- 七年級數(shù)學(xué)下冊知識點總結(jié) 推薦度:
- 相關(guān)推薦
七年級數(shù)學(xué)下冊知識點總結(jié)
總結(jié)是指社會團體、企業(yè)單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經(jīng)驗,找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,通過它可以正確認(rèn)識以往學(xué)習(xí)和工作中的優(yōu)缺點,讓我們來為自己寫一份總結(jié)吧。那么你真的懂得怎么寫總結(jié)嗎?以下是小編整理的七年級數(shù)學(xué)下冊知識點總結(jié),僅供參考,大家一起來看看吧。(點擊對應(yīng)目錄可以直接查閱哦。
七年級數(shù)學(xué)下冊期末考試知識點總結(jié):
一、整式
※1、單項式
、儆蓴(shù)與字母的積組成的代數(shù)式叫做單項式。單獨一個數(shù)或字母也是單項式。
、趩雾検降南禂(shù)是這個單項式的數(shù)字因數(shù),作為單項式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號,如果一個單項式只是字母的積,并非沒有系數(shù)。
、垡粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
※2、多項式
①幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項。其中,不含字母的項叫做常數(shù)項。一個多項式中,次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。
、趩雾検胶投囗検蕉加写螖(shù),含有字母的單項式有系數(shù),多項式?jīng)]有系數(shù)。多項式的每一項都是單項式,一個多項式的項數(shù)就是這個多項式作為加數(shù)的單項式的個數(shù)。多項式中每一項都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項式的次數(shù),一個多項式的次數(shù)只有一個,它是所含各項的次數(shù)中最高的那一項次數(shù)。
※3、整式單項式和多項式統(tǒng)稱為整式。
二、整式的加減
1、整式的加減實質(zhì)上就是去括號后,合并同類項,運算結(jié)果是一個多項式或是單項式。
2、括號前面是“-”號,去括號時,括號內(nèi)各項要變號,一個數(shù)與多項式相乘時,這個數(shù)與括號內(nèi)各項都要相乘。
三、同底數(shù)冪的乘法
※同底數(shù)冪的乘法法則:(m,n都是正數(shù))是冪的運算中最基本的法則,在應(yīng)用法則運算時,要注意以下幾點:
、俜▌t使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項或多項式;
②指數(shù)是1時,不要誤以為沒有指數(shù);
、鄄灰獙⑼讛(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
④當(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為 (其中m、n、p均為正數(shù));
、莨竭可以逆用:(m、n均為正整數(shù))
四、冪的乘方與積的乘方
※1、冪的乘方法則:(m,n都是正數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。
※2、底數(shù)有負(fù)號時,運算時要注意,底數(shù)是a與(-a)時不是同底,但可以利用乘方法則化成同底,
如將(-a)3化成-a3
※3、底數(shù)有時形式不同,但可以化成相同。
※4、要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
※5、積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即 (n為正整數(shù))。
※6、冪的乘方與積乘方法則均可逆向運用。
五、同底數(shù)冪的除法
※1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a≠0,m、n都是正數(shù),且m>n)。
※2、在應(yīng)用時需要注意以下幾點:
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0。
、谌魏尾坏扔0的數(shù)的0次冪等于1,即 ,如 ,(-2.50=1),則00無意義。
、廴魏尾坏扔0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即 ( a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的。
一、實數(shù)的概念及分類
1、實數(shù)的分類、正有理數(shù)、有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)
