成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

代入法解二元一次方程組教案

時(shí)間:2022-04-04 15:06:51 教案 投訴 投稿
  • 相關(guān)推薦

代入法解二元一次方程組教案

  在教學(xué)工作者開展教學(xué)活動(dòng)前,往往需要進(jìn)行教案編寫工作,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么什么樣的教案才是好的呢?下面是小編幫大家整理的代入法解二元一次方程組教案,僅供參考,大家一起來(lái)看看吧。

代入法解二元一次方程組教案

代入法解二元一次方程組教案1

  教學(xué)目標(biāo)

  1.使學(xué)生會(huì)用代入消元法解二元一次方程組;

  2.理解代入消元法的基本思想體現(xiàn)的“化未知為已知”,“變陌生為熟悉”的化歸思想方法;

  3.在本節(jié)課的教學(xué)過(guò)程中,逐步滲透樸素的辯證唯物主義思想.

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):用代入法解二元一次方程組.

  難點(diǎn):代入消元法的基本思想.

  課堂教學(xué)過(guò)程設(shè)計(jì)

  一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

  1.誰(shuí)能造一個(gè)二元一次方程組?為什么你造的方程組是二元一次方程組?

  2.誰(shuí)能知道上述方程組(指學(xué)生提出的方程組)的解是什么?什么叫二元一次方程組的解?

  3.上節(jié)課我們提出了雞兔同籠問(wèn)題:(投影)一個(gè)農(nóng)民有若干只雞和兔子,它們共有50個(gè)頭和140只腳,問(wèn)雞和兔子各有多少?設(shè)農(nóng)民有x只雞,y只兔,則得到二元一次方程組

  對(duì)于列出的這個(gè)二元一次方程組,我們?nèi)绾吻蟪鏊慕饽兀?學(xué)生思考)教師引導(dǎo)并提出問(wèn)題:若設(shè)有x只雞,則兔子就有(50-x)只,依題意,得2x+4(50-x)= 140從而可解得,x=30,50-x=20,使問(wèn)題得解.

  問(wèn)題:從上面一元一次方程解法過(guò)程中,你能得出二元一次方程組串問(wèn)題,進(jìn)一步引導(dǎo)學(xué)生找出它的解法) (1)在一元一次方程解法中,列方程時(shí)所用的等量關(guān)系是什么?(2)該等量關(guān)系中,雞數(shù)與兔子數(shù)的表達(dá)式分別含有幾個(gè)未知數(shù)?(3)前述方程組中方程②所表示的等量關(guān)系與用一元一次方程表示的等量關(guān)系是否相同?

  (4)能否由方程組中的方程②求解該問(wèn)題呢?

  (5)怎樣使方程②中含有的兩個(gè)未知數(shù)變?yōu)橹缓幸粋(gè)未知數(shù)呢?(以上問(wèn)題,要求學(xué)生獨(dú)立思考,想出消元的方法)結(jié)合學(xué)生的回答,教師作出講解.

  由方程①可得y=50-x③,即兔子數(shù)y用雞數(shù)x的代數(shù)式50-x表示,由于方程②中的y與方程①中的y都表示兔子的只數(shù),故可以把方程②中的y用(50-x)來(lái)代換,即把方程③代入方程②中,得2x+4(50-x)=140,解得x=30.

  將x=30代入方程③,得y=20.

  即雞有30只,兔有20只.

  本節(jié)課,我們來(lái)學(xué)習(xí)二元一次方程組的解法.

  二、講授新課例1解方程組

  分析:若此方程組有解,則這兩個(gè)方程中同一個(gè)未知數(shù)就應(yīng)取相同的值.因此,方程②中的y就可用方程①中的表示y的代數(shù)式來(lái)代替.解:把①代入②,得3x+2(1-x)=5,3x+2-2x=5,所以x=3.把x=3代入①,得y=-2.

