五年級下冊數(shù)學知識點總結(jié)
總結(jié)是事后對某一階段的學習或工作情況作加以回顧檢查并分析評價的書面材料,他能夠提升我們的書面表達能力,讓我們好好寫一份總結(jié)吧。我們該怎么寫總結(jié)呢?下面是小編精心整理的五年級下冊數(shù)學知識點總結(jié),僅供參考,歡迎大家閱讀。
五年級下冊數(shù)學知識點總結(jié)1
一、圖形的變換
1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、成軸對稱圖形的特征和性質(zhì):①對稱點到對稱軸的距離相等;②對稱點的連線與對稱軸垂直;③對稱軸兩邊的圖形大小形狀完全相同。
3、物體旋轉(zhuǎn)時應抓住三點:①旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度。旋轉(zhuǎn)只改變物體的位置,不改變物體的形狀、大小。
二、因數(shù)與倍數(shù)
1、因數(shù)和倍數(shù):如果整數(shù)a能被b整除,那么a就是b的倍數(shù),b就是a的因數(shù)。
2、一個數(shù)的因數(shù)的求法:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的是1,最大的是它本身,方法是成對地按順序找。
3、一個數(shù)的倍數(shù)的求法:一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的,方法時依次乘以自然數(shù)。
4、2、5、3的倍數(shù)的特征:個位上是0、2、4、6、8的數(shù),都是2的倍數(shù)。個位上是0或5的數(shù),是5的倍數(shù)。一個數(shù)各位上的數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。5、偶數(shù)與奇數(shù):是2倍數(shù)的數(shù)叫做偶數(shù)(0也是偶數(shù)),不是2的倍數(shù)的數(shù)叫做奇數(shù)。6、質(zhì)數(shù)和和合數(shù):一個數(shù),如果只有1和它本身兩個因數(shù)的數(shù)叫做質(zhì)數(shù)(或素數(shù)),最小的質(zhì)數(shù)是2。一個數(shù),如果除了1和它本身還有別的因數(shù)的數(shù)叫做合數(shù),最小的合數(shù)是4。
三、長方體和正方體
1、長方體和正方體的特征:長方體有6個面,每個面都是長方形(特殊的有一組對面是正方形),相對的面完全相同;有12條棱,相對的棱平行且相等;有8個頂點。正方形有6個面,每個面都是正方形,所有的面都完全相同;有12條棱,所有的棱都相等;有8個頂點。
2、長、寬、高:相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
3、長方體的棱長總和=(長+寬+高)×4正方體的棱長總和=棱長×12
4、表面積:長方體或正方體6個面的總面積叫做它的表面積。
5、長方體的表面積=(長×寬+長×高+寬×高)×2S=(ab+ah+bh)×2正方體的表面積=棱長×棱長×6用字母表示:S
6、表面積單位:平方厘米、平方分米、平方米相鄰單位的進率為1007、體積:物體所占空間的`大小叫做物體的體積。
8、長方體的體積=長×寬×高用字母表示:V=abh長=體積÷(寬×高)寬=體積÷(長×高)高=體積÷(長×寬)
正方體的體積=棱長×棱長×棱長用字母表示:V=a×a×a
9、體積單位:立方厘米、立方分米和立方米相鄰單位的進率為1000
10、長方體和正方體的體積統(tǒng)一公式:長方體或正方體的體積=底面積×高V=Sh11、體積單位的互化:把高級單位化成低級單位,用高級單位數(shù)乘以進率;把低級單位聚成高級單位,用低級單位數(shù)除以進率。12、容積:容器所能容納物體的體積。
13、容積單位:升和毫升(L和ml)1L=1000ml1L=1000立方厘米1ml=1立方厘米
14、容積的計算:長方體和正方體容器容積的計算方法跟體積的計算方法相同,但要從里面量長、寬、高。
四、分數(shù)的意義和性質(zhì)
1、分數(shù)的意義:把單位“1”平均分成若干份,表示這樣的一份或幾份的數(shù),叫做分數(shù)。
2、分數(shù)單位:把單位“1”平均分成若干份,表示這樣的一份的數(shù)叫做分數(shù)單位。
3、分數(shù)與除法的關系:除法中的被除數(shù)相當于分數(shù)的分子,除數(shù)相等于分母,用字母表示:a÷b=(b≠0)。
4、真分數(shù)和假分數(shù):分子比分母小的分數(shù)叫做真分數(shù),真分數(shù)小于1。分子比分母大或分子和分母相等的分數(shù)叫做假分數(shù),假分數(shù)大于1或等于1。由整數(shù)部分和分數(shù)部分組成的分數(shù)叫做帶分數(shù)。
5、假分數(shù)與帶分數(shù)的互化:把假分數(shù)化成帶分數(shù),用分子除以分母,所得商作整數(shù)部分,余數(shù)作分子,分母不變。把帶分數(shù)化成假分數(shù),用整數(shù)部分乘以分母加上分子作分子,分母不變。
