成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

數學初一知識點總結

時間:2022-08-26 02:20:51 總結 投訴 投稿

數學初一知識點總結

  總結是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規(guī)律性的結論,它可以幫助我們總結以往思想,發(fā)揚成績,讓我們一起來學習寫總結吧?偨Y怎么寫才是正確的呢?以下是小編精心整理的數學初一知識點總結,僅供參考,歡迎大家閱讀。

數學初一知識點總結

數學初一知識點總結1

  第一章有理數

  1、大于0的數是正數。

  2、有理數分類:正有理數、0、負有理數。

  3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)

  4、規(guī)定了原點,單位長度,正方向的直線稱為數軸。

  5、數的大小比較:

  ①正數大于0,0大于負數,正數大于負數。

  ②兩個負數比較,絕對值大的反而小。

  6、只有符號不同的兩個數稱互為相反數。

  7、若a+b=0,則a,b互為相反數

  8、表示數a的點到原點的距離稱為數a的絕對值

  9、絕對值的三句:正數的絕對值是它本身,

  負數的絕對值是它的相反數,

  0的絕對值是0。

  10、有理數的計算:先算符號、再算數值。

  11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

  12、乘除:同號得正,異號的負

  13、乘方:表示n個相同因數的乘積。

  14、負數的奇次冪是負數,負數的偶次冪是正數。

  15、混合運算:先乘方,再乘除,后加減,同級運算從左到右,有括號的先算括號。

  16、科學計數法:用ax10n 表示一個數。(其中a是整數數位只有一位的數)

  17、左邊第一個非零的數字起,所有的數字都是有效數字。

  【知識梳理】

  1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。

  2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位于原點的兩側,并且到原點的距離相等。

  3.倒數:若兩個數的積等于1,則這兩個數互為倒數。

  4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;

  幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.

  5.科學記數法:,其中。

  6.實數大小的比較:利用法則比較大小;利用數軸比較大小。

  7.在實數范圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用于實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的.關鍵。

  初一數學二單元知識點歸納

  (一)正負數

  1.正數:大于0的數。

  2.負數:小于0的數。

  3.0即不是正數也不是負數。

  4.正數大于0,負數小于0,正數大于負數。

  (二)有理數

  1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數?梢詫懗蓛蓚整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點后的數字是無限不循環(huán)的。如:π)

  2.整數:正整數、0、負整數,統(tǒng)稱整數。

  3.分數:正分數、負分數。

  (三)數軸

  1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)

  2.數軸的三要素:原點、正方向、單位長度。

  3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。

  4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。

  (四)有理數的加減法

  1.先定符號,再算絕對值。

  2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。

  3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。

  4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等于加這個數的相反數。

  (五)有理數乘法(先定積的符號,再定積的大小)

  1.同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。

  2.乘積是1的兩個數互為倒數。

  3.乘法交換律:ab=ba

  4.乘法結合律:(ab)c=a(bc)

  5.乘法分配律:a(b+c)=ab+ac

  (六)有理數除法

  1.先將除法化成乘法,然后定符號,最后求結果。

  2.除以一個不等于0的數,等于乘這個數的倒數。

  3.兩數相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數,都得0。(七)乘方1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。3.同底數冪相乘,底不變,指數相加。

  4.同底數冪相除,底不變,指數相減。

  (八)有理數的加減乘除混合運算法則

  1.先乘方,再乘除,最后加減。

  2.同級運算,從左到右進行。

  3.如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

  (九)科學記數法、近似數、有效數字。

數學初一知識點總結2

  1、單項式的定義:

  由數或字母的積組成的式子叫做單項式。

  說明:單獨的一個數或者單獨的一個字母也是單項式.

  2、單項式的系數:

  單項式中的數字因數叫這個單項式的系數.

  說明:⑴單項式的系數可以是整數,也可能是分數或小數。如3x的系數是3的32

  系數是1;4.8a的系數是4.8; 3

  ⑵單項式的系數有正有負,確定一個單項式的系數,要注意包含在它前面的符號,

  ?4xy2的系數是4;2x2y的系數是4;

 、菍τ谥缓凶帜敢驍档膯雾検,其系數是1或-1,不能認為是0,如?ab的

  系數是-1;ab的系數是1;

  ⑷表示圓周率的π,在數學中是一個固定的常數,當它出現在單項式中時,應將其作為系數的.一部分,而不能當成字母。如2πxy的系數就是2.

