成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-07-16 01:08:42 總結(jié) 投訴 投稿

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)6篇

  總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),我想我們需要寫一份總結(jié)了吧。那么我們?cè)撛趺慈懣偨Y(jié)呢?以下是小編幫大家整理的高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)6篇

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)1

  排列組合

  排列P------和順序有關(guān)

  組合C-------不牽涉到順序的問題

  排列分順序,組合不分

  例如把5本不同的書分給3個(gè)人,有幾種分法."排列"

  把5本書分給3個(gè)人,有幾種分法"組合"

  1.排列及計(jì)算公式

  從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).

  2.組合及計(jì)算公式

  從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的'一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號(hào)

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

  3.其他排列與組合公式

  從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.

  n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為

  n!/(n1!_2!_.._k!).

  k類元素,每類的個(gè)數(shù)無限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m).

  排列(Pnm(n為下標(biāo),m為上標(biāo)))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號(hào));Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n

  組合(Cnm(n為下標(biāo),m為上標(biāo)))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

  20xx-07-0813:30

  公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9!=9________

  從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n_n-1)_n-2)..(n-r+1);

  因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)2

  (一)解三角形:

  1、正弦定理:在中,、、分別為角、、的對(duì)邊,,則有

  (為的外接圓的半徑)

  2、正弦定理的變形公式:①,,;

 、,,;③;

  3、三角形面積公式:.

  4、余弦定理:在中,有,推論:

  (二)數(shù)列:

  1.數(shù)列的.有關(guān)概念:

  (1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。

  (2)通項(xiàng)公式:數(shù)列的第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來表示,這個(gè)公式即是該數(shù)列的通項(xiàng)公式。如:。

  (3)遞推公式:已知數(shù)列{an}的第1項(xiàng)(或前幾項(xiàng)),且任一項(xiàng)an與他的前一項(xiàng)an-1(或前幾項(xiàng))可以用一個(gè)公式來表示,這個(gè)公式即是該數(shù)列的遞推公式。

  如:。

  2.數(shù)列的表示方法:

  (1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點(diǎn)表示。

  (3)解析法:用通項(xiàng)公式表示。(4)遞推法:用遞推公式表示。

  3.數(shù)列的分類:

  4.數(shù)列{an}及前n項(xiàng)和之間的關(guān)系:

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)3

  【不等關(guān)系及不等式】

  一、不等關(guān)系及不等式知識(shí)點(diǎn)

  1.不等式的定義

  在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)、、連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數(shù)的大小

  兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

  3.不等式的性質(zhì)

  (1)對(duì)稱性:ab

  (2)傳遞性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可開方:a0

  (nN,n2).

  注意:

  一個(gè)技巧

  作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  一種方法

  待定系數(shù)法:求代數(shù)式的.范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)4

  數(shù)列

  1、數(shù)列的定義及數(shù)列的通項(xiàng)公式:

  ① an?f(n),數(shù)列是定義域?yàn)镹

  的函數(shù)f(n),當(dāng)n依次取1,2,???時(shí)的一列函數(shù)值② i。歸納法

  若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設(shè)an?1?m?p(an?m)解得m,得等比數(shù)列?an?m?

 ?Sn?f(an)

  iv。若Sn?f(an),先求a

  1?得到關(guān)于an?1和an的遞推關(guān)系式

  S?f(a)n?1?n?1?Sn?2an?1

  例如:Sn?2an?1先求a1,再構(gòu)造方程組:??(下減上)an?1?2an?1?2an

 ?Sn?1?2an?1?1

  2、等差數(shù)列:

 、俣x:a

  n?1?an=d(常數(shù)),證明數(shù)列是等差數(shù)列的重要工具。 ②通項(xiàng)d?0時(shí),an為關(guān)于n的一次函數(shù);

  d>0時(shí),an為單調(diào)遞增數(shù)列;d<0時(shí),a

  n為單調(diào)遞減數(shù)列。

  n(n?1)2

  ③前n?na1?

  d,

  d?0時(shí),Sn是關(guān)于n的不含常數(shù)項(xiàng)的.一元二次函數(shù),反之也成立。

 、苄再|(zhì):ii。若?an?為等差數(shù)列,則am,am?k,am?2k,…仍為等差數(shù)列。 iii。若?an?為等差數(shù)列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數(shù)列。 iv若A為a,b的等差中項(xiàng),則有A?3。等比數(shù)列:

  ①定義:

  an?1an

  ?q(常數(shù)),是證明數(shù)列是等比數(shù)列的重要工具。

  a?b2

 、谕(xiàng)時(shí)為常數(shù)列)。

 、邸G皀項(xiàng)和

  需特別注意,公比為字母時(shí)要討論。

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)5

  ●不等式

  1、不等式你會(huì)解么?你會(huì)解么?如果是寫解集不要忘記寫成集合形式!

