成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

二元一次方程與一次函數(shù)教案

時(shí)間:2023-04-01 14:10:35 教案 投訴 投稿
  • 相關(guān)推薦

二元一次方程與一次函數(shù)教案

  作為一名無私奉獻(xiàn)的老師,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編幫大家整理的二元一次方程與一次函數(shù)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

二元一次方程與一次函數(shù)教案

二元一次方程與一次函數(shù)教案1

  一、教材分析

  本節(jié)內(nèi)容共安排2個(gè)課時(shí)完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對(duì)應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力。本節(jié)要注意的是由兩條直線求交點(diǎn),其交點(diǎn)的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對(duì)應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的.

  二、學(xué)情分析

  學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識(shí),學(xué)習(xí)本節(jié)知識(shí)困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會(huì)數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決.

  三、目標(biāo)分析

  1.教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo)

  (1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;

  (2) 掌握二元一次方程組和對(duì)應(yīng)的兩條直線之間的關(guān)系;

  (3) 掌握二元一次方程組的圖像解法.

  過程與方法目標(biāo)

  (1) 教材以問題串的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)知識(shí)間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;

  (2) 通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力.

  (3) 情感與態(tài)度目標(biāo)

  (1) 在探究二元一次方程和一次函數(shù)的對(duì)應(yīng)關(guān)系中,在體會(huì)近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.

  (2) 在經(jīng)歷同一數(shù)學(xué)知識(shí)可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和變式能力.

  2.教學(xué)重點(diǎn)

  (1)二元一次方程和一次函數(shù)的關(guān)系;

  (2)二元一次方程組和對(duì)應(yīng)的兩條直線的關(guān)系.

  3.教學(xué)難點(diǎn)

  數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).

  四、教法學(xué)法

  1.教法學(xué)法

  啟發(fā)引導(dǎo)與自主探索相結(jié)合.

  2.課前準(zhǔn)備

  教具:多媒體課件、三角板.

  學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

  五、教學(xué)過程

  本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置.

  第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)

  內(nèi)容:1.方程x+y=5的解有多少個(gè)? 是這個(gè)方程的解嗎?

  2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?

  3.在一次函數(shù)y= 的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

  4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y= 的圖像相同嗎?

  由此得到本節(jié)課的第一個(gè)知識(shí)點(diǎn):

  二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

  (1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

  (2) 一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

  意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對(duì)應(yīng)關(guān)系.

  效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識(shí)的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).

  前面研究了一個(gè)二元一次方程和相應(yīng)的一個(gè)一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個(gè)二元一次方程組成的方程組和相應(yīng)的兩個(gè)一次函數(shù)的關(guān)系.順其自然進(jìn)入下一環(huán)節(jié).

  第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系

  內(nèi)容:1.解方程組

  2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像.

  3.方程組的解和這兩個(gè)函數(shù)的圖像的交點(diǎn)坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個(gè)知識(shí)點(diǎn):二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;

  (1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);

  (2) 求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.

  (3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

  注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.

  意圖:通過自主探索,使學(xué)生初步體會(huì)數(shù)(二元一次方程)與形(兩條直線)之間的對(duì)應(yīng)關(guān)系,為求兩條直線的交點(diǎn)坐標(biāo)打下基礎(chǔ).

  效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識(shí),學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的'問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和變式能力.

  第三環(huán)節(jié) 典型例題

  探究方程與函數(shù)的相互轉(zhuǎn)化

  內(nèi)容:例1 用作圖像的方法解方程組

  例2 如圖,直線 與 的交點(diǎn)坐標(biāo)是 .

  意圖:設(shè)計(jì)例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對(duì)應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時(shí)解決實(shí)際問題作了很好的鋪墊.

  效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.

  第四環(huán)節(jié) 反饋練習(xí)

  內(nèi)容:1.已知一次函數(shù) 與 的圖像的交點(diǎn)為 ,則 .

  2.已知一次函數(shù) 與 的圖像都經(jīng)過點(diǎn)A(2,0),且與 軸分別交于B,C兩點(diǎn),則 的面積為( ).

  (A)4 (B)5 (C)6 (D)7

  3.求兩條直線 與 和 軸所圍成的三角形面積.

  4.如圖,兩條直線 與 的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?

  意圖:4個(gè)練習(xí),意在及時(shí)檢測(cè)學(xué)生對(duì)本節(jié)知識(shí)的掌握情況.

  效果:加深了兩條直線交點(diǎn)的坐標(biāo)就是對(duì)應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計(jì)算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.

  第五環(huán)節(jié) 課堂小結(jié)

  內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

  1.二元一次方程和一次函數(shù)的圖像的關(guān)系;

  (1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

  (2) 一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

  2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:

  (1) 方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);

  (2) 兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;

  3.解二元一次方程組的方法有3種:

  (1)代入消元法;

  (2)加減消元法;

  (3)圖像法. 要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.

  意圖:旨在使本節(jié)課的知識(shí)點(diǎn)系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識(shí)才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用.

  第六環(huán)節(jié) 作業(yè)布置

  習(xí)題7.7

  附: 板書設(shè)計(jì)

  六、教學(xué)反思

  本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識(shí)的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對(duì)應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解.因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個(gè)問題.

二元一次方程與一次函數(shù)教案2

  本節(jié)教學(xué)內(nèi)容是《二元一次方程與一次函數(shù)》,這節(jié)課以“回顧,提問”為先導(dǎo),以“操作,思考”為手段,以“數(shù),形結(jié)合”為要求,以“引導(dǎo),探究”為主線,處處呈現(xiàn)出師生互動(dòng),生生互動(dòng)的景象,較好地體現(xiàn)了新的課程理念與要求,充分讓學(xué)生自主探究,合作交流,時(shí)刻注重學(xué)生學(xué)習(xí)過程的體驗(yàn)與評(píng)價(jià)。新的課程標(biāo)準(zhǔn)提出:數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的生活經(jīng)驗(yàn)基礎(chǔ)之上,教師應(yīng)幫助他們?cè)谧灾魈剿鞯倪^程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、教學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。由此,我設(shè)計(jì)了本節(jié)課的教學(xué)設(shè)計(jì),基于上完課后的感想,我對(duì)本節(jié)課有如下的反思:

  一、成功之處:

  1、從舊識(shí)引入,自然過渡

  這節(jié)課由復(fù)習(xí)一次函數(shù)解析式和二元一次方程的形式引入,再提出x+y=5是一次函數(shù)還是二元一次方程這一問題,進(jìn)而引出本節(jié)課的第一個(gè)內(nèi)容,激發(fā)了學(xué)生的興趣,使他們更快的融入課堂。

  2、在操作中,提出問題,深化認(rèn)識(shí)

  對(duì)于此階段學(xué)生來說,他們樂于探索,富于幻想,但他們的數(shù)學(xué)推理能力以及對(duì)知識(shí)的主動(dòng)遷移能力較弱,為幫助學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生主動(dòng)發(fā)現(xiàn)問題,本節(jié)課我讓學(xué)生親自動(dòng)手操作畫出一次函數(shù)的圖像,并解出二元一次方程的解,在畫圖過程中發(fā)現(xiàn):“以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上”,接著引導(dǎo)學(xué)生反思:“一次函數(shù)圖像的點(diǎn)坐標(biāo)都適合相應(yīng)的二元一次方程嗎?”通過舉例、驗(yàn)證,得出結(jié)論。同樣,在探索二元一次方程組與一次函數(shù)關(guān)系時(shí),也是在操作中發(fā)現(xiàn)問題,這樣就給了學(xué)生充分體驗(yàn)、自主探索知識(shí)的機(jī)會(huì),使他們?cè)谧灾魈剿、合作交流中找到了快樂,深化了認(rèn)識(shí)。