6、分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變,這叫做分數(shù)的基本性質(zhì)。
7、最大公因數(shù):幾個數(shù)共有的因數(shù)叫做它們的公因數(shù),其中最大的一個叫做最大公因數(shù)。
8、互質(zhì)數(shù):公因數(shù)只有1的兩個數(shù)叫做互質(zhì)數(shù)。兩個數(shù)互質(zhì)的特殊判斷方法:①1和任何大于1的自然數(shù)互質(zhì)。②2和任何奇數(shù)都是互質(zhì)數(shù)。③相鄰的兩個自然數(shù)是互質(zhì)數(shù)。④相鄰的兩個奇數(shù)互質(zhì)。⑤不相同的兩個質(zhì)數(shù)互質(zhì)。⑥當一個數(shù)是合數(shù),另一個數(shù)是質(zhì)數(shù)時(除了合數(shù)是質(zhì)數(shù)的倍數(shù)情況下),一般情況下這兩個數(shù)也都是互質(zhì)數(shù)。
9、最簡分數(shù):分子和分母只有公因數(shù)1的分數(shù)叫做最簡分數(shù)。
10、約分:把一個分數(shù)化成和它相等,但分子和分母都比較小的分數(shù),叫做約分。
11、最小公倍數(shù):幾個數(shù)共有的倍數(shù)叫做它們的公倍數(shù),其中最小的一個叫做最小公倍數(shù)。
12、通分:把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。
13、特殊情況下的最大公因數(shù)和最小公倍數(shù):
、俪杀稊(shù)關系的兩個數(shù),最大公因數(shù)就是較小的數(shù),最小公倍數(shù)就是較大的數(shù)。②互質(zhì)的兩個數(shù),最大公因數(shù)就是1,最小公倍數(shù)就是它們的乘積。
14、分數(shù)的大小比較:同分母的分數(shù),分子大的分數(shù)就大,分子小的分數(shù)就。煌肿拥姆謹(shù),分母大的分數(shù)反而小,分母小的分數(shù)反而大。
15、分數(shù)和小數(shù)的互化:小數(shù)化分數(shù),一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……,去掉小數(shù)點作分子,能約分的必須約成最簡分數(shù);分數(shù)化小數(shù),用分子除以分母,除不盡的按要求保留幾位小數(shù)。
五、分數(shù)的加法和減法
1、同分母分數(shù)的加減法:同分母分數(shù)相加、減,分母不變,只把分子相加減。
2、異分母分數(shù)的加減法:異分母分數(shù)相加、減,先通分,再按照同分母分數(shù)加減法的方法進行計算。
3、分數(shù)加減混合運算的運算順序與整數(shù)加減混合運算的順序相同。在一個算式中,如果含有括號,應先算括號里面的,再算括號外面的;如果只含有同一級運算,應從左到右依次計算。
六、打電話
1、逐個法:所需時間最多;
2、分組法:相對節(jié)約時間;
3、同時進行法:最節(jié)約時間。
1.因為2×6=12,我們就說2和6是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)。不能單獨說誰是倍數(shù)或因數(shù)
2.求一個數(shù)的因數(shù),用乘法一對一對找,寫的時候一般都是從小到大排列的3.求一個數(shù)的倍數(shù),用一個數(shù)去乘1、乘2、乘3、乘4……
4.一個數(shù)的最小因數(shù)是1,最大的因數(shù)是它本身,一個數(shù)的因數(shù)的個數(shù)是有限的。
5.一個數(shù)的最小的倍數(shù)是它本身,沒有最大的倍數(shù),一個數(shù)的倍數(shù)的個數(shù)是無限的。
6.個位上是0,2,4,6,8的數(shù),都是2的倍數(shù),也是偶數(shù)。
7.自然數(shù)中,是2的倍數(shù)的數(shù)叫做偶數(shù)(0也是偶數(shù))。不是2的倍數(shù)的數(shù)叫奇數(shù)。
8.個位上是0或者5的數(shù),都是5的倍數(shù)。
9.個位是0的數(shù),既是2的倍數(shù),又是5的倍數(shù)。
10.一個數(shù)各位上的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。11.只有1和它本身兩個因數(shù)的數(shù)叫做質(zhì)數(shù)(或素數(shù)),除了1和它本身還有別的因數(shù)的數(shù)叫做合數(shù)。1既不是質(zhì)數(shù),也不是合數(shù)。
12.整數(shù)按因數(shù)的個數(shù)來分類:1,質(zhì)數(shù),合數(shù)。整數(shù)按是否是2的倍數(shù)來分類:奇數(shù),偶數(shù)
13.將合數(shù)分解成幾個質(zhì)數(shù)相乘的形式就叫做分解質(zhì)因數(shù)。分解質(zhì)因數(shù)用短除法,把36分解質(zhì)因數(shù)是?