負(fù)有理數(shù)
正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)
負(fù)無理數(shù)
整數(shù)包括正整數(shù)、零、負(fù)整數(shù)。
正整數(shù)又叫自然數(shù)。
正整數(shù)、零、負(fù)整數(shù)、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
2、無理數(shù)
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:
(1)開方開不盡的數(shù),如7,2等;
π(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;3
(3)有特定結(jié)構(gòu)的數(shù),如0、1010010001…等;
二、實數(shù)的倒數(shù)、相反數(shù)和絕對值
1、相反數(shù)
實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
2、絕對值
一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于
零,正數(shù)大于一切負(fù)數(shù),兩個負(fù)數(shù),絕對值大的反而小。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
4、實數(shù)與數(shù)軸上點的關(guān)系:
每一個無理數(shù)都可以用數(shù)軸上的一個點表示出來,
數(shù)軸上的點有些表示有理數(shù),有些表示無理數(shù),
實數(shù)與數(shù)軸上的點就是一一對應(yīng)的,即每一個實數(shù)都可以用數(shù)軸上的一個點來表示;反過來,數(shù)軸上的每一個點都是表示一個實數(shù)。
軸對稱的性質(zhì)
1、定義——垂直并且平分一條線段的直線,叫做這條線段的垂直平分線。
2、把一個圖形沿著一條直線折疊,如果它能夠與另一個圖形重合,那么稱這兩個圖形關(guān)于這條直線對稱,也稱這兩個圖形成軸對稱,這條直線叫做對稱軸,兩個圖形中的對應(yīng)點叫做對稱點。
3、把一個圖形沿著一條某直線折疊,如果直線兩旁的部分能夠互相重合,那么稱這個圖形是軸對稱圖形,這條直線就是對稱軸。
4、成軸對稱的兩個圖形全等。如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線。
等腰三角形的軸對稱性
1、等腰三角形是軸對稱圖形,頂角平分線所在直線是它的對稱軸。
2、等腰三角形的兩個底角相等(簡稱“等邊對等角”)。
等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。
3、如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱“等角對等邊”)。
平移
1、定義
把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。
2、性質(zhì)
(1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進行了移動
(2)連接各組對應(yīng)點的線段平行(或在同一直線上)且相等
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
集合的定義
集合是指具有某種特定性質(zhì)的具體的或抽象的對象匯總而成的集體。其中,構(gòu)成集合的這些對象則稱為該集合的元素。
例如,全中國人的集合,它的元素就是每一個中國人。通常用大寫字母如A,B,S,T……表示集合,而用小寫字母如a,b,x,y……表示集合的元素。若x是集合S的元素,則稱x屬于S,記為x∈S。若y不是集合S的元素,則稱y不屬于S,記為y?S。
初一數(shù)學(xué)下冊平面直角坐標(biāo)系知識點:
一、平面直角坐標(biāo)系
有序數(shù)對
1.有序數(shù)對:用兩個數(shù)來表示一個確定的位置,其中兩個數(shù)各自表示不同的意義,我們把這種有順序的兩個數(shù)組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
2.坐標(biāo):數(shù)軸(或平面)上的點可以用一個數(shù)(或數(shù)對)來表示,這個數(shù)(或數(shù)對)叫做這個點的坐標(biāo)。
平面直角坐標(biāo)系
1.平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直,并且有公共原點的數(shù)軸。這樣我們就說在平面上建立了平面直角坐標(biāo)系,簡稱直角坐標(biāo)系。
2.X軸:水平的數(shù)軸叫X軸或橫軸。向右方向為正方向。
3.Y軸:豎直的數(shù)軸叫Y軸或縱軸。向上方向為正方向。
4.原點:兩個數(shù)軸的交點叫做平面直角坐標(biāo)系的原點。
對應(yīng)關(guān)系:平面直角坐標(biāo)系內(nèi)的點與有序?qū)崝?shù)對一一對應(yīng)。