  3、單項式的次數:

  一個單項式中,所有字母的指數的和叫做這個單項式的次數.

  說明:⑴計算單項式的次數時,應注意是所有字母的指數和,不要漏掉字母指數是1

  的情況。如單項式2xyz的次數是字母z,y,x的指數和,即4+3+1=8,

  而不是7次,應注意字母z的指數是1而不是0;

 、茊雾検降闹笖抵缓妥帜傅闹笖涤嘘P,與系數的指數無關。

 、菃雾検绞且粋單獨字母時,它的指數是1,如單項式m的指數是1,單項式是單獨的一個常數時,一般不討論它的次數;

  4、在含有字母的式子中如果出現乘號,通常將乘號寫作“* ”或者省略不寫。

  5、在書寫單項式時,數字因數寫在字母因數的前面,數字因數是帶分數時轉化成假分數.。

數學初一知識點總結3

  一、方程的有關概念

  1.方程:含有未知數的等式就叫做方程.

  2. 一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.

  3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解.

  注:⑴ 方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論.

  二、等式的性質

  等式的性質(1):等式兩邊都加上(或減去)同個數(或式子),結果仍相等.

  等式的性質(1)用式子形式表示為:如果a=b,那么a±c=b±c

  等式的性質(2):等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,等式的性質(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb

  三、移項法則:把等式一邊的某項變號后移到另一邊,叫做移項.

  四、去括號法則

  1. 括號外的.因數是正數,去括號后各項的符號與原括號內相應各項的符號相同.

  2. 括號外的因數是負數,去括號后各項的符號與原括號內相應各項的符號改變.

  五、解方程的一般步驟

  1. 去分母(方程兩邊同乘各分母的最小公倍數)

  2. 去括號(按去括號法則和分配律)

  3. 移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)

  4. 合并(把方程化成ax = b (a≠0)形式)

  5. 系數化為1(在方程兩邊都除以未知數的系數a,得到方程的解x=a(b).

  六、用方程思想解決實際問題的一般步驟

  1. 審:審題,分析題中已知什么,求什么,明確各數量之間的關系.

  2. 設:設未知數(可分直接設法,間接設法)

  3. 列:根據題意列方程.

  4. 解:解出所列方程.

  5. 檢:檢驗所求的解是否符合題意.

  6. 答:寫出答案(有單位要注明答案)

數學初一知識點總結4

  正數和負數

 、薄⒄龜岛拓摂档母拍

  負數:比0小的數正數:比0大的數0既不是正數,也不是負數

  注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的.數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

 、谡龜涤袝r也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。

  2、具有相反意義的量

  若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:—8℃

  3、0表示的意義

  (1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

 。2)0是正數和負數的分界線,0既不是正數,也不是負數。如:

 。3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

  有理數

  1、有理數的概念

 。1)正整數、0、負整數統(tǒng)稱為整數(0和正整數統(tǒng)稱為自然數)

  (2)正分數和負分數統(tǒng)稱為分數

 。3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

  理解:只有能化成分數的數才是有理數。①π是無限不循環(huán)小數,不能寫成分數形式,不是有理數。②有限小數和無限循環(huán)小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數

  注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。

數學初一知識點總結5

  填空題答題技巧

  要求熟記的基本概念、基本事實、數據公式、原理,復習時要特別細心,注意記熟,做到臨考前能準確無誤、清晰回憶。

  對那些起關鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的`往往就是它們。如區(qū)間的端點開還是閉、定義域和值域要用區(qū)間或集合表示、單調區(qū)間誤寫成不等式或把兩個單調區(qū)間取了并集等等。

  解答題答題技巧

 。1)仔細審題。注意題目中的關鍵詞,準確理解考題要求。

  (2)規(guī)范表述。分清層次,要注意計算的準確性和簡約性、邏輯的條理性和連貫性。

 。3)給出結論。注意分類討論的問題,最后要歸納結論。

 。4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗算時間。

數學初一知識點總結6

  一、知識梳理

  知識點1:正、負數的概念:我們把像3、2、+0.5、0.03%這樣的數叫做正數,它們都是比0大的數;像-3、-2、-0.5、-0.03%這樣數叫做負數。它們都是比0小的數。0既不是正數也不是負數。我們可以用正數與負數表示具有相反意義的量。

  知識點2:有理數的概念和分類:整數和分數統(tǒng)稱有理數。有理數的分類主要有兩種:

  注:有限小數和無限循環(huán)小數都可看作分數。

  知識點3:數軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數軸。

  知識點4:絕對值的概念:

 。1)幾何意義:數軸上表示a的點與原點的距離叫做數a的絕對值,記作|a|;

 。2)代數意義:一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;零的.絕對值是零。

  注:任何一個數的絕對值均大于或等于0(即非負數).