  3、以能力培養(yǎng)為核心,引導(dǎo)探索為主線,數(shù)形結(jié)合為要求

  能力的.培養(yǎng)是以自主探究為平臺(tái),我通過讓學(xué)生小組交流合作并討論來解答幾個(gè)問題,進(jìn)而得出結(jié)論,培養(yǎng)了他們的發(fā)現(xiàn)、分析、解決問題、歸納總結(jié)的能力。再由二元一次方程與一次函數(shù)的關(guān)系進(jìn)一步擴(kuò)展到二元一次方程組與一次函數(shù)的關(guān)系,層層遞進(jìn),學(xué)生基本掌握了本節(jié)課的重點(diǎn)、難點(diǎn)問題。通過總結(jié)二元一次方程組的解法:加減、消元、圖像法,通過分析他們的優(yōu)缺點(diǎn)可知圖像法得出的解是近似的這一結(jié)論,讓學(xué)生又體會(huì)到了數(shù)學(xué)的嚴(yán)謹(jǐn)性。在教學(xué)過程中,我充分滲透了數(shù)形結(jié)合的思想,讓學(xué)生體會(huì)了數(shù)學(xué)的美。

  二、失敗之處

  1、學(xué)生自己畫圖時(shí)不好確定交點(diǎn)坐標(biāo),在做這樣的題時(shí),就一定會(huì)存在如何確定交點(diǎn)的精確度問題,從而使學(xué)生會(huì)認(rèn)為應(yīng)用圖像法來解二元一次方程組的方法無用處,進(jìn)而不重視本節(jié)課的內(nèi)容。

  2、教學(xué)過程中,在探索二元一次方程與一次函數(shù)關(guān)系時(shí),提出的問題與ppt課件中展示的問題部分重復(fù)了,浪費(fèi)了一些時(shí)間,板書設(shè)計(jì)不夠簡潔。

  三、針對(duì)以上不足之處我做了如下改進(jìn):

  1、對(duì)于交點(diǎn)坐標(biāo)問題,應(yīng)該跟同學(xué)們講解清楚,我們要求的是掌握這個(gè)解二元一次方程組的圖像解法,我們借助科學(xué)技術(shù)很容易畫出一次函數(shù)的圖像,也就容易找到交點(diǎn)的精確坐標(biāo)。此外,一般來說如果考試當(dāng)中是會(huì)給出交點(diǎn)的坐標(biāo)。

  2、重新整理資料,將一些重復(fù)問題刪去,提取結(jié)論中一些重點(diǎn)語句,關(guān)鍵詞,板書做到精煉。

二元一次方程與一次函數(shù)教案3

  一、教材分析

  1、教材的地位和作用

  函數(shù)、方程和不等式都是人們刻畫現(xiàn)實(shí)世界的重要數(shù)學(xué)模型。用函數(shù)的觀點(diǎn)看方程(組)與不等式,使學(xué)生不僅能加深對(duì)方程(組)、不等式的理解,提高認(rèn)識(shí)問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對(duì)一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過程中體驗(yàn)數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價(jià)值,這對(duì)今后的學(xué)習(xí)有著十分重要的意義。

  2、教學(xué)重難點(diǎn)

  重點(diǎn):一次函數(shù)與二元一次方程(組)關(guān)系的探索。

  難點(diǎn):綜合運(yùn)用方程(組)、不等式和函數(shù)的知識(shí)解決實(shí)際問題。

  3、教學(xué)目標(biāo)

  知識(shí)技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會(huì)用圖象法解二元一次方程組。

  數(shù)學(xué)思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實(shí)際問題的解決過程,學(xué)會(huì)用函數(shù)的觀點(diǎn)去認(rèn)識(shí)問題。

  解決問題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實(shí)際問題。

  情感態(tài)度:在探究活動(dòng)中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動(dòng)中,學(xué)會(huì)與人合作,學(xué)會(huì)傾聽、欣賞和感悟,體驗(yàn)數(shù)學(xué)的價(jià)值,建立自信心。

  二、教法說明

  對(duì)于認(rèn)知主體——學(xué)生來說,他們已經(jīng)具備了初步探究問題的能力,但是對(duì)知識(shí)的主動(dòng)遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在“生動(dòng)活潑、民主開放、主動(dòng)探索”的氛圍中愉快地學(xué)習(xí)。

  三、教學(xué)過程

  (一)感知身邊數(shù)學(xué)

  學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對(duì)一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。

  [設(shè)計(jì)意圖]建構(gòu)主義認(rèn)為,在實(shí)際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用“上網(wǎng)收費(fèi)”這一生活實(shí)際創(chuàng)設(shè)情境,并用問題啟發(fā)學(xué)生去思、鼓勵(lì)學(xué)生去探、激勵(lì)學(xué)生去說,努力給學(xué)生造成“心求通而未能得,口欲言而不能說”的情勢(shì),從而喚起學(xué)生強(qiáng)烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動(dòng)中來。

  教學(xué)引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個(gè)長方形折疊就可以得到一個(gè)正方形,F(xiàn)在請(qǐng)同學(xué)們拿出一個(gè)長方形紙條,按動(dòng)畫所示進(jìn)行折疊處理。

  動(dòng)畫演示:

  場景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請(qǐng)同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對(duì)角線之間的關(guān)系。請(qǐng)大家測(cè)量各邊的長度、各角的大小、對(duì)角線的長度以及對(duì)角線交點(diǎn)到各頂點(diǎn)的長度。

  [學(xué)生活動(dòng):各自測(cè)量。]

  鼓勵(lì)學(xué)生將測(cè)量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。

  講授新課

  找一兩個(gè)學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。

  動(dòng)畫演示:

  場景二:正方形的性質(zhì)

  師:這些性質(zhì)里那些是矩形的性質(zhì)?

  [學(xué)生活動(dòng):尋找矩形性質(zhì)。]

  動(dòng)畫演示:

  場景三:矩形的性質(zhì)

  師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。

  [學(xué)生活動(dòng);尋找菱形性質(zhì)。]

  動(dòng)畫演示:

  場景四:菱形的性質(zhì)

  師:這說明正方形具有矩形和菱形的全部性質(zhì)。

  及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。

  師:根據(jù)這些性質(zhì),我們能不能給正方形下一個(gè)定義?怎么樣給正方形下一個(gè)準(zhǔn)確的定義?

  [學(xué)生活動(dòng):積極思考,有同學(xué)做躍躍欲試狀。]

  師:請(qǐng)同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。

  學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵(lì),把以下三種板書:

  “有一組鄰邊相等的`矩形叫做正方形!

  “有一個(gè)角是直角的菱形叫做正方形!

  “有一個(gè)角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學(xué)生活動(dòng):討論這三個(gè)定義正確不正確?三個(gè)定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。

  (二)享受探究樂趣

  1、探究一次函數(shù)與二元一次方程的關(guān)系

  [設(shè)計(jì)意圖]用一連串的問題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個(gè)方面的關(guān)系,為探索二元一次方程組的解與直線交點(diǎn)坐標(biāo)的關(guān)系作好鋪墊。

  2、探究一次函數(shù)與二元一次方程組的關(guān)系

  [設(shè)計(jì)意圖]學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個(gè)角度認(rèn)識(shí)一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點(diǎn)知識(shí),從而在頭腦中再現(xiàn)知識(shí)的形成過程,避免單純地記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。此時(shí)教師及時(shí)對(duì)學(xué)生進(jìn)行鼓勵(lì),充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗(yàn)。

  (三)乘坐智慧快車

  例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費(fèi)方式:方式A以每分0。1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外再以每分0。05元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi)。如何選擇收費(fèi)方式能使上網(wǎng)者更合算?