  (本題應(yīng)以教師講解為主,并板書,同時(shí)教師在最后應(yīng)提醒學(xué)生,與解一元一次方程一樣,要判斷運(yùn)算的結(jié)果是否正確,需檢驗(yàn).其方法是將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的.左、右兩邊是否相等.檢驗(yàn)可以口算,也可以在草稿紙上驗(yàn)算)教師講解完例1后,結(jié)合板書,就本題解法及步驟提出以下問(wèn)題:1.方程①代入哪一個(gè)方程?其目的是什么?2.為什么能代入?

  3.只求出一個(gè)未知數(shù)的值,方程組解完了嗎?

  4.把已求出的未知數(shù)的值,代入哪個(gè)方程來(lái)求另一個(gè)未知數(shù)的值較簡(jiǎn)便?在學(xué)生回答完上述問(wèn)題的基礎(chǔ)上,教師指出:這種通過(guò)代入消去一個(gè)未知數(shù),使二元方程轉(zhuǎn)化為一元方程,從而方程組得以求解的方法叫做代入消元法,簡(jiǎn)稱代入法.例2解方程組

  分析:例1是用y=1-x直接代入②的.例2的兩個(gè)方程都不具備這樣的條件(即用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)),所以不能直接代入.為此,我們需要想辦法創(chuàng)造條件,把一個(gè)方程變形為用含x的代數(shù)式表示y(或含y的代數(shù)式表示x).那么選用哪個(gè)方程變形較簡(jiǎn)便呢?通過(guò)觀察,發(fā)現(xiàn)方程②中x的系數(shù)為1,因此,可先將方程②變形,用含有y的代數(shù)式表示x,再代入方程①求解.解:由②,得x=8-3y,③把③代入①,得(問(wèn):能否代入②中?)

  2(8-3y)+5y=-21,-y=-37,所以y=37.

  (問(wèn):本題解完了嗎?把y=37代入哪個(gè)方程求x較簡(jiǎn)單?)把y=37代入③,得x= 8-3×37,所以x=-103.

  (本題可由一名學(xué)生口述,教師板書完成)

  三、課堂練習(xí)(投影)用代入法解下列方程組:

  四、師生共同小結(jié)

  在與學(xué)生共同回顧了本節(jié)課所學(xué)內(nèi)容的基礎(chǔ)上,教師著重指出,因?yàn)榉匠探M在有解的前提下,兩個(gè)方程中同一個(gè)未知數(shù)所表示的是同一個(gè)數(shù)值,故可以用它的等量代換,即使“代入”成為可能.而代入的目的就是為了消元,使二元方程轉(zhuǎn)化為一元方程,從而使問(wèn)題最終得到解決.

  五、作業(yè)

  用代入法解下列方程組:

  5.x+3y=3x+2y=7.

代入法解二元一次方程組教案2

  教學(xué)目標(biāo):

 。、會(huì)用代入法解二元一次方程組

 。、會(huì)闡述用代入法解二元一次方程組的基本思路——通過(guò)“代入”達(dá)到“消元”的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程。

  此外,在用代入法解二元一次方程組的知識(shí)發(fā)生過(guò)程中,讓學(xué)生從中體會(huì)“化未知為已知”的重要的數(shù)學(xué)思想方法。

  引導(dǎo)性材料:

  本節(jié)課,我們以上節(jié)課討論的求甲、乙騎自行車速度的問(wèn)題為例,探求二元一次方程組的解法。前面我們根據(jù)問(wèn)題“甲、乙騎自行車從相距60千米的兩地相向而行,經(jīng)過(guò)兩小時(shí)相遇。已知乙的速度是甲的速度的2倍,求甲、乙兩人的速度!痹O(shè)甲的速度為X千米/小時(shí),由題意可得一元一次方程2(X+2X)=60;設(shè)甲的速度為X千米/小時(shí),乙的速度為Y千米/小時(shí),由題意可得二元一次方程組 2(X+Y)=60

  Y=2X 觀察

 。玻ǎ兀玻兀剑叮芭c 2(X+Y)=60 ①

  Y=2X ② 有沒(méi)有內(nèi)在聯(lián)系?有什么內(nèi)在聯(lián)系?