坐標(biāo):對于平面內(nèi)任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點P的橫坐標(biāo)和縱坐標(biāo)。
象限
1.象限:X軸和Y軸把坐標(biāo)平面分成四個部分,也叫四個象限。右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數(shù)軸為界,橫軸、縱軸上的點及原點不屬于任何象限。一般,在x軸和y軸取相同的單位長度。
2.象限的特點:
1、特殊位置的點的坐標(biāo)的特點:
(1)x軸上的點的縱坐標(biāo)為零;y軸上的點的橫坐標(biāo)為零。
。2)第一、三象限角平分線上的點橫、縱坐標(biāo)相等;
第二、四象限角平分線上的點橫、縱坐標(biāo)互為相反數(shù)。
。3)在任意的兩點中,如果兩點的橫坐標(biāo)相同,則兩點的連線平行于縱軸;如果兩點的縱坐標(biāo)相同,則兩點的連線平行于橫軸。
2、點到軸及原點的距離:
點到x軸的距離為|y|;
點到y(tǒng)軸的距離為|x|;
點到原點的距離為x的平方加y的平方再開根號;
3、三大規(guī)律
(1)平移規(guī)律:
點的平移規(guī)律
左右平移→縱坐標(biāo)不變,橫坐標(biāo)左減右加;
上下平移→橫坐標(biāo)不變,縱坐標(biāo)上加下減。
圖形的平移規(guī)律 找特殊點
(2)對稱規(guī)律
關(guān)于x軸對稱→橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù);
關(guān)于y軸對稱→橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變;
關(guān)于原點對稱→橫縱坐標(biāo)都互為相反數(shù)。
二、坐標(biāo)方法的簡單應(yīng)用
用坐標(biāo)表示地理位置的過程:
1.建立坐標(biāo)系,選擇一個合適的參照點為原點,確定X軸和Y軸的正方向。
2.根據(jù)具體問題確定適當(dāng)?shù)谋壤撸谧鴺?biāo)軸上標(biāo)出單位長度。
3.在坐標(biāo)平面內(nèi)畫出這些點,寫出各點的坐標(biāo)和各個地點的名稱。
用坐標(biāo)表示平移
在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就把原圖形向右(左)平移a個單位長度;如果把它各個點的縱坐標(biāo)都加(或減去) 一個正數(shù)a,相應(yīng)的新圖形就把原圖形向上(下)平移a個單位長度。
一、二元一次方程組
1.二元一次方程:含有兩個未知數(shù)的方程并且所含未知項的最高次數(shù)是1,這樣的整式方程叫做二元一次方程。
2.方程組:有幾個方程組成的一組方程叫做方程組。如果方程組中含有兩個未知數(shù),且含未知數(shù)的項的次數(shù)都是一次,那么這樣的方程組叫做二元一次方程組。
二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。
二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。
二、消元——解二元一次方程組
二元一次方程組有兩種解法:一種是代入消元法,一種是加減消元法.
1.代入消元法:把二元一次方程中的一個方程的一個未知數(shù)用含另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進而求得這個二元一次方程組的解。
2.加減消元法:兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,把這兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程。
三、實際問題與二元一次方程組
實際應(yīng)用:審題→設(shè)未知數(shù)→列方程組→解方程組→檢驗→作答。
關(guān)鍵:找等量關(guān)系
常見的類型有:分配問題、追及問題、順流逆流、藥物配制、行程問題
四、三元一次方程組的解法(選學(xué))
三元一次方程組:方程組含有三個未知數(shù),每個方程中含有未知數(shù)的項的次數(shù)都是1,并且一共有三個方程組,像這樣的方程組叫做三元一次方程組。
解三元一次方程組的基本思路:通過“代入”或“加減”進行消元。把“三元”化為“二元”,使解三元一次方程組轉(zhuǎn)化為解二元一次方程組,進而再轉(zhuǎn)化為解一元一次方程。
一、不等式
不等式及其解集
1.不等式:用不等號(包括:>、<、≠)表示大小關(guān)系的式子。
2.不等式的解:使不等式成立的未知數(shù)的值,叫不等式的解。
3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
不等式的性質(zhì):
性質(zhì)1:如果a>b,b>c,那么a>c(不等式的傳遞性).
性質(zhì)2:不等式的兩邊同加(減)同一個數(shù)(或式子),不等號的方向不變。如果a>b,那么a+c>b+c(不等式的可加性).