  [設(shè)計(jì)意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費(fèi)方式好嗎?”再次激起學(xué)生強(qiáng)烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過此問題的探究,使學(xué)生有效地理解本節(jié)課的難點(diǎn),體會(huì)數(shù)形結(jié)合這一思想方法的應(yīng)用。

  (四)體驗(yàn)成功喜悅

  1、搶答題

  2、旅游問題

  [設(shè)計(jì)意圖]抓住學(xué)生對(duì)競爭充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動(dòng),并在搶答中品味成功的快樂,提高思維的速度。在學(xué)生感興趣的旅游問題中,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),更好地促進(jìn)學(xué)生對(duì)本節(jié)課難點(diǎn)的理解和應(yīng)用,幫助學(xué)生不斷完善新的認(rèn)知結(jié)構(gòu)。

  (五)分享你我收獲

  在課堂臨近尾聲時(shí),向?qū)W生提出:通過今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?

  [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。

  (六)開拓嶄新天地

  1、數(shù)學(xué)日記

  2、布置作業(yè)

  [設(shè)計(jì)意圖]新課程強(qiáng)調(diào)發(fā)展學(xué)生數(shù)學(xué)交流的能力,用數(shù)學(xué)日記給學(xué)生提供一種表達(dá)數(shù)學(xué)思想方法和情感的方式,以體現(xiàn)評(píng)價(jià)體系的多元化,并使學(xué)生嘗試用數(shù)學(xué)的眼睛觀察事物,體驗(yàn)數(shù)學(xué)的價(jià)值。作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓“不同的人在數(shù)學(xué)上得到不同的發(fā)展”。

  四、教學(xué)設(shè)計(jì)反思

  1、貫穿一個(gè)原則——以學(xué)生為主體的原則

  2、突出一個(gè)思想——數(shù)形結(jié)合的思想

  3、體現(xiàn)一個(gè)價(jià)值——數(shù)學(xué)建模的價(jià)值

  4、滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)

二元一次方程與一次函數(shù)教案4

  一、教材分析

  (一)教材的地位和作用

  函數(shù)、方程和不等式都是人們刻畫現(xiàn)實(shí)世界的重要數(shù)學(xué)模型。用函數(shù)的觀點(diǎn)看方程(組)與不等式,學(xué)生不僅能加深對(duì)方程(組)、不等式的理解,提高認(rèn)識(shí)問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美,學(xué)生在探索過程中體驗(yàn)到的數(shù)形結(jié)合以及數(shù)學(xué)建模思想,既是對(duì)前面所學(xué)知識(shí)的升華,同時(shí)也對(duì)今后學(xué)習(xí)高中的解析幾何有著十分重要的意義。

 。ǘ┙虒W(xué)目標(biāo)

  新一輪的課程改革,旨在促進(jìn)學(xué)生全面、持續(xù)、和諧的發(fā)展,我認(rèn)為本節(jié)課的教學(xué)應(yīng)達(dá)到以下目標(biāo):知識(shí)技能方面:理解一次函數(shù)與二元一次方程組的關(guān)系,會(huì)用圖象法解二元一次方程組;

  數(shù)學(xué)思考方面:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實(shí)際問題的解決過程,學(xué)會(huì)用函數(shù)的觀點(diǎn)去思考問題;

  解決問題方面:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實(shí)際問題;

  情感態(tài)度方面:在探究活動(dòng)中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動(dòng)中,學(xué)會(huì)與人合作,學(xué)會(huì)傾聽、欣賞和感悟,體驗(yàn)數(shù)學(xué)的價(jià)值,建立自信。

 。ㄈ┙虒W(xué)重、難點(diǎn)

  從以上目標(biāo)可以看出,學(xué)生既要通過對(duì)一次函數(shù)與二元一次方程(組)關(guān)系的探究,習(xí)得知識(shí)、培養(yǎng)能力,又要用此關(guān)系解決相關(guān)實(shí)際問題,因此,本節(jié)課的教學(xué)重點(diǎn)應(yīng)是一次函數(shù)與二元一次方程(組)關(guān)系的探索?紤]到八年級(jí)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)不強(qiáng),本節(jié)課的難點(diǎn)應(yīng)是綜合運(yùn)用方程(組)、不等式和函數(shù)的知識(shí)解決相關(guān)實(shí)際問題。而關(guān)鍵則是通過問題情境的設(shè)計(jì),激發(fā)學(xué)生的求知欲,引導(dǎo)學(xué)生探索、交流,引導(dǎo)學(xué)生發(fā)現(xiàn)、分析、解決問題。

  二、教法分析

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)”,“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人”。教師的職責(zé)在于向?qū)W生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,引導(dǎo)學(xué)生自由探索、合作交流與實(shí)踐創(chuàng)新。對(duì)于認(rèn)知主體來說,八年級(jí)學(xué)生樂于探索,富于幻想,但他們的數(shù)學(xué)推理能力以及對(duì)知識(shí)的主動(dòng)遷移能力較弱,為幫助學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生的主動(dòng)發(fā)展,本節(jié)課我采用情境—探究式教學(xué)法,以“情境――問題――探究――交流――應(yīng)用――反思――提高”的模式展開,以學(xué)生為中心,使其在“生動(dòng)活潑、民主開放、主動(dòng)探索”的氛圍中愉快學(xué)習(xí)。

  三、過程分析

  本著重實(shí)際、重探究、重過程、重交流的教學(xué)宗旨,我將本節(jié)課的教學(xué)設(shè)計(jì)成以下六個(gè)環(huán)節(jié):情景導(dǎo)入——探究合作——解決問題——鞏固提高——?dú)w納小結(jié)——布置作業(yè)。

  這節(jié)課,我首先用貼近學(xué)生實(shí)際、學(xué)生感興趣的問題——上網(wǎng)交費(fèi)問題引導(dǎo)學(xué)生進(jìn)入本節(jié)課的學(xué)習(xí),充分調(diào)動(dòng)學(xué)生的積極性。課件展示學(xué)生回答的用列方程組解答的過程,并提出問題:“同學(xué)們?cè)诮膺@個(gè)二元一次方程組時(shí),基本上都是用的代入法或加減法,那么解二元一次方程組還有其它的方法嗎?”學(xué)生討論后可能會(huì)感到束手無策,感到原有的知識(shí)不夠用了。一石激起千層浪,問題提出來后,如何解決呢?此時(shí),作為教師,應(yīng)把握好組織者、引導(dǎo)者和合作者的身份,不要急于發(fā)表自己的意見,而應(yīng)啟發(fā)學(xué)生去思、鼓勵(lì)學(xué)生去探、激勵(lì)學(xué)生去說,努力給學(xué)生造成“心求通而未能得,口欲言而不能說”的態(tài)勢(shì),從而喚起學(xué)生強(qiáng)烈的學(xué)習(xí)熱情,使他們主動(dòng)積極地投入到探索活動(dòng)中來。另外,此問題的設(shè)置也為后面例題的講解作好鋪墊,有利于教學(xué)難點(diǎn)的突破。

  為使學(xué)生更好地掌握本節(jié)課的重點(diǎn)知識(shí),我遵循從特殊到一般,再從一般到特殊的認(rèn)知規(guī)律,設(shè)計(jì)了以下問題“你們能否將方程