 。ㄍㄟ^(guò)較短時(shí)間的觀察,學(xué)生通常都能說(shuō)出上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系——把方程①中的“Y”用“2X”去替換就可得到一元一次方程。)

  知識(shí)產(chǎn)生和發(fā)展過(guò)程的教學(xué)設(shè)計(jì)

  問(wèn)題1:從上面的二元一次方程組與一元一次方程的內(nèi)在聯(lián)系的研究中,我們可以得到什么啟發(fā)?把方程①中的“Y”用“2X”去替換,就是把方程②代入方程①,于是我們就把一個(gè)新問(wèn)題(解二元一次方程組)轉(zhuǎn)化為熟悉的問(wèn)題(解一元一次方程)。

  解方程組 2(X+Y)=60 ①

  Y=2X ②

  解:把②代入①得:

 。玻ǎ兀玻兀剑叮,

 。叮兀剑叮,

 。兀剑保

  把X=10代入②,得

 。伲剑玻

  因此: X=10

  Y=20

  問(wèn)題2:你認(rèn)為解方程組 2(X+Y)=60 ①

  Y=2X ② 的關(guān)鍵是什么?那么解方程組

 。兀剑玻伲

  2X—3Y=4 的關(guān)鍵是什么?求出這個(gè)方程組的'解。

  上面兩個(gè)二元一次方程組求解的基本思路是:通過(guò)“代入”,達(dá)到消去一個(gè)未知數(shù)(即消元)的目的,從而把解二元一次方程組轉(zhuǎn)化為解一元一次方程,這種解二元一次方程組的方法叫“代入消元法”,簡(jiǎn)稱“代入法”。

  問(wèn)題3:對(duì)于方程組 2X+5Y=-21 ①

 。兀常伲剑 ② 能否像上述兩個(gè)二元一次方程組一樣,把方程組中的一個(gè)方程直接代入另一個(gè)方程從而消去一個(gè)未知數(shù)呢?

 。ㄕf(shuō)明:從學(xué)生熟悉的列一元一次方程求解兩個(gè)未知數(shù)的問(wèn)題入手來(lái)研究二元一次方程組的解法,有利于學(xué)生建立新舊知識(shí)的聯(lián)系和培養(yǎng)良好的學(xué)習(xí)習(xí)慣,使學(xué)生逐步學(xué)會(huì)把一個(gè)還不會(huì)解決的問(wèn)題轉(zhuǎn)化為一個(gè)已經(jīng)會(huì)解決的問(wèn)題的思想方法,對(duì)后續(xù)的解三無(wú)一次方程組、一元二次方程、分式方程等,學(xué)生就有了求解的策略。)

  例題解析

  例:用代入法將下列解二元一次方程組轉(zhuǎn)化為解一元一次方程:

  (1)X=1-Y ①

 。常兀玻伲剑 ②

  將①代入②(消去X)得:

 。常ǎ保伲玻伲剑

  (2)5X+2Y-25.2=0 ①

 。常兀担剑 ②

  將②代入①(消去Y)得:

 。担兀玻ǎ常兀担玻.2=0

  (3)2X+Y=5 ①

 。常兀矗伲剑 ②

  由①得Y=5-2X,將Y=5-2X代入②消去Y得:

 。常兀矗ǎ担玻兀剑

 。ǎ矗玻樱裕剑 ①

 。常樱玻裕剑 ②

  由①得T=2S-3,將T=2S-3代入②消去T得:

 。常樱玻ǎ玻樱常剑

  課內(nèi)練習(xí):

  解下列方程組。

  (1)2X+5Y=-21 (2)3X-Y=2

 。兀常伲剑 3X=11-2Y

  小結(jié):

  1、用代入法解二元一次方程組的關(guān)鍵是“消元”,把新問(wèn)題(解二元一次方程組)轉(zhuǎn)化為舊知識(shí)(解一元一次方程)來(lái)解決。