  知識點5:相反數的概念:

  (1)幾何意義:在數軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數,叫做互為相反數;

 。2)代數意義:符號不同但絕對值相等的兩個數叫做互為相反數。0的相反數是0。

  知識點6:有理數大小的比較:

  有理數大小比較的基本法則:正數都大于零,負數都小于零,正數大于負數。

  數軸上有理數大小的比較:在數軸上表示的兩個數,右邊的數總比左邊的大。

  用絕對值進行有理數大小的比較:兩個正數,絕對值大的正數大;兩個負數,絕對值大的負數反而小。

  知識點7:有理數加法法則:

  (1)同號兩數相加,取相同的符號,并把絕對值相加;

  (2)異號兩數相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數與0相加,仍得這個數.

  知識點8:有理數加法運算律:

  加法交換律:兩個數相加,交換加數的位置,和不變。

  加法結合律:三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。

  知識點9:有理數減法法則:減去一個數,等于加上這個數的相反數。

  知識點10:有理數加減混合運算:根據有理數減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。

數學初一知識點總結7

  一、一元一次不等式的解法:

  一元一次不等式的解法與一元一次方程的解法類似,其步驟為:

  1、去分母;

  2、去括號;

  3、移項;

  4、合并同類項;

  5、系數化為1

  二、不等式的基本性質:

  1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;

  2、不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變;

  3、不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

  三、不等式的解:

  能使不等式成立的未知數的值,叫做不等式的解。

  四、不等式的解集:

  一個含有未知數的不等式的所有解,組成這個不等式的解集。

  五、解不等式的依據不等式的基本性質:

  性質1:不等式兩邊加上(或減去)同一個數(或式子),不等號的方向不變,

  性質2:不等式兩邊乘以(或除以)同一個正數,不等號的方向不變,

  性質3:不等式兩邊乘以(或除以)同一個負數,不等號的方向改變,

  常見考法

 。1)考查一元一次不等式的解法;

  (2)考查不等式的性質。

  誤區(qū)提醒

  忽略不等號變向問題。

  初中數學重點知識點歸納

  有理數乘法的運算律

  1、乘法的交換律:ab=ba;

  2、乘法的結合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  單項式

  只含有數字與字母的`積的代數式叫做單項式。

  注意:單項式是由系數、字母、字母的指數構成的。

  多項式

  1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。

  2、同類項所有字母相同,并且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。

  提高數學思維的方法

  轉化思維

  轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。

  創(chuàng)新思維

  創(chuàng)新思維是指以新穎獨創(chuàng)的方法解決問題的思維過程,通過這種思維能突破常規(guī)思維的界限,以超常規(guī)甚至反常規(guī)的方法、視角去思考問題,得出與眾不同的解

  要培養(yǎng)質疑的習慣

  在家庭教育中,家長要經常引導孩子主動提問,學會質疑、反省,并逐步養(yǎng)成習慣。

  在孩子放學回家后,讓孩子回顧當天所學的知識:老師如何講解的,同學是如何回答的?當孩子回答出來之后,接著追問:“為什么?”“你是怎樣想的?”啟發(fā)孩子講出思維的過程并盡量讓他自己作出評價。

  有時,可以故意制造一些錯誤讓孩子去發(fā)現、評價、思考。通過這樣的訓練,孩子會在思維上逐步形成獨立見解,養(yǎng)成一種質疑的習慣。

數學初一知識點總結8

  有理數:

  (1)凡能寫成形式的數,都是有理數,整數和分數統(tǒng)稱有理數.

  注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;

  (2)有理數的分類:①②

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的'數也有自己的特性;

  (4)自然數0和正整數;a>0a是正數;a<0a是負數;

  a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.

數學初一知識點總結9

  1.有理數:

  (1)凡能寫成形式的數,都是有理數.正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;

  (2)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區(qū)域,這四個區(qū)域的數也有自己的特性;

  2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線.