  轉(zhuǎn)化為一次函數(shù)的形式呢?”“如果能,你們能在平面直角坐標(biāo)系中能畫出它的圖象嗎?”在學(xué)生將方程轉(zhuǎn)化為一次函數(shù)的形式并畫出圖象后,我引導(dǎo)學(xué)生觀察直線上的幾個(gè)點(diǎn),發(fā)現(xiàn)它們的坐標(biāo)都是方程的解,緊接著問“直線上任意一點(diǎn)的坐標(biāo)一定是方程的解嗎?”“是否任意的二元一次方程都可以轉(zhuǎn)化為一次函數(shù)的形式呢?”“是否所有直線上任意一點(diǎn)的坐標(biāo)都是它所對(duì)應(yīng)的二元一次方程的解呢?”學(xué)生先獨(dú)立思考,然后小組討論,不難發(fā)現(xiàn):每個(gè)二元一次方程都對(duì)應(yīng)一個(gè)一次函數(shù),于是也就對(duì)應(yīng)一條直線。一連串的問題由淺入深,環(huán)環(huán)相扣,引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個(gè)方面的關(guān)系,為探索二元一次方程組的解與直線交點(diǎn)坐標(biāo)的關(guān)系作好鋪墊。

  緊接著問學(xué)生:“你能用剛才的方法研究另一個(gè)方程2x—y=1嗎?”學(xué)生在同一坐標(biāo)系中畫出一次函數(shù)y=2x—1的圖象后,發(fā)現(xiàn)兩條直線有一個(gè)交點(diǎn),我又問“這個(gè)交點(diǎn)坐標(biāo)與這兩條直線所對(duì)應(yīng)的方程的解有什么關(guān)系?與這兩個(gè)方程組成的方程組的解又有什么關(guān)系?”此時(shí),學(xué)生慢慢體會(huì)到:既然每個(gè)二元一次方程都對(duì)應(yīng)一條直線,二元一次方程的每一個(gè)解又對(duì)應(yīng)直線上的每一個(gè)點(diǎn),那么兩個(gè)二元一次方程的公共解就對(duì)應(yīng)著兩條直線的公共點(diǎn),也就是說,二元一次方程組的解不就是對(duì)應(yīng)著兩條直線的交點(diǎn)嗎?這個(gè)時(shí)期,教師應(yīng)留給學(xué)生充分探索交流的時(shí)間與空間,對(duì)學(xué)生可能出現(xiàn)的疑問給予及時(shí)幫助,師生共同歸納出:用畫圖象的方法可以解二元一次方程組,從而解決了本節(jié)課開頭所提出的問題。然后共同歸納:從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo)。這告訴我們,既可用畫圖象的方法可以解二元一次方程組,也可用解方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。利用剛才已有的探究經(jīng)驗(yàn),學(xué)生很容易想到此問題的探究還可以從數(shù)的角度看,進(jìn)一步歸納出:從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,這個(gè)函數(shù)值是何值。

  這樣,學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個(gè)角度認(rèn)識(shí)了一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點(diǎn)知識(shí),并使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。學(xué)生從一個(gè)個(gè)小問題的回答,到最后的歸納,充分享受學(xué)習(xí)、探究帶來的快樂,此時(shí)教師應(yīng)充分肯定學(xué)生的探究成果,及時(shí)對(duì)學(xué)生進(jìn)行鼓勵(lì),關(guān)注學(xué)生的情感體驗(yàn)。

  為滿足學(xué)生學(xué)以致用、爭強(qiáng)好勝的心理需求,我特意設(shè)計(jì)了兩個(gè)搶答題,既加強(qiáng)了對(duì)所學(xué)知識(shí)的消化理解,又調(diào)動(dòng)了學(xué)生的`積極性,更讓他們?cè)趽尨鹬衅肺兜搅顺晒Φ目鞓贰3弥鴮W(xué)生高漲的情緒,我迅速引入開頭部分意猶未盡的上網(wǎng)收費(fèi)問題,加以變式,再次激起學(xué)生強(qiáng)烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。經(jīng)過一番探索,學(xué)生可能想到:要選擇合理的收費(fèi)方式就需要對(duì)它們所收費(fèi)用的大小進(jìn)行比較,因此一定會(huì)有學(xué)生用過去的知識(shí)——方程或不等式解決問題,對(duì)于這部分學(xué)生的想法要給予充分的肯定表揚(yáng),然后繼續(xù)提問“你能用今天所學(xué)的圖象法來解決這個(gè)問題嗎?”引導(dǎo)學(xué)生建立函數(shù)模型進(jìn)行探索。

  學(xué)生在同一坐標(biāo)系中分別畫出兩個(gè)一次函數(shù)的圖象后,我引導(dǎo)學(xué)生觀察圖象的特征,學(xué)生討論后發(fā)現(xiàn)當(dāng)0 ≤ x < 400時(shí),紅色點(diǎn)在藍(lán)色點(diǎn)的上方;當(dāng)x=400時(shí),紅色點(diǎn)與藍(lán)色點(diǎn)重合;當(dāng)x>400時(shí),紅色點(diǎn)在藍(lán)色點(diǎn)的下方,這樣利用直線上點(diǎn)位置的高低直觀地比較函數(shù)值的大小,從而找到答案。為避免圖象法作圖誤差造成的不足,可引導(dǎo)學(xué)生通過代數(shù)計(jì)算求出交點(diǎn)坐標(biāo)。為培養(yǎng)學(xué)生一題多解的能力,我啟發(fā)學(xué)生用作差法,類似地用點(diǎn)位置的高低直觀地找到y(tǒng)>0,y=0及y<0時(shí)所對(duì)應(yīng)的x的范圍,進(jìn)而得到答案。通過對(duì)實(shí)際問題的探究,學(xué)生可以發(fā)現(xiàn)圖象法的直觀性,體會(huì)數(shù)形結(jié)合這一思想方法的應(yīng)用,并學(xué)會(huì)用函數(shù)的觀點(diǎn),動(dòng)態(tài)地分析不等式和方程(組)。

  為了鞏固學(xué)生的學(xué)習(xí)成果,我把剛剛結(jié)束不久的鐵山礦冶文化旅游節(jié)帶進(jìn)課堂,讓學(xué)生欣賞一組美麗的黃石礦冶文化景點(diǎn)圖片,在學(xué)生體驗(yàn)家鄉(xiāng)美好的輕松愉快氛圍中,我再一次出示了一個(gè)與之有關(guān)的旅游購票問題,并鼓勵(lì)學(xué)生用不同的方法進(jìn)行解答,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),從而更好地促進(jìn)學(xué)生對(duì)本節(jié)課難點(diǎn)的理解和應(yīng)用,幫助學(xué)生不斷完善新的認(rèn)知結(jié)構(gòu)。

  在課堂臨近尾聲時(shí),引導(dǎo)學(xué)生對(duì)本節(jié)課所學(xué)進(jìn)行小結(jié),鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。嘗試開放式課堂教學(xué),以真正體現(xiàn)學(xué)生的主體地位,使課堂活動(dòng)民主化,多樣化。

  本節(jié)課的作業(yè)由必做題和選做題組成,體現(xiàn)分層教學(xué),讓不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。

  四、設(shè)計(jì)說明

  這節(jié)課,我始終貫穿以學(xué)生為主體的原則,突出數(shù)形結(jié)合的思想,體現(xiàn)數(shù)學(xué)建模的價(jià)值,滲透應(yīng)用數(shù)學(xué)的意識(shí),關(guān)注學(xué)生個(gè)性的發(fā)展,讓每一個(gè)學(xué)生在課堂上都有所感悟,都有著各自的數(shù)學(xué)體驗(yàn),不同的學(xué)生在數(shù)學(xué)的各個(gè)不同方面上都得到不同的發(fā)展。

二元一次方程與一次函數(shù)教案5

  一、學(xué)情分析:

  學(xué)生能夠正確解方程(組),掌握了一次函數(shù)及其圖像的基礎(chǔ)知識(shí),能夠根據(jù)已知條件準(zhǔn)確畫出一次函數(shù)圖象,已經(jīng)具備了函數(shù)的初步思想,在過去已有經(jīng)驗(yàn)基礎(chǔ)上能夠加深對(duì)“數(shù)”和“形”間的相互轉(zhuǎn)化的認(rèn)識(shí),有小組合作學(xué)習(xí)經(jīng)驗(yàn).