  2、用代入法解二元一次方程組,常常選用系數(shù)較簡(jiǎn)單的方程變形,這用利于正確、簡(jiǎn)捷的消元。

 。场⒂么敕ń舛淮畏匠探M,實(shí)質(zhì)是數(shù)學(xué)中常用的重要的“換元”,比如在求解例(1)中,把①代入②,就是把方程②中的元“X”用“1-Y”去替換,使方程②中只含有一個(gè)未知數(shù)Y。

  課后作業(yè):

  教科書第14頁(yè)練習(xí)題2(1)、(2)題,第15頁(yè)習(xí)題5.2A組2(1)、(2)、(4)題。

代入法解二元一次方程組教案3

  學(xué)習(xí)目標(biāo) :會(huì)運(yùn)用代入消元法解二元一次方程組.

  學(xué)習(xí)重難點(diǎn):

  1、會(huì)用代入法解二元一次方程組。

  2、靈活運(yùn)用代入法的技巧.

  學(xué)習(xí)過(guò)程:

  一、基本概念

  1、二元一次方程組中有兩個(gè)未知數(shù),如果消去其中一個(gè)未知數(shù),那么就把二元一次方程組轉(zhuǎn)化為我們熟悉的一元一次方程。我們可以先求出一個(gè)未知數(shù),然后再求另一個(gè)未知數(shù),。這種將未知數(shù)的個(gè)數(shù)由多化少、逐一解決的思想,叫做____________。

  2、把二元一次方程組中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來(lái),再代入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解,這種方法叫做________,簡(jiǎn)稱_____。

  3、代入消元法的.步驟:

  二、自學(xué)、合作、探究

  1、將方程5x-6y=12變形:若用y的式子表示x,則x=______,當(dāng)y=-2時(shí),x=_______;若用含x的式子表示y,則y=______,當(dāng)x=0時(shí),y=________ 。

  2、在方程2x+6y-5=0中,當(dāng)3y=-4時(shí),2x= ____________。

  3、若 的解,則a=______,b=_______。

  4、若方程y=1-x的解也是方程3x+2y=5的解,則x=____,y=____。

  5、用代人法解方程組 ①②,把____代人____,可以消去未知數(shù)______。

  6、已知方程組 的解也是方程組 的解,則a=_______,b=________ ,3a+2b=___________。

  7、已知x=1和x=2都滿足關(guān)于x的方程x2+px+q=0,則p=_____,q=________ 。

  8、當(dāng)k=______時(shí),方程組 的解中x與y的值相等。

  9、用代入法解下列方程組:

 、 ⑵ ⑶

  二、訓(xùn)練

  1、方程組 的解是( )

  A. B. C. D.

  2、已知二元一次方程3x+4y=6,當(dāng)x、y互為相反數(shù)時(shí),x=_____,y=______;當(dāng)x、y相等時(shí),x=______,y= _______ 。

  3、若2ay+5b3x與-4a2xb2-4y是同類項(xiàng),則a=______,b=_______。

  4、對(duì)于關(guān)于x、y的方程y=kx+b,k比b大1,且當(dāng)x= 時(shí),y= ,則k、b的值分別是( )

  A. B.2,1 C.-2,1 D.-1,0

  5、用代入法解下列方程組

 、 ⑵

  6、如果(5a-7b+3)2+ =0,求a與b的值。

  7、已知2x2m-3n-7-3ym+3n+6=8是關(guān)于x,y的二元一次方程,求n2m

  8、若方程組 與 有公共的解,求a,b.

代入法解二元一次方程組教案4

  教學(xué)建議

  一、重點(diǎn)、難點(diǎn)分析

  本節(jié)的教學(xué)重點(diǎn)是使學(xué)生學(xué)會(huì)用代入法.教學(xué)難點(diǎn)在于靈活運(yùn)用代入法,這要通過(guò)一定數(shù)量的練習(xí)來(lái)解決;另一個(gè)難點(diǎn)在于用代入法求出一個(gè)未知數(shù)的值后,不知道應(yīng)把它代入哪一個(gè)方程求另一個(gè)未知數(shù)的值比較簡(jiǎn)便.