性質(zhì)3:不等式的兩邊同乘(除以)同一個正數(shù),不等號的方向不變。不等式的兩邊同乘(除以)同一個負(fù)數(shù),不等號的方向改變。
如果a>b,c>0,那么ac>bc;如果a>b,c<0,ac
性質(zhì)4:如果a>b,c>d,那么a+c>b+d.(不等式的加法法則)
性質(zhì)5:如果a>b>0,c>d>0,那么ac>bd.(可乘性)
性質(zhì)6:如果a>b>0,n∈N,n>1,那么an>bn,且.當(dāng)0
二、一元一次不等式
1.一元一次不等式:含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式。
2、不等式的解法:
步驟:去分母,去括號,移項,合并同類項,系數(shù)化為一;
注意:去分母與系數(shù)化為一要特別小心,因為要在不等式兩端同時乘或除以某一個數(shù),要考慮不等號的方向是否發(fā)生改變的問題。
三、一元一次不等式組
1.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2.不等式組的解:幾個不等式的解集的公共部分,叫做由它們組成的不等式組的解集。解不等式組就是求它的解集。
3.解不等式組:先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式的解集。
解一元一次不等式組的一般方法:
以兩條不等式組成的不等式組為例,
、偃魞蓚未知數(shù)的解集在數(shù)軸上表示同向左,就取在左邊的未知數(shù)的解集為不等式組的解集,此乃“同小取小”
、谌魞蓚未知數(shù)的解集在數(shù)軸上表示同向右,就取在右邊的未知數(shù)的解集為不等式組的解集,此乃“同大取大”
、廴魞蓚未知數(shù)的解集在數(shù)軸上相交,就取它們之間的值為不等式組的解集。若x表示不等式的解集,此時一般表示為a<x<b,或a≤x≤b。此乃“相交取中
、苋魞蓚未知數(shù)的解集在數(shù)軸上向背,那么不等式組的解集就是空集,不等式組無解。
全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查。
抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計總體的調(diào)查方式稱為抽樣調(diào)查。
總體:要考察的全體對象稱為總體。
個體:組成總體的每一個考察對象稱為個體。
樣本:被抽取的所有個體組成一個樣本。
樣本容量:樣本中個體的數(shù)目稱為樣本容量。
頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù)。
頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。
組數(shù)和組距:在統(tǒng)計數(shù)據(jù)時,把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個數(shù)
稱為組數(shù),每一組兩個端點的差叫做組距。
1、數(shù)據(jù)處理一般包括收集數(shù)據(jù)、整理數(shù)據(jù)、描述數(shù)據(jù)和分析數(shù)據(jù)等過程。
。1)通過調(diào)查收集數(shù)據(jù)的一般步驟:
、倜鞔_調(diào)查問題
②確定調(diào)查對象
、圻x擇調(diào)查方法
④展開調(diào)查
、萦涗浗Y(jié)果
、薜贸鼋Y(jié)論
。2)收集數(shù)據(jù)常用的方法:
、倜褚庹{(diào)查:如投票選舉
、趯嵉卣{(diào)查:如現(xiàn)場進行觀察、收集、統(tǒng)計數(shù)據(jù)
、勖襟w調(diào)查:報紙、電視、電話、網(wǎng)絡(luò)等調(diào)查都是媒體調(diào)查。
2、數(shù)據(jù)的表示方法:
。1)統(tǒng)計表:直觀地反映數(shù)據(jù)的分布規(guī)律
。2)折線圖:反映數(shù)據(jù)的變化趨勢
。3)條形圖:反映每個項目的具體數(shù)據(jù)
(4)扇形圖:反映各部分在總體中所占的百分比
。5)頻數(shù)分布直方圖:直觀形象地反映頻數(shù)分布情況
。6)頻數(shù)分布折線圖:在頻數(shù)分布直方圖的基礎(chǔ)上,取每一個長方形上邊的中點,和左右頻數(shù)為零與直方圖相距半個組距的兩個點
3、調(diào)查方式:
。1)全面調(diào)查,優(yōu)點是可靠,、真實;
。2)抽樣調(diào)查,優(yōu)點是省時、省力,減少破壞性;隨機抽樣調(diào)查具有廣泛性和代表性。
4、總體和樣本:
(1)總體:要考察的所有對象
。2)個體:組成總體的每一個考察對象
。3)樣本:從總體中抽出的所有實際被調(diào)查的對象組成一個樣本。
。4)樣本容量:樣本中給個體的數(shù)目
5、組距:每個小組兩個端點之間的距離
6、畫直方圖的一般步驟:
。1)計算最大值與最小值的差;
(2)決定組距與組數(shù),先根據(jù)數(shù)據(jù)個數(shù)確定組距,再計算組數(shù),注意無論整除與否,組數(shù)總是比商的整數(shù)位數(shù)多1;
(3)確定分點,并分組;
。4)列頻數(shù)分布表;
(5)繪制頻數(shù)分布直方圖
(一)正負(fù)數(shù)
1.正數(shù):大于0的數(shù)。
2.負(fù)數(shù):小于0的數(shù)。
3.0即不是正數(shù)也不是負(fù)數(shù)。
4.正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