  二、學(xué)習(xí)目標(biāo):

  本節(jié)課通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點(diǎn)坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對(duì)應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力.因此確定本節(jié)課的教學(xué)目標(biāo)為:

  1.初步理解二元一次方程和一次函數(shù)兩種數(shù)學(xué)模型之間的關(guān)系;

  2.掌握二元一次方程組和對(duì)應(yīng)的兩條直線交點(diǎn)之間的關(guān)系,通過對(duì)兩種模型關(guān)系的理解解決問題;

  3.發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力,使學(xué)生在自主探索中學(xué)會(huì)不同數(shù)學(xué)模型間的聯(lián)系.

  教學(xué)重點(diǎn)

  二元一次方程和一次函數(shù)的關(guān)系,二元一次方程組和對(duì)應(yīng)的兩條直線交點(diǎn)之間的關(guān)系;

  教學(xué)難點(diǎn)

  通過對(duì)數(shù)學(xué)模型關(guān)系的探究發(fā)展學(xué)生數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識(shí).

  四、教法學(xué)法

  1.教法學(xué)法

  啟發(fā)引導(dǎo)與自主探索相結(jié)合.

  2.課前準(zhǔn)備

  教具:多媒體課件、三角板.

  學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

  五、教學(xué)過程

  第一環(huán)節(jié):探究二元一次方程和一次函數(shù)兩種數(shù)學(xué)模型之間的關(guān)系

  1.某水箱有5噸水,若用水管向外排水,每小時(shí)排水1噸,則X小時(shí)后還剩余Y噸水.

 。1)請(qǐng)找出自變量和因變量

 。2)你能列出X,Y的關(guān)系式嗎

 。3)X,Y的取值范圍是什么

 。4)在平面直角坐標(biāo)系中畫出這個(gè)函數(shù)的圖形.(注意XY的取值范圍).

  2.(1)方程x+y=5的解有多少個(gè)?你能寫出這個(gè)方程的幾個(gè)解嗎?

  (2).在直角坐標(biāo)系內(nèi)分別描出以這些解為坐標(biāo)的點(diǎn),它們?cè)谝淮魏瘮?shù)Y=5-X的圖象上嗎?

 。3).在一次函數(shù)y=x5的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

  (4).以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=x5的圖像相同嗎?

  x+y=5與y=x5表示的關(guān)系相同

  一般地,以一個(gè)二元一次方程的解為坐標(biāo)的點(diǎn)組成的圖象與相應(yīng)的一次函數(shù)的圖象相同,是一條直線.

  目的:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y=x5相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對(duì)應(yīng)關(guān)系.

  前面研究了一個(gè)二元一次方程和相應(yīng)的一個(gè)一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個(gè)二元一次方程組成的方程組和相應(yīng)的兩個(gè)一次函數(shù)的關(guān)系.順其自然進(jìn)入下一環(huán)節(jié).

  第二環(huán)節(jié)自主探索方程組與一次函數(shù)兩種數(shù)學(xué)模型之間的關(guān)系

  探究方程與函數(shù)的相互轉(zhuǎn)化

  1.兩個(gè)一次函數(shù)圖象的交點(diǎn)坐標(biāo)是相應(yīng)的二元

  一次方程組的解

 。1)一次函數(shù)y=5-x圖象上點(diǎn)的坐標(biāo)適合方程x+y=5,那么一次函數(shù)y=2x-1圖象上點(diǎn)的坐標(biāo)適合哪個(gè)方程?

 。2)兩個(gè)函數(shù)的交點(diǎn)坐標(biāo)適合哪個(gè)方程?

  xy5(3).解方程組驗(yàn)證一下你的發(fā)現(xiàn)。 2xy1

  練習(xí):隨堂練習(xí)1 。鞏固由一次函數(shù)的交點(diǎn)坐標(biāo)找相應(yīng)的二元一次方程組的解。

  2.二元一次方程組的解是相應(yīng)的兩個(gè)一次函數(shù)圖象的交點(diǎn)坐標(biāo)。

  xy2(1)解

  2xy5(2)以方程x+y=2

 。3)以方程2x+y=5(4)方程組的解為坐標(biāo)的點(diǎn)在圖象上是哪個(gè)點(diǎn)?

 。5目的:通過自主探索,使學(xué)生初步體會(huì)“數(shù)”(二元一次方程組的解)與“形”(兩條直線)兩種模型之間的對(duì)應(yīng)關(guān)系,

  由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的意識(shí),學(xué)生初步感受到了“數(shù)”的問題可以轉(zhuǎn)化為“形”來處理,反之“形”的問題可以轉(zhuǎn)化成“數(shù)”來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和變式能力.

  練習(xí):知識(shí)技能1。鞏固由方程組的解求相應(yīng)的一次函數(shù)的交點(diǎn)坐標(biāo)。更深入的體會(huì)二元一次方程組的解與一次函數(shù)交點(diǎn)坐標(biāo)之間的對(duì)應(yīng)關(guān)系。

  第三環(huán)節(jié)模型應(yīng)用

  1.某公司要印制產(chǎn)品宣傳材料.

  1500元制版費(fèi).甲印刷廠:每份材料收1元印制費(fèi),另收乙印刷廠:每份材料收2.5元印制費(fèi),不收制版費(fèi).若公司要印制x份宣傳材料,y甲表示甲印刷廠的費(fèi)用,y乙表示乙

  印刷廠的費(fèi)用。

 。1)請(qǐng)分別表示出兩個(gè)印刷廠費(fèi)用與X的關(guān)系式。

 。2)在同一直角坐標(biāo)系中畫出函數(shù)的圖象。

 。3)如何根據(jù)印刷材料的份數(shù)選擇印刷廠比較合算?

  第四環(huán)節(jié)模型特例

  想一想

  內(nèi)容:在同一直角坐標(biāo)系內(nèi),一次函數(shù)y = x + 1和y = x - 2的.圖象(教材xy1124頁圖5-2)有怎樣的位置關(guān)系?方程組解的情況如何?你發(fā)現(xiàn)了什xy2

  么?

  二元一次方程的解和相應(yīng)的兩條直線的關(guān)系2.

 。1)觀察發(fā)現(xiàn)直線平行無交點(diǎn);

  (2)小組研究計(jì)算發(fā)現(xiàn)方程組無解;

  (3)從側(cè)面驗(yàn)證了兩直線有交點(diǎn),對(duì)應(yīng)的方程組有解,反之也成立;

 。4)歸納小結(jié):兩平行直線的k相等;方程組中兩方程未知數(shù)的系數(shù)對(duì)應(yīng)成比例方程組無解。

  目的:進(jìn)一步揭示“數(shù)”與“形”轉(zhuǎn)化關(guān)系.通過想一想,將兩直線的另一種位置關(guān)系:平行與方程組無解相結(jié)合,這是對(duì)第二環(huán)節(jié)的有益補(bǔ)充。體現(xiàn)了從一般到特殊的的思想方法,有利于培養(yǎng)學(xué)生全面考慮問題的習(xí)慣.

  進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.進(jìn)一步挖掘出兩直線平行與k的關(guān)系。

  效果:加深了兩條直線交點(diǎn)的坐標(biāo)就是對(duì)應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計(jì)算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.