  解二元一次方程組的關(guān)鍵在于消元,即將“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.

  二、知識(shí)結(jié)構(gòu)

  三、教法建議

  1.關(guān)于檢驗(yàn)方程組的解的問(wèn)題.教材指出:“檢驗(yàn)時(shí),需將所求得的一對(duì)未知數(shù)的值分別代入原方程組里的每一個(gè)方程中,看看方程的左、右兩邊是不是相等.”教學(xué)時(shí)要強(qiáng)調(diào)“原方程組”和“每一個(gè)”這兩點(diǎn).檢驗(yàn)的作用,一是使學(xué)生進(jìn)一步明確代入法是求方程組的解的一種基本方法,通過(guò)代入消元的確可以求得方程組的解二是進(jìn)一步鞏固二元一次方程組的解的概念,強(qiáng)調(diào)

  這一對(duì)數(shù)值才是原方程組的解,并且它們必須使兩個(gè)方程左、右兩邊的值都相等;三是因?yàn)槲覀儧](méi)有用方程組的同解原理而是用代換(等式的傳遞)來(lái)解方程組的,所以有必要檢驗(yàn)求出來(lái)的這一對(duì)數(shù)值是不是原方程組的解;四是為了杜絕變形和計(jì)算時(shí)發(fā)生的錯(cuò)誤.檢驗(yàn)可以口算或在草稿紙上演算,教科書中沒(méi)有寫出.

  2.教學(xué)時(shí),應(yīng)結(jié)合具體的例子指出這里解二元一次方程組的關(guān)鍵在于消元,即把“二元”轉(zhuǎn)化為“一元”.我們是通過(guò)等量代換的方法,消去一個(gè)未知數(shù),從而求得原方程組的解.早一些指出消元思想和把“二元”轉(zhuǎn)化為“一元”的方法,這樣,學(xué)生就能有較強(qiáng)的目的性.

  3.教師講解例題時(shí)要注意由簡(jiǎn)到繁,由易到難,逐步加深.隨著例題由簡(jiǎn)到繁,由易到難,要特別強(qiáng)調(diào)解方程組時(shí)應(yīng)努力使變形后的方程比較簡(jiǎn)單和代入后化簡(jiǎn)比較容易.這樣不僅可以求解迅速,而且可以減少錯(cuò)誤.

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1.掌握用代入法解二元一次方程組的步驟.

  2.熟練運(yùn)用代入法解簡(jiǎn)單的二元一次方程組.

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生的分析能力,能迅速在所給的二元一次方程組中,選擇一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形.

  2.訓(xùn)練學(xué)生的運(yùn)算技巧,養(yǎng)成檢驗(yàn)的習(xí)慣.

 。ㄈ┑掠凉B透點(diǎn)

  消元,化未知為已知的數(shù)學(xué)思想.

 。ㄋ模┟烙凉B透點(diǎn)

  通過(guò)本節(jié)課的學(xué)習(xí),滲透化歸的數(shù)學(xué)美,以及方程組的解所體現(xiàn)出來(lái)的奇異的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、練習(xí)法,嘗試指導(dǎo)法.

  2.學(xué)生學(xué)法:在前面已經(jīng)學(xué)過(guò)一元一次方程的解法,求二元一次方程組的解關(guān)鍵是化二元方程為一元方程,故在求解過(guò)程當(dāng)中始終應(yīng)抓住消元的思想方法.

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ǎ┲攸c(diǎn)

  使學(xué)生會(huì)用代入法解二元一次方程組.

 。ǘ╇y點(diǎn)

  靈活運(yùn)用代入法的技巧.

  (三)疑點(diǎn)

  如何“消元”,把“二元”轉(zhuǎn)化為“一元”.