(二)有理數(shù)
1.有理數(shù):由整數(shù)和分?jǐn)?shù)組成的數(shù)。包括:正整數(shù)、0、負(fù)整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。可以寫成兩個整之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:π)
2.整數(shù):正整數(shù)、0、負(fù)整數(shù),統(tǒng)稱整數(shù)。
3.分?jǐn)?shù):正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。
(三)數(shù)軸
1.數(shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當(dāng)?shù)拈L度為單位長度,以便在數(shù)軸上取點。)
2.數(shù)軸的三要素:原點、正方向、單位長度。
3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。
4.絕對值:正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負(fù)數(shù),絕對值大的反而小。
(四)有理數(shù)的加減法
1.先定符號,再算絕對值。
2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。
3.加法交換律:a+b=b+a兩個數(shù)相加,交換加數(shù)的位置,和不變。
4.加法結(jié)合律:(a+b)+c=a+(b+c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
5.a-b=a+(-b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。
七年級數(shù)學(xué)下冊知識點總結(jié)2:
豐富的圖形世界
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。
平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點動成線,線動成面,面動成體。
3、常見的幾何體及其特點
長方體:有8個頂點,12條棱,6個面,且各面都是長方形(正方形是特殊的長方形),正方體是特殊的長方體。
棱柱:上下兩個面稱為棱柱的底面,其它各面稱為側(cè)面,長方體是四棱柱。
棱錐:一個面是多邊形,其余各面是有一個公共頂點的三角形。
圓柱:有上下兩個底面和一個側(cè)面(曲面),兩個底面是半徑相等的圓。圓柱的表面展開圖是由兩個相同的圓形和一個長方形連成。
圓錐:有一個底面和一個側(cè)面(曲面)。側(cè)面展開圖是扇形,底面是圓。
球:由一個面(曲面)圍成的幾何體
4、棱柱及其有關(guān)概念:
棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。
側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。
n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點。
5、正方體的平面展開圖:11種
6、截一個正方體:
(1)用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。
注意:
、、正方體只有六個面,所以截面最多有六條邊,即截面邊數(shù)最多的圖形是六邊形.
、、長方體、棱柱的截面與正方體的截面有相似之處.
(2)用平面截圓柱體,可能出現(xiàn)以下的幾種情況.
(3)用平面去截一個圓錐,能截出圓和三角形兩種截面(還有其他截面,初中不予研究)
(4)用平面去截球體,只能出現(xiàn)一種形狀的截面——圓
七年級數(shù)學(xué)下冊知識點總結(jié)3:
相交線與平行線
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補角,特點是兩個角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補角互補;相對的兩個角叫做對頂角,特點是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。
2、三線八角:對頂角(相等),鄰補角(互補),同位角,內(nèi)錯角,同旁內(nèi)角。
3、兩條直線被第三條直線所截:
同位角F(在兩條直線的同一旁,第三條直線的同一側(cè))
內(nèi)錯角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè))
同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))
4、兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點稱為垂足。
5、垂直三要素:垂直關(guān)系,垂直記號,垂足
6、垂直公理:過一點有且只有一條直線與已知直線垂直。
7、垂線段最短。
8、點到直線的距離:直線外一點到這條直線的垂線段的長度。
9、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//c
10、平行線的判定:
①同位角相等,兩直線平行。
、趦(nèi)錯角相等,兩直線平行。
、弁詢(nèi)角互補,兩直線平行。
11、推論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