  第五環(huán)節(jié)課堂小結(jié)

  內(nèi)容:以“問題串”的形式,要求學(xué)生自主總結(jié)有關(guān)知識(shí)、方法:

  1.二元一次方程和一次函數(shù)的圖像的關(guān)系;

  以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

  一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

  2.方程組和對(duì)應(yīng)的兩條直線的關(guān)系:

  方程組的解是對(duì)應(yīng)的兩條直線的交點(diǎn)坐標(biāo);

  兩條直線的交點(diǎn)坐標(biāo)是對(duì)應(yīng)的方程組的解;

  第六環(huán)節(jié)作業(yè)布置

  習(xí)題5.7

二元一次方程與一次函數(shù)教案6

  一、教材分析

  1、教材的地位和作用

  函數(shù)、方程和不等式都是人們刻畫現(xiàn)實(shí)世界的重要數(shù)學(xué)模型。用函數(shù)的觀點(diǎn)看方程(組)與不等式,使學(xué)生不僅能加深對(duì)方程(組)、不等式的理解,提高認(rèn)識(shí)問題的水平,而且能從函數(shù)的角度將三者統(tǒng)一起來,感受數(shù)學(xué)的統(tǒng)一美。本節(jié)課是學(xué)生學(xué)習(xí)完一次函數(shù)、一元一次方程及一元一次不等式的聯(lián)系后對(duì)一次函數(shù)和二元一次方程(組)關(guān)系的探究,學(xué)生在探索過程中體驗(yàn)數(shù)形結(jié)合的思想方法和數(shù)學(xué)模型的應(yīng)用價(jià)值,這對(duì)今后的學(xué)習(xí)有著十分重要的意義。

  2、教學(xué)重難點(diǎn)

  重點(diǎn):一次函數(shù)與二元一次方程(組)關(guān)系的探索。

  難點(diǎn):綜合運(yùn)用方程(組)、不等式和函數(shù)的知識(shí)解決實(shí)際問題。

  3、教學(xué)目標(biāo)

  知識(shí)技能:理解一次函數(shù)與二元一次方程(組)的關(guān)系,會(huì)用圖象法解二元一次方程組。

  數(shù)學(xué)思考:經(jīng)歷一次函數(shù)與二元一次方程(組)關(guān)系的探索及相關(guān)實(shí)際問題的解決過程,學(xué)會(huì)用函數(shù)的觀點(diǎn)去認(rèn)識(shí)問題。

  解決問題:能綜合應(yīng)用一次函數(shù)、一元一次方程、一元一次不等式、二元一次方程(組)解決相關(guān)實(shí)際問題。

  情感態(tài)度:在探究活動(dòng)中培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和勇于探索的科學(xué)精神,在師生、生生的交流活動(dòng)中,學(xué)會(huì)與人合作,學(xué)會(huì)傾聽、欣賞和感悟,體驗(yàn)數(shù)學(xué)的價(jià)值,建立自信心。

  二、教法說明

  對(duì)于認(rèn)知主體——學(xué)生來說,他們已經(jīng)具備了初步探究問題的能力,但是對(duì)知識(shí)的主動(dòng)遷移能力較弱,為使學(xué)生更好地構(gòu)建新的認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生的發(fā)展,我將在教學(xué)中采用探究式教學(xué)法。以學(xué)生為中心,使其在“生動(dòng)活潑、民主開放、主動(dòng)探索”的氛圍中愉快地學(xué)習(xí)。

  三、教學(xué)過程

 。ㄒ唬└兄磉厰(shù)學(xué)

  多媒體播放一段發(fā)生在電信公司里的情景:一顧客準(zhǔn)備辦理上網(wǎng)業(yè)務(wù),發(fā)現(xiàn)有兩種收費(fèi)方式:方式A以每分鐘0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外再以每分鐘0.05元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi)。顧客說他每月上網(wǎng)的費(fèi)用按這兩種收費(fèi)方式計(jì)算都是一樣多。求這位顧客打算每月上網(wǎng)多長時(shí)間?多少費(fèi)用?

  學(xué)生已經(jīng)學(xué)習(xí)過列方程(組)解應(yīng)用題,因此可能列出一元一次方程或二元一次方程組,用方程模型解決問題。結(jié)合前面對(duì)一次函數(shù)與一元一次方程、一元一次不等式之間關(guān)系的探究,我自然地提出問題:“一次函數(shù)與二元一次方程組之間是否也有聯(lián)系呢?”,從而揭示課題。

  [設(shè)計(jì)意圖]建構(gòu)主義認(rèn)為,在實(shí)際情境中學(xué)習(xí)可以激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,用“上網(wǎng)收費(fèi)”這一生活實(shí)際創(chuàng)設(shè)情境,并用問題啟發(fā)學(xué)生去思、鼓勵(lì)學(xué)生去探、激勵(lì)學(xué)生去說,努力給學(xué)生造成“心求通而未能得,口欲言而不能說”的`情勢(shì),從而喚起學(xué)生強(qiáng)烈的求知欲,使他們以躍躍欲試的姿態(tài)投入到探索活動(dòng)中來。

  (二)享受探究樂趣

  1、探究一次函數(shù)與二元一次方程的關(guān)系

  填空:二元一次方程可以轉(zhuǎn)化為________。

  思考:(1)直線上任意一點(diǎn)一定是方程的解嗎?(2)是否任意的二元一次方程都可以轉(zhuǎn)化為這種一次函數(shù)的形式?

 。3)是否直線上任意一點(diǎn)的坐標(biāo)都是它所對(duì)應(yīng)的二元一次方程的解?

  [設(shè)計(jì)意圖]用一連串的問題引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)與二元一次方程在數(shù)與形兩個(gè)方面的關(guān)系,為探索二元一次方程組的解與直線交點(diǎn)坐標(biāo)的關(guān)系作好鋪墊。

  2、探究一次函數(shù)與二元一次方程組的關(guān)系

  (1)在同一坐標(biāo)系中畫出一次函數(shù)和的圖象,觀察兩直線的交點(diǎn)坐標(biāo)是否是方程組的解?并探索:是否任意兩個(gè)一次函數(shù)的交點(diǎn)坐標(biāo)都是它們所對(duì)應(yīng)的二元一次方程組的解?

  此時(shí)教師留給學(xué)生充分探索交流的時(shí)間與空間,對(duì)學(xué)生可能出現(xiàn)的疑問給予幫助,師生共同歸納出:從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點(diǎn)的坐標(biāo)。

  (2)當(dāng)自變量取何值時(shí),函數(shù)與的值相等?這個(gè)函數(shù)值是什么?這一問題與解方程組是同一問題嗎?

  進(jìn)一步歸納出:從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時(shí)兩個(gè)函數(shù)的值相等,以及這個(gè)函數(shù)值是何值。

  [設(shè)計(jì)意圖]學(xué)生經(jīng)過自主探索、合作交流,從數(shù)和形兩個(gè)角度認(rèn)識(shí)一次函數(shù)與二元一次方程組的關(guān)系,真正掌握本節(jié)課的重點(diǎn)知識(shí),從而在頭腦中再現(xiàn)知識(shí)的形成過程,避免單純地記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。此時(shí)教師及時(shí)對(duì)學(xué)生進(jìn)行鼓勵(lì),充分肯定學(xué)生的探究成果,關(guān)注學(xué)生的情感體驗(yàn)。

 。ㄈ┏俗腔劭燔

  例題:我市一家電信公司給顧客提供兩種上網(wǎng)收費(fèi)方式:方式A以每分0.1元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi);方式B除收月基費(fèi)20元外再以每分0 .05元的價(jià)格按上網(wǎng)時(shí)間計(jì)費(fèi)。如何選擇收費(fèi)方式能使上網(wǎng)者更合算?