  (四)解決辦法

  一方面復(fù)習(xí)用一個(gè)未知量表示另一個(gè)未知量的方法,另一方面學(xué)會(huì)選擇用一個(gè)系數(shù)較簡(jiǎn)單的方程進(jìn)行變形:

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  電腦或投影儀、自制膠片.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1.教師設(shè)問(wèn)怎樣用一個(gè)未知量表示另一個(gè)未知量,并比較哪種表示形式更簡(jiǎn)單,如 等.

  2.通過(guò)課本中香蕉、蘋果的應(yīng)用問(wèn)題,引導(dǎo)學(xué)生列出一元一次方程或二元一次方程組,并通過(guò)比較、嘗試,探索出化二元為一元的解方程組的方法.

  3.再通過(guò)比較、嘗試,探索出選一個(gè)系數(shù)較簡(jiǎn)單的方程變形,通過(guò)代入法求方程組解的辦法更簡(jiǎn)便,并尋找出求解的規(guī)律.

  七、教學(xué)步驟

 。ǎ┟鞔_目標(biāo)

  本節(jié)課我們將學(xué)習(xí)用代入法求二元一次方程組的解.

  (二)整體感知

  從復(fù)習(xí)用一個(gè)未知量表達(dá)另一個(gè)未知量的方法,從而導(dǎo)入運(yùn)用代入法化二元為一元方程的求解過(guò)程,即利用代入消元法求二元一次方程組的解的辦法.

 。ㄈ┙虒W(xué)步驟

  1.創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

 。1)已知方程 ,先用含 的.代數(shù)式表示 ,再用含 的代數(shù)式表示 .并比較哪一種形式比較簡(jiǎn)單.

  (2)選擇題:

  二元一次方程組 的解是

  A. B. C. D.

  第(1)題為用代入法解二元一次方程組打下基礎(chǔ);第(2)題既復(fù)習(xí)了上節(jié)課的重點(diǎn),又成為導(dǎo)入新課的材料.

  通過(guò)上節(jié)課的學(xué)習(xí),我們會(huì)檢驗(yàn)一對(duì)數(shù)值是否為某個(gè)二元一次方程組的解.那么,已知一個(gè)二元一次方程組,應(yīng)該怎樣求出它的解呢?這節(jié)課我們就來(lái)學(xué)習(xí).

  這樣導(dǎo)入,可以激發(fā)學(xué)生的求知欲.

  2.探索新知,講授新課

  香蕉的售價(jià)為5元/千克,蘋果的售價(jià)為3元/千克,小華共買了香蕉和蘋果9千克,付款33元,香蕉和蘋果各買了多少千克?

  學(xué)生活動(dòng):分別列出一元一次方程和二元一次方程組,兩個(gè)學(xué)生板演.

  設(shè)買了香蕉 千克,那么蘋果買了 千克,根據(jù)題意,得

  設(shè)買了香蕉 千克,買了蘋果 千克,得

  上面的一元一次方程我們會(huì)解,能否把二元一次方程組轉(zhuǎn)化為一元一次方程呢,由方程①可以得到 ③,把方程②中的 轉(zhuǎn)換成 ,也就是把方程③代入方程②,就可以得到 .這樣,我們就把二元一次方程組轉(zhuǎn)化成了一元一次方程,由這個(gè)方程就可以求出 了.

  解:由①得: ③

  把③代入②,得:

  ∴

  把 代入③,得:

  ∴

  解二元一次方程組與解一元一次方程相比較,向?qū)W生展示了知識(shí)的發(fā)生過(guò)程,這對(duì)于學(xué)生知識(shí)的形成十分重要.

  上面解二元一次方程組的方法,就是代入消元法.你能簡(jiǎn)單說(shuō)說(shuō)用代入法解二元一次方程組的基本思路嗎?

  學(xué)生活動(dòng):小組討論,選代表發(fā)言,教師進(jìn)行指導(dǎo).糾正后歸納:設(shè)法消去一個(gè)未知數(shù),把二元一次方程組轉(zhuǎn)化為一元一次方程.