  2、的解集是(1,3),那么的解集是什么?

  3、兩類恒成立問題圖象法——恒成立,則=?

  ★★★★分離變量法——在[1,3]恒成立,則=?(必考題)

  4、線性規(guī)劃問題

 。1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界

 。2)目標(biāo)函數(shù)改寫:(注意分析截距與z的關(guān)系)

  (3)平行直線系去畫

  5、基本不等式的形式和變形形式

  如a,b為正數(shù),a,b滿足,則ab的范圍是

  6、運(yùn)用基本不等式求最值要注意:一正二定三相等!

  如的最小值是的.最小值(不要忘記交代是什么時(shí)候取到=。。

  一個(gè)非常重要的函數(shù)——對(duì)勾函數(shù)的圖象是什么?

  運(yùn)用對(duì)勾函數(shù)來處理下面問題的最小值是

  7、★★兩種題型:

  和——倒數(shù)和(1的代換),如x,y為正數(shù),且,求的最小值?

  和——積(直接用基本不等式),如x,y為正數(shù),,則的范圍是?

  不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數(shù),,則的范圍是?

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)6

  【一元二次不等式及其解法】

  ★知識(shí)梳理★

  一、解不等式的有關(guān)理論

  (1)若兩個(gè)不等式的解集相同,則稱它們是同解不等式;

 。2)一個(gè)不等式變形為另一個(gè)不等式時(shí),若兩個(gè)不等式是同解不等式,這種變形稱為不等式的同解變形;

  (3)解不等式時(shí)應(yīng)進(jìn)行同解變形;

 。4)解不等式的結(jié)果,原則上要用集合表示。

  二、一元二次不等式的解集

  三、解一元二次不等式的基本步驟:

 。1)整理系數(shù),使次項(xiàng)的系數(shù)為正數(shù);

 。2)嘗試用十字相乘法分解因式;

 。3)計(jì)算

 。4)結(jié)合二次函數(shù)的圖象特征寫出解集。

  四、高次不等式解法:

  盡可能進(jìn)行因式分解,分解成一次因式后,再利用數(shù)軸標(biāo)根法求解

 。ㄗ⒁饷總(gè)因式的次項(xiàng)的系數(shù)要求為正數(shù))

  五、分式不等式的解法:

  分子分母因式分解,轉(zhuǎn)化為相異一次因式的積和商的形式,再利用數(shù)軸標(biāo)根法求解;

  ★重難點(diǎn)突破★

  1、重點(diǎn):從實(shí)際情境中抽象出一元二次不等式模型;熟練掌握一元二次不等式的解法。

  2、難點(diǎn):理解二次函數(shù)、一元二次方程與一元二次不等式解集的'關(guān)系。求解簡(jiǎn)單的分式不等式和高次不等式以及簡(jiǎn)單的含參數(shù)的不等式

  3、重難點(diǎn):掌握一元二次不等式的解法,利用不等式的性質(zhì)解簡(jiǎn)單的簡(jiǎn)單的分式不等式和高次不等式以及簡(jiǎn)單的含參數(shù)的不等式,會(huì)解簡(jiǎn)單的指數(shù)不等式和對(duì)數(shù)不等式。

【高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)12-13

高二數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)(6篇)12-13

數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)08-23

高二英語必修五知識(shí)點(diǎn)總結(jié)10-17

數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)(10篇)08-23

數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)10篇08-23

高二英語必修五知識(shí)點(diǎn)總結(jié)6篇10-17

數(shù)學(xué)必修四知識(shí)點(diǎn)總結(jié)04-25

地理必修三知識(shí)點(diǎn)總結(jié)高二10-20