  3.相反數:

  (1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;

  (2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;

  4.絕對值:

  (1)正數的絕對值是其本身,0的`絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;

  (2)絕對值可表示為:

  絕對值的問題經常分類討論;

  (3)a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,

  5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數<0

數學初一知識點總結10

  5.1.1相交線

  有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。

  兩條直線相交有4對鄰補角。

  有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。

  兩條直線相交,有2對對頂角。

  對頂角相等。

  5.1.2

  兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

  注意:⑴垂線是一條直線。

 、凭哂写怪标P系的兩條直線所成的4個角都是90。

  ⑶垂直是相交的特殊情況。

  ⑷垂直的記法:ab,ABCD。

  畫已知直線的垂線有無數條。

  過一點有且只有一條直線與已知直線垂直。

  連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。

  直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。

  5.2 平行線

  5.2.1平行線

  在同一平面內,兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。

  在同一平面內兩條直線的關系只有兩種:相交或平行。

  平行公理:經過直線外一點,有且只有一條直線與這條直線平行。

  如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  5.2.2直線平行的條件

  兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。

  兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側,這樣的.兩個角叫做內錯角。

  兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內角。

  判定兩條直線平行的方法:

  方法1 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。

  方法2 兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行。簡單說成:內錯角相等,兩直線平行。

  方法3 兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行。簡單說成:同旁內角互補,兩直線平行。

  5.3 平行線的性質

  平行線具有性質:

  性質1 兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。

  性質2 兩條平行線被第三條直線所截,內錯角相等。簡單說成:兩直線平行,內錯角相等。

  性質3 兩條平行線被第三條直線所截,同旁內角互補。簡單說成:兩直線平行,同旁內角互補。

  同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。

  判斷一件事情的語句叫做命題。

  5.4 平移

 、虐岩粋圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。

  ⑵新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點,連接各組對應點的線段平行且相等。

  圖形的這種移動,叫做平移變換,簡稱平移。

數學初一知識點總結11

  二元一次方程組

  1.二元一次方程:含有兩個未知數,并且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

  2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

  3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

  4.二元一次方程組的解法:

  (1)代入消元法;(2)加減消元法;

  (3)注意:判斷如何解簡單是關鍵.

  ※5.一次方程組的'應用:

  (1)對于一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

  (2)對于方程組,若方程個數與未知數個數相等時,一般可求出未知數的值;

  (3)對于方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

  一元一次不等式(組)

  1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

  2.不等式的基本性質:

  不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

  不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

  不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

  3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

  4.一元一次不等式:只含有一個未知數,并且未知數的次數是1,系數不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0).

  5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

數學初一知識點總結12

  有理數

  1.1 正數與負數

  在以前學過的0以外的數前面加上負號“—”的數叫負數(negative number)。

  與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上“+”)。

  1.2 有理數

  正整數、0、負整數統(tǒng)稱整數(integer),正分數和負分數統(tǒng)稱分數(fraction)。

  整數和分數統(tǒng)稱有理數(rational number)。

  通常用一條直線上的點表示數,這條直線叫數軸(number axis)。

  數軸三要素:原點、正方向、單位長度。

  在直線上任取一個點表示數0,這個點叫做原點(origin)。

  只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)

  數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。

  一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。

  初中數學知識點總結:平面直角坐標系

  下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

  平面直角坐標系

  平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

  水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

  初中數學知識點:平面直角坐標系的構成

  平面直角坐標系的構成

  在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

  初中數學知識點:點的坐標的性質

  點的坐標的性質

  建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

  對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數學知識點:因式分解的一般步驟

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的.因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

  初中數學知識點:因式分解

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

  因式分解與整式乘法的關系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶蕘G字母

 、诓粶蕘G常數項注意查項數

 、垭p重括號化成單括號

 、芙Y果按數單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

  ⑥首項負號放括號外

 、呃ㄌ杻韧愴椇喜。

數學初一知識點總結13

  1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2.三角形的分類

  3.三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7.高線、中線、角平分線的意義和做法

  8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。

  9.三角形內角和定理:三角形三個內角的'和等于180°

  推論1直角三角形的兩個銳角互余;

  推論2三角形的一個外角等于和它不相鄰的兩個內角和;

  推論3三角形的一個外角大于任何一個和它不相鄰的內角;

  三角形的內角和是外角和的一半。

  10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  11.三角形外角的性質

  (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

  (2)三角形的一個外角等于與它不相鄰的兩個內角和;