  例1 解方程組

 。1)觀察上面的方程組,應(yīng)該如何消元?(把①代入②)

 。2)把①代入②后可消掉 ,得到關(guān)于 的一元一次方程,求出 .

 。3)求出 后代入哪個(gè)方程中求 比較簡(jiǎn)單?(①)

  學(xué)生活動(dòng):依次回答問(wèn)題后,教師板書

  解:把①代入②,得

  ∴

  把 代入①,得

  ∴

  如何檢驗(yàn)得到的結(jié)果是否正確?

  學(xué)生活動(dòng):口答檢驗(yàn).

  教師:要把所得結(jié)果分別代入原方程組的每一個(gè)方程中.

  給出例1后提出的三個(gè)問(wèn)題,恰好是學(xué)生的思維過(guò)程,明確了解題思路;教師板演例1,規(guī)范了解二元一次方程組的解題格式;通過(guò)檢驗(yàn),可使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)認(rèn)真的學(xué)習(xí)習(xí)慣.

  例2 解方程組

  要把某個(gè)方程化成如例1中方程①的形式后,代入另一個(gè)方程中才能消元.方程②中 的系數(shù)是1,比較簡(jiǎn)單.因此,可以先將方程②變形,用含 的代數(shù)式表示 ,再代入方程①求解.

  學(xué)生活動(dòng):嘗試完成例2.

  教師巡視指導(dǎo),發(fā)現(xiàn)并糾正學(xué)生的問(wèn)題,把書寫過(guò)程規(guī)范化.

  解:由②,得 ③

  把③代入①,得

  ∴

  ∴

  把 代入③,得

  ∴

  ∴

  檢驗(yàn)后,師生共同討論:

  (1)由②得到③后,再代入②可以嗎?(不可以)為什么?(得到的是恒等式,不能求解)

 。2)把 代入①或②可以求出 嗎?(可以)代入③有什么好處?(運(yùn)算簡(jiǎn)便)

  學(xué)生活動(dòng):根據(jù)例1、例2的解題過(guò)程,嘗試總結(jié)用代入法解二元一次方程組的一般步驟,討論后選代表發(fā)言.之后,看課本第12頁(yè),用幾個(gè)字概括每個(gè)步驟.

  教師板書:

  (1)變形( )

 。2)代入消元( )

 。3)解一元一次方程得( )

 。4)把 代入 求解

  練習(xí):P13 1.(1)(2);P14 2.(1)(2).

  3.變式訓(xùn)練,培養(yǎng)能力

 、儆 可以得到用 表示 .

  ②在 中,當(dāng) 時(shí), ;當(dāng) 時(shí), ,則 ; .

 、圻x擇:若 是方程組 的解,則( )

  A. B. C. D.

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  1.解二元一次方程組的思想:

  2.用代入法解二元一次方程組的步驟.

  3.用代入法解二元一次方程組的技巧:①變形的技巧②代入的技巧.

  通過(guò)這節(jié)課的學(xué)習(xí),我們要熟練運(yùn)用代入法解二元一次方程組,并能檢驗(yàn)結(jié)果是否正確.

  八、布置作業(yè)

 。ㄒ唬┍刈鲱}:P15 1.(2)(4),2.(1)(2)(3)(4).

 。ǘ┻x做題:P15 B組1.

【代入法解二元一次方程組教案】相關(guān)文章:

解二元一次方程組教學(xué)反思04-07

《加減法解二元一次方程組》教學(xué)反思12-28

《實(shí)際問(wèn)題與二元一次方程組》教案03-11

《二元一次方程組》教學(xué)設(shè)計(jì)06-12

二元一次方程組教學(xué)設(shè)計(jì)06-05

《二元一次方程組》教學(xué)設(shè)計(jì)5篇06-12

七年級(jí)下冊(cè)《二元一次方程組》教案12-06

二元一次方程教案03-27

二元一次方程與一次函數(shù)教案04-01