  解法1:設(shè)上網(wǎng)時(shí)間為分,若按方式A則收元;若按方式B則收元。然后在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象,計(jì)算出交點(diǎn)坐標(biāo),結(jié)合圖象,利用直線上點(diǎn)位置的高低直觀地比較函數(shù)值的大小,得到當(dāng)一個(gè)月內(nèi)上網(wǎng)時(shí)間少于400分時(shí),選擇方式A省錢;當(dāng)上網(wǎng)時(shí)間等于400分時(shí),選擇方式A、B沒有區(qū)別;當(dāng)上網(wǎng)時(shí)間多于400分時(shí),選擇方式B省錢。

  解法2:設(shè)上網(wǎng)時(shí)間為分,方式B與方式A兩種計(jì)費(fèi)的差額為元,得到一次函數(shù):,即,然后畫出函數(shù)的圖象,計(jì)算出直線與軸的交點(diǎn)坐標(biāo),類似地用點(diǎn)位置的高低直觀地找到答案。

  注意:所畫的函數(shù)圖象都是射線。

  [設(shè)計(jì)意圖]為培養(yǎng)學(xué)生的發(fā)散思維和規(guī)范解題的習(xí)慣,引導(dǎo)學(xué)生將上網(wǎng)問題延伸為例題,并用問題:“你家選擇的上網(wǎng)收費(fèi)方式好嗎?”再次激起學(xué)生強(qiáng)烈的求知欲望和主人翁的學(xué)習(xí)姿態(tài)。通過此問題的探究,使學(xué)生有效地理解本節(jié)課的難點(diǎn),體會(huì)數(shù)形結(jié)合這一思想方法的應(yīng)用。

 。ㄋ模w驗(yàn)成功喜悅

  1、搶答題

 。1)、以方程的解為坐標(biāo)的所有點(diǎn)都在一次函數(shù)_____的圖象上。

 。2)、方程組的解是________,由此可知,一次函數(shù)與的圖象必有一個(gè)交點(diǎn),且交點(diǎn)坐標(biāo)是________。

  2、旅游問題

  古城荊州歷史悠久,文化燦爛。今年,大型歷史劇《萬歷首輔張居正》在荊州封鏡后,來荊州的游客更是絡(luò)繹不絕。據(jù)悉,張居正紀(jì)念館門票標(biāo)價(jià)20元/張,近期正在進(jìn)行優(yōu)惠活動(dòng),購買時(shí)有兩種方式:方式A是團(tuán)隊(duì)中每位游客按8折購買;方式B是團(tuán)隊(duì)中除5張按標(biāo)價(jià)購買外,其余按7折購買。如果你是團(tuán)隊(duì)的負(fù)責(zé)人,你會(huì)如何選擇購買方式使整個(gè)團(tuán)隊(duì)更合算?

  [設(shè)計(jì)意圖]抓住學(xué)生對(duì)競爭充滿興趣的心理特征,用搶答題使學(xué)生的眼、耳、腦、口得到充分的調(diào)動(dòng),并在搶答中品味成功的快樂,提高思維的速度。在學(xué)生感興趣的旅游問題中,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),更好地促進(jìn)學(xué)生對(duì)本節(jié)課難點(diǎn)的理解和應(yīng)用,幫助學(xué)生不斷完善新的認(rèn)知結(jié)構(gòu)。

 。ㄎ澹┓窒砟阄沂斋@

  在課堂臨近尾聲時(shí),向?qū)W生提出:通過今天的學(xué)習(xí),你有什么收獲?你印象最深的是什么?

  [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵(lì)學(xué)生從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評(píng)價(jià)。

  (六)開拓嶄新天地

  1、數(shù)學(xué)日記

  姓名日期

二元一次方程與一次函數(shù)教案7

  學(xué)習(xí)目標(biāo):

  1.使學(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系

  2.能根據(jù)一次函數(shù)的圖像求二元一次方程組的近似值

  3.能解二元一次方程組的方法求兩條直線的交點(diǎn)坐標(biāo)

  學(xué)習(xí)重點(diǎn):

  1.用作圖像法求二元一次方程組的近似值

  2.用解二元一次方程組的方法求兩條直線的交點(diǎn)坐標(biāo)

  學(xué)習(xí)難點(diǎn):

  1.做圖像時(shí)要標(biāo)準(zhǔn)、精確,近似值才接近

  2.解二元一次方程組時(shí)計(jì)算準(zhǔn)確,方法適宜

  學(xué)習(xí)方法:

  先自學(xué)課本,用心思考自主學(xué)習(xí)部分,努力獨(dú)立完成,再與其他同學(xué)討論未明白的內(nèi)容。課上展示,針對(duì)自己不明白問題多聽多問。

  自主學(xué)習(xí)部分:

  問題1.(1)方程x+y=5的解有多少組?寫出其中的幾組解。

 。2)在直角坐標(biāo)系中分別描出以上這些解為坐標(biāo)的點(diǎn),它們?cè)谝淮魏瘮?shù)y=5-x的'圖像上嗎?

 。3)在一次函數(shù)y=5-x的圖像上任取一點(diǎn),它們的坐標(biāo)適合方程x+y=5嗎?

 。4)以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y=5-x的圖像相同嗎?

 。5)由以上的探究過程,你發(fā)現(xiàn)了什么?

  問題2.(1)在同一個(gè)直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=5-x和y=2x-1的圖像,這兩個(gè)圖像有交點(diǎn)嗎?如果有,寫出交點(diǎn)坐標(biāo)?

 。2)一次函數(shù)y=5-x和y=2x-1的交點(diǎn)坐標(biāo)與方程組的解有什么關(guān)系?你能說明理由嗎?

  (3)由以上探究過程,我們發(fā)現(xiàn)解二元一次方程組的方法除了加減消元法和代入消元法,還可以用法解方程組;我們還發(fā)現(xiàn)可以利用解二元一次方程組的方法求兩條直線交點(diǎn)的坐標(biāo)。

  合作探究:

 。1)用做圖像的方法解方程組

  (2)用解方程的方法求直線y=4-2x與直線y=2x-12交點(diǎn)

二元一次方程與一次函數(shù)教案8

  教學(xué)目標(biāo)

  1.知識(shí)與能力目標(biāo)

  (1)二元一次方程和一次函數(shù)的關(guān)系。

 。2)二元一次方程組的圖象解法。

 。3)通過學(xué)生的思考和操作,力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組的圖象解法。同時(shí)培養(yǎng)學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

  2.情感態(tài)度價(jià)值觀目標(biāo)

  通過學(xué)生的自主探索,提示出方程和圖象之間的對(duì)應(yīng)關(guān)系,加強(qiáng)新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索與創(chuàng)造。

  教材分析

  前面已經(jīng)分別學(xué)習(xí)了一次函數(shù)和二元一次方程組,這節(jié)課研究二元一次方程組(數(shù))和一次函數(shù)(形)的關(guān)系,是這兩章知識(shí)的綜合運(yùn)用。強(qiáng)化了部分與整體的內(nèi)在聯(lián)系,知識(shí)與知識(shí)的內(nèi)在聯(lián)系,并為今后解析幾何的學(xué)習(xí)奠定基礎(chǔ)。

  教學(xué)重點(diǎn)

  1、二元一次方程和一次函數(shù)的關(guān)系。

  2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。

  教學(xué)難點(diǎn)

  方程和函數(shù)之間的對(duì)應(yīng)關(guān)系即數(shù)形結(jié)合的意識(shí)和能力。

  教學(xué)方法

  學(xué)生操作——————自主探索的方法

  學(xué)生通過自己操作和思考,結(jié)合新舊知識(shí)的聯(lián)系,自主探索出方程與圖象之間的對(duì)應(yīng)關(guān)系,以引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”————二元一次方程組和“形”————函數(shù)的圖象(直線)之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識(shí)和能力。

  教學(xué)過程

  一.故事引入

  迪卡兒的故事——————蜘蛛給予的啟示

  十七世紀(jì)法國數(shù)學(xué)家迪卡兒有一次生病臥床,他看見屋頂上的一只蜘蛛順著絲左右爬行。迪卡兒看到蜘蛛的“表演”猛的機(jī)靈一動(dòng)。他想,可以把蜘蛛看成一個(gè)點(diǎn),它可以上、下、左、右運(yùn)動(dòng),能不能把蜘蛛的位置用一組數(shù)確定下來呢?