14.最小的質(zhì)數(shù)是2,最小合數(shù)是4,最小奇數(shù)是1,最小偶數(shù)是0,同時是2,5,3倍數(shù)的最小數(shù)是30,最小三位數(shù)是120
15.奇數(shù)加奇數(shù)等于偶數(shù)。奇數(shù)加偶數(shù)等于奇數(shù)。偶數(shù)加偶數(shù)等于偶數(shù)。
16.a是c的倍數(shù),b是c的倍數(shù),那么a+b的和是c的倍數(shù),c是a+b和的因數(shù),a-b的差是c的倍數(shù),c是a-b差的因數(shù)。
17.如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
18.軸對稱圖形特征:對應點到對稱軸的距離相等,對應點連線垂直于對稱軸19.長方體有6個面。每個面都是長方形(可能有兩個相對的面是正方形),相對的面大小相等(完全相同)。
20.長方體有12條棱,分為三組,相對的4條棱長度相等。21.長方體有8個頂點。
22.相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高
23.正方體有6個面,6個面都是正方形,6個面完全相等,正方體有12條棱,12條棱長度都相等,正方體有8個頂點24.長方體棱長之和:(長+寬+高)×4長×4+寬×4+高×425.正方體棱長之和:棱長×12
26.長方體(正方體)6個面的總面積,叫做它的表面積。
27.長方體表面積=(長×寬+寬×高+長×高)×2或長方體表面積=長×寬×2+寬×高×2+長×高×228.正方體表面積=棱長×棱長×629.計量體積要用體積單位,常用的體積單位有立方厘米,立方分米,立方米,可以分別寫成cm3dm3m330.棱長是1cm的正方體,體積是1cm3,棱長是1cm的正方體,體積是1dm3,棱長是1cm的正方體,體積是1m3
31.長方體所含體積單位的數(shù)量就是長方體的體積。長方體的體積=長×寬×高,v=abh;正方體體積=棱長×棱長×棱長,v=a3=a×a×aa3表示3個a相乘
32.相鄰兩個體積單位間的進率是1000,相鄰兩個面積單位間的進率是1000,相鄰兩個長度單位間的進率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,計量容積一般用體積單位,計量液體的體積,用升和毫升
33.一個物體、一些物體等都可以看作一個整體,一個整體可以用自然數(shù)1來表示,通常把它叫做單位“1”。
34.把單位“1”平均分成若干份,表示這樣的一份或幾份的數(shù)叫做分數(shù)。例如:表示把單位“1”平均分成7份,表示這樣的3份。其中表示一份的數(shù)叫做分數(shù)單位。
35.米表示
。1)把5米看作單位“1”,把單位“1”平均分成8份,表示這樣的1份,就是米,算式:5÷8=(米)
。2)把1米看作單位“1”,把單位“1”平均分成8份,表示這樣的5份,就是米,算式:1÷8=(米),5個米就是米
36.當整數(shù)除法得不到整數(shù)的商時,可以用分數(shù)表示除法的商。在用分數(shù)表示整數(shù)除法的商時,分數(shù)的分子相當于除法的被除數(shù),分數(shù)的分母相當于除法的除數(shù),除號相當于分數(shù)中的分數(shù)線。(除數(shù)不能為0)區(qū)別:分數(shù)是一種數(shù),除法是一種運算
37.分子比分母小的分數(shù)叫真分數(shù),真分數(shù)小于1。分子比分母大或分子和分母相等的分數(shù)叫做假分數(shù),假分數(shù)大于或等于1。
38.帶分數(shù)包括整數(shù)部分和分數(shù)部分。假分數(shù)化成帶分數(shù),用分子除以分母所得的商作為帶分數(shù)的整數(shù)部分,余數(shù)作為分子,分母不變。帶分數(shù)化成假分數(shù)時,用整數(shù)部分和分母相乘再加分子所得結(jié)果作分子,分母不變。
39.A是B的幾分之幾?用A÷B
40.分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。這叫做分數(shù)的基本性質(zhì)。41.幾個數(shù)公有的因數(shù),叫做這幾個數(shù)的公因數(shù)。其中最大的一個叫做這幾個數(shù)的最大公因數(shù)。通常把每個數(shù)分解質(zhì)因數(shù),把它們所有的公有質(zhì)因數(shù)相乘,來求最大公因數(shù)。
42.如果兩個數(shù)的公因數(shù)只有1,這兩個數(shù)是互質(zhì)數(shù)。兩個連續(xù)自然數(shù);兩個質(zhì)數(shù);1和其他自然數(shù)一定是互質(zhì)數(shù)。
43.分子和分母只有公因數(shù)1的分數(shù)叫做最簡分數(shù)。把一個分數(shù)化成和它相等,但分子分母比較小的分數(shù),叫做約分。
44.幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù)。其中最小的一個叫做這幾個數(shù)的最小公倍數(shù)。通常把每個數(shù)分解質(