注重引導(dǎo)學(xué)生觀察方程在因式分解過(guò)程中的變化,在學(xué)生總結(jié)發(fā)言的過(guò)程中適當(dāng)引導(dǎo).
【設(shè)計(jì)意圖】讓學(xué)生對(duì)比不同解法,不是用開(kāi)平方降次,而是先因式分解,使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次,這種節(jié)一元二次方程的方法叫做因式分解法.在反思小結(jié)的過(guò)程中,理解因式分解法的意義,從而引出本節(jié)課的教學(xué)內(nèi)容.
3.例題示范,靈活運(yùn)用
例解下列方程
(1)
(2)
師生活動(dòng):提問(wèn):
(1)如何求出方程(1)的解呢?說(shuō)說(shuō)你的方法.
(2)對(duì)比解法,說(shuō)說(shuō)各種解法的特點(diǎn).
學(xué)生積極思考,積極回答問(wèn)題,對(duì)比解法的不同.
【設(shè)計(jì)意圖】問(wèn)題(1)的提出是開(kāi)放式的,學(xué)生可能會(huì)回答將括號(hào)打開(kāi),然后利用配方法或公式法,也有些學(xué)生會(huì)觀察到如果將
當(dāng)作一個(gè)整體,利用提取公因式的方法直接就化為兩個(gè)一次式乘積為零的形式.通過(guò)問(wèn)題(2)的思考討論,讓學(xué)生體會(huì)解法的利弊,注重觀察方程自身的結(jié)構(gòu).
師生活動(dòng):提問(wèn):(1)方程(2)與方程(1)對(duì)比,在結(jié)構(gòu)上有什么不同?
(2)談?wù)劮匠?2)的解法.
學(xué)生觀察方程(2)與方程(1)的區(qū)別,用類比劃歸的思想解決問(wèn)題.
【設(shè)計(jì)意圖】問(wèn)題(2)的方程需要先進(jìn)行移項(xiàng),將方程化為右側(cè)等于零的結(jié)構(gòu),然后得到一個(gè)平方差的結(jié)構(gòu),利用平方差公式將一元二次方程化為兩個(gè)一次式的乘積為零的結(jié)構(gòu).
4.鞏固練習(xí),學(xué)以致用
完成教材P14練習(xí)1,2.
【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)一元二次方程解法掌握情況.
5.小結(jié)提升,深化理解
問(wèn)題五(1)因式分解法的一般步驟是什么?
(2)請(qǐng)大家總結(jié)三種解法的聯(lián)系與區(qū)別.
師生活動(dòng):學(xué)生積極思考,歸納因式分解法的一般步驟.總結(jié)各種解題方法的特點(diǎn),體會(huì)各種方法的利弊,在交流的過(guò)程中加深對(duì)解一元二次方程方法的理解,教師對(duì)學(xué)生的發(fā)言給予鼓勵(lì)和肯定,對(duì)于小結(jié)交流中的出現(xiàn)的問(wèn)題及時(shí)進(jìn)行引導(dǎo)糾正,幫助學(xué)生深入理解問(wèn)題.
【設(shè)計(jì)意圖】學(xué)生通過(guò)小結(jié)反思,深化對(duì)問(wèn)題的理解,體會(huì)到配方法需要將方程進(jìn)行配方降次,公式法需要將方程化為一般形式后利用求根公式求解;而因式分解法需要將一元二次方程化為兩個(gè)一次項(xiàng)乘積為零的形式;另在還讓學(xué)生體會(huì)到配方法和公式法適用于所有方程,但有時(shí)計(jì)算量比較大,因式分解法適用于一部分一元二次方程,但是三種方法都體現(xiàn)了降次的基本思想.