  在蜘蛛爬行的啟示下,迪卡兒創(chuàng)建了直角坐標(biāo)系,在坐標(biāo)系下幾何圖形(形)和方程(數(shù))建立聯(lián)系。迪卡兒坐標(biāo)系起到了橋梁和紐帶的作用。從而我們可以把圖形化成方程來研究,也可以用圖象來研究方程。

  這節(jié)課我們就來研究二元一次方程(數(shù))與一次函數(shù)(形)的關(guān)系。

  二.嘗試探疑

  1、Y=x+1

  你們把我叫一次函數(shù),我也是二元一次方程。∵@是怎么回事,你知道嗎?

  學(xué)生先是疑惑:方程就是方程,函數(shù)就是函數(shù),它們能有什么聯(lián)系呢?然后通過思考、交流,最后恍然大悟。初步感受一次函數(shù)與二元一次方程的內(nèi)在聯(lián)系。

  2、函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)是否滿足方程x—y=—1?

  以方程x—y=—1的'解為坐標(biāo)的點(diǎn)在不在函數(shù)y=x+1的圖象上?方程x—y=—1與函數(shù)y=x+1有何關(guān)系?

  學(xué)生會(huì)迫不及待地拿起筆來計(jì)算。從函數(shù)y=x+1圖象上找?guī)讉(gè)點(diǎn)看它們的坐標(biāo)是否滿足方程x—y=—1。結(jié)果都滿足。然后學(xué)生就會(huì)自主和同伴交流,問一問同伴函數(shù)y=x+1圖象上的點(diǎn)滿足不滿足方程x—y=—1。結(jié)果也都滿足。這樣他們就會(huì)搭成共識(shí):函數(shù)y=x+1上的任意一點(diǎn)的坐標(biāo)都滿足方程x—y=—1。

  然后學(xué)生會(huì)用同樣的方法得出另一個(gè)結(jié)論:以方程x—y=—1的解為坐標(biāo)的點(diǎn)一定在函數(shù)y=x+1的圖象上。然后開始思索函數(shù)y=x+1和方程x—y=—1到底有何關(guān)系呢?通過交流自動(dòng)得出結(jié)論:以方程x—y=—1的解為坐標(biāo)的點(diǎn)組成的圖象與一次函數(shù)y=x+1的圖象相同。

  3。在同一坐標(biāo)系下,化出y=x+1與y=4x—2的圖象,他們的交點(diǎn)坐標(biāo)是什么?

  方程組y=x+1的解是什么?二者有何關(guān)系?

  y=4x—2

  學(xué)生根據(jù)畫圖象的方法畫出兩函數(shù)圖象,畫出交點(diǎn)坐標(biāo)。用消元法解出方程組的解。學(xué)生會(huì)大吃一驚:兩者出奇地相近或者干脆就相同。這是怎么回事呢?然后開始探究二者關(guān)系。通過交流、討論得出結(jié)論:函數(shù)y=x+1和y=4x—2的交點(diǎn)坐標(biāo)就是由兩個(gè)函數(shù)表達(dá)式組成的方程組

  y=x+1的解。

  Y=4x—2

  教師作最后總結(jié):因?yàn)楹瘮?shù)和方程有以上關(guān)系,所以我們就可以用圖象法解決方程問題,也可以用方程的方法解決圖象問題。

  三.方程與函數(shù)關(guān)系的應(yīng)用

  解方程組x—2y=—2

  2x—y=2

  學(xué)生會(huì)很快的用消元法解出來。

  老師發(fā)問:誰還有其他的方法?如果有,鼓勵(lì)學(xué)生大膽提出。并給予口頭表揚(yáng)。如果沒有人用其他的方法,老師提出問題:你能不能用圖象的方法求方程組的解呢?這時(shí),學(xué)生就會(huì)去探索新的思路、方法。

  一回憶方程與函數(shù)的關(guān)系,有了!方程組的解不就是兩個(gè)方程變形得到的兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)嗎?學(xué)生就會(huì)迅速動(dòng)筆用這種方法把方程解出來。作完之后,互相交流。學(xué)生總結(jié)一下做題步驟:

  1。把兩個(gè)方程都化成函數(shù)表達(dá)式的形式。

  2。畫出兩個(gè)函數(shù)的圖象。

  3。畫出交點(diǎn)坐標(biāo),交點(diǎn)坐標(biāo)即為方程組的解。

  問題又出來了,有的同學(xué)的解是x=2有的同學(xué)的解是x=2。1 y=2。1

  y=1。9有的同學(xué)的解是……雖然都和消元法得到的結(jié)果相近,但各不相同。

  老師提問:你能說一下用圖象法解方程組的不足嗎?

  學(xué)生爭先恐后的回答:用這種方法求的解是近似值。不準(zhǔn)確。學(xué)生提出疑問:既然不準(zhǔn)確,那學(xué)習(xí)它有什么用呢?用消元法就足夠了!

  教師解釋一下:在現(xiàn)實(shí)生活和生產(chǎn)中,我們會(huì)遇到特別復(fù)雜的方程,用消元法解不太容易,我們就可以用電腦繪制成函數(shù)圖象,很容易找出交點(diǎn)坐標(biāo)。教師可以用Z+Z智能教育平臺(tái)演示一下。

  [點(diǎn)評(píng)]用作圖象的方法解方程組,這體現(xiàn)了兩個(gè)知識(shí)點(diǎn)的內(nèi)在聯(lián)系。學(xué)數(shù)學(xué)知識(shí),探索知識(shí)點(diǎn)之間的聯(lián)系,可起到化新為舊的作用,達(dá)到事半功倍的效果。逐步讓學(xué)生學(xué)會(huì)這種學(xué)習(xí)新知識(shí)的技巧。

  四.引申

  方程組x+y=2

  x+y=5解的情況如何?你能從函數(shù)的角度解釋一下嗎?

  學(xué)生用消元法開始解方程組,結(jié)果無解,怎么回事呢?學(xué)生會(huì)嘗試運(yùn)用方程組的圖象解法。畫出兩個(gè)函數(shù)圖象。答案有了!圖象是平行的,沒有交點(diǎn)。所以方程組無解了。哇!太神奇了!方程的問題可以用圖象的方法解決了。

  [點(diǎn)評(píng)]因?yàn)橛辛松厦娴挠米鲌D象法解方程組,在這里,學(xué)生就會(huì)自覺地從函數(shù)的角度探究方程的問題,初步具有了數(shù)形結(jié)合的意識(shí)和能力。

  五.課后小結(jié)

  本節(jié)課我們通過操作和思考,揭示了二元一次方程和函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,從而引入二元一次方程組的圖象解法,同時(shí)也建立了“數(shù)”————二元一次方程與“形”——————函數(shù)圖象之間的對(duì)應(yīng)關(guān)系,培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識(shí)和能力。

  六.作業(yè)

  1。用作圖象法解方程組2x+y=4

  2x—3y=12

  2。如圖,直線L、L相交于點(diǎn)A,試求出A點(diǎn)坐標(biāo)。

【二元一次方程與一次函數(shù)教案】相關(guān)文章:

二元一次方程教案03-27

二元一次方程教案15篇04-01

二元一次方程公開課教案04-24

代入法解二元一次方程組教案04-04

二元一次方程公開課教案6篇03-27

《實(shí)際問題與二元一次方程組》教案03-11

二元一次方程教學(xué)設(shè)計(jì)04-06

二元一次方程組教后反思04-07

解二元一次方程組教學(xué)反思04-07

Copyright©2013-2024duanmeiwen.com版權(quán)所有