12、平行線的性質(zhì):
①兩直線平行,同位角相等;
、趦芍本平行,內(nèi)錯角相等;
、蹆芍本平行,同旁內(nèi)角互補。
13、平面上不相重合的兩條直線之間的位置關(guān)系為_______或________
14、平移:
、倨揭魄昂蟮膬蓚圖形形狀大小不變,位置改變。
、趯(yīng)點的線段平行且相等。
平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應(yīng)點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應(yīng)點。
15、命題:判斷一件事情的語句叫命題。
命題分為題設(shè)和結(jié)論兩部分;題設(shè)是如果后面的,結(jié)論是那么后面的。
命題分為真命題和假命題兩種;定理是經(jīng)過推理證實的真命題。
概率
一、事件:
1、事件分為必然事件、不可能事件、不確定事件。
2、必然事件:事先就能肯定一定會發(fā)生的事件。也就是指該事件每次一定發(fā)生,不可能不發(fā)生,即發(fā)生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不會發(fā)生的事件。也就是指該事件每次都完全沒有機會發(fā)生,即發(fā)生的可能性為零。
4、不確定事件:事先無法肯定會不會發(fā)生的事件,也就是說該事件可能發(fā)生,也可能不發(fā)生,即發(fā)生的可能性在0和1之間。
二、等可能性:是指幾種事件發(fā)生的可能性相等。
1、概率:是反映事件發(fā)生的可能性的大小的量,它是一個比例數(shù),一般用P來表示,P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)/所有可能出現(xiàn)的結(jié)果數(shù)。
2、必然事件發(fā)生的概率為1,記作P(必然事件)=1;
3、不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;
4、不確定事件發(fā)生的概率在0—1之間,記作0
三、幾何概率
1、事件A發(fā)生的概率等于此事件A發(fā)生的可能結(jié)果所組成的面積(用SA表示)除以所有可能結(jié)果組成圖形的面積(用S全表示),所以幾何概率公式可表示為P(A)=SA/S全,這是因為事件發(fā)生在每個單位面積上的概率是相同的。
2、求幾何概率:
。1)首先分析事件所占的面積與總面積的關(guān)系;
。2)然后計算出各部分的面積;
。3)最后代入公式求出幾何概率。
變量之間的關(guān)系
一、理論理解
1、若Y隨X的變化而變化,則X是自變量Y是因變量。
自變量是主動發(fā)生變化的量,因變量是隨著自變量的變化而發(fā)生變化的量,數(shù)值保持不變的量叫做常量。
3、若等腰三角形頂角是y,底角是x,那么y與x的關(guān)系式為y=180—2x。
2、能確定變量之間的關(guān)系式:
、俾烦=速度×?xí)r間
②長方形周長=2×(長+寬)
、厶菪蚊娣e=(上底+下底)×高÷2
、鼙鞠⒑=本金+利率×本金×?xí)r間。
、菘們r=單價×總量。
、奁骄俣=總路程÷總時間
二、列表法:采用數(shù)表相結(jié)合的形式,運用表格可以表示兩個變量之間的關(guān)系。列表時要選取能代表自變量的一些數(shù)據(jù),并按從小到大的順序列出,再分別求出因變量的對應(yīng)值。列表法的特點是直觀,可以直接從表中找出自變量與因變量的對應(yīng)值,但缺點是具有局限性,只能表示因變量的一部分。
三、關(guān)系式法:關(guān)系式是利用數(shù)學(xué)式子來表示變量之間關(guān)系的等式,利用關(guān)系式,可以根據(jù)任何一個自變量的值求出相應(yīng)的因變量的值,也可以已知因變量的值求出相應(yīng)的自變量的值。
四、圖像注意:
a、認(rèn)真理解圖象的含義,注意選擇一個能反映題意的圖象;
b、從橫軸和縱軸的實際意義理解圖象上特殊點的含義(坐標(biāo)),特別是圖像的起點、拐點、交點
八、事物變化趨勢的描述:對事物變化趨勢的描述一般有兩種:
1、隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)(或者用函數(shù)語言描述也可:因變量y隨著自變量x的增加(大)而增加(大));
2、隨著自變量x的逐漸增加(大),因變量y逐漸減小(或者用函數(shù)語言描述也可:因變量y隨著自變量x的增加(大)而減。
注意:如果在整個過程中事物的變化趨勢不一樣,可以采用分段描述。例如在什么范圍內(nèi)隨著自變量x的逐漸增加(大),因變量y逐漸增加(大)等等。
九、估計(或者估算)對事物的估計(或者估算)有三種:
1、利用事物的變化規(guī)律進行估計(或者估算)。例如:自變量x每增加一定量,因變量y的變化情況;平均每次(年)的變化情況(平均每次的變化量=(尾數(shù)—首數(shù))/次數(shù)或相差年數(shù))等等;
2、利用圖象:首先根據(jù)若干個對應(yīng)組值,作出相應(yīng)的圖象,再在圖象上找到對應(yīng)的點對應(yīng)的因變量y的值;
3、利用關(guān)系式:首先求出關(guān)系式,然后直接代入求值即可。
【七年級數(shù)學(xué)下冊知識點總結(jié)】相關(guān)文章:
七年級數(shù)學(xué)下冊知識點總結(jié)08-23
初一數(shù)學(xué)下冊知識點總結(jié)03-15
數(shù)學(xué)五年級下冊知識點總結(jié)03-14
七年級下冊數(shù)學(xué)的教學(xué)總結(jié)10-07