  (3)三角形的一個外角大于與它不相鄰的任一內角;

  (4)三角形的外角和是360°。

  12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

  13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

  14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

  16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

  17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  19.公式與性質

  多邊形內角和公式:n邊形的內角和等于(n-2)·180°

  20.多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)多邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

  21.多邊形對角線的條數:

  (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

  (2)n邊形共有n(n-3)/2條對角線。

數學初一知識點總結14

  1 過兩點有且只有一條直線

  2 兩點之間線段最短

  3 同角或等角的補角相等

  4 同角或等角的余角相等

  5 過一點有且只有一條直線和已知直線垂直

  6 直線外一點與直線上各點連接的所有線段中,垂線段最短

  7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9 同位角相等,兩直線平行

  10 內錯角相等,兩直線平行

  11 同旁內角互補,兩直線平行

  12兩直線平行,同位角相等

  13 兩直線平行,內錯角相等

  14 兩直線平行,同旁內角互補

  15 定理 三角形兩邊的和大于第三邊

  16 推論 三角形兩邊的差小于第三邊

  17 三角形內角和定理 三角形三個內角的和等于180

  18 推論1 直角三角形的兩個銳角互余

  19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和

  20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角

  21 全等三角形的對應邊、對應角相等

  22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

  23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

  24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

  25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

  26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

  27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

  28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

  29 角的`平分線是到角的兩邊距離相等的所有點的集合

  30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

  31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33 推論3 等邊三角形的各角都相等,并且每一個角都等于60

  34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35 推論1 三個角都相等的三角形是等邊三角形

  36 推論 2 有一個角等于60的等腰三角形是等邊三角形

  37 在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半

  38 直角三角形斜邊上的中線等于斜邊上的一半

  39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?

  40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42 定理1 關于某條直線對稱的兩個圖形是全等形

  43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

數學初一知識點總結15

  初一數學下冊期末考試知識點總結一(蘇教版)

  第七章 平面圖形的認識(二) 1

  第八章 冪的運算 2

  第九章 整式的乘法與因式分解 3

  第十章 二元一次方程組 4

  第十一章 一元一次不等式 4

  第十二章 證明 9

  第七章 平面圖形的認識(二)

  一、知識點:

  1、“三線八角”

  ① 如何由線找角:一看線,二看型。

  同位角是“F”型;

  內錯角是“Z”型;

  同旁內角是“U”型。

 、 如何由角找線:組成角的三條線中的公共直線就是截線。

  2、平行公理:

  如果兩條直線都和第三條直線平行,那么這兩條直線也平行。

  簡述:平行于同一條直線的兩條直線平行。

  補充定理:

  如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。

  簡述:垂直于同一條直線的兩條直線平行。

  3、平行線的判定和性質:

  判定定理 性質定理

  條件 結論 條件 結論

  同位角相等 兩直線平行 兩直線平行 同位角相等

  內錯角相等 兩直線平行 兩直線平行 內錯角相等

  同旁內角互補 兩直線平行 兩直線平行 同旁內角互補

  4、圖形平移的性質:

  圖形經過平移,連接各組對應點所得的線段互相平行(或在同一直線上)并且相等。

  5、三角形三邊之間的關系:

  三角形的任意兩邊之和大于第三邊;

  三角形的任意兩邊之差小于第三邊。

  若三角形的三邊分別為a、b、c,

  則

  6、三角形中的主要線段:

  三角形的高、角平分線、中線。

  注意:①三角形的高、角平分線、中線都是線段。

 、诟、角平分線、中線的應用。

  7、三角形的內角和:

  三角形的3個內角的和等于180°;

  直角三角形的兩個銳角互余;

  三角形的一個外角等于與它不相鄰的.兩個內角的和;

  三角形的一個外角大于與它不相鄰的任意一個內角。

  8、多邊形的內角和:

  n邊形的內角和等于(n-2)180°;

  任意多邊形的外角和等于360°。

  第八章 冪的運算

  冪(p5

【數學初一知識點總結】相關文章:

數學初一知識點總結07-01

數學初一知識點總結15篇02-22

數學初一知識點總結(20篇)04-23

數學初一知識點總結(精選15篇)02-22

初一數學下冊知識點總結03-15

人教版初一數學知識點總結07-11

數學的知識點總結02-16

數學的知識點總結05-11

初一知識點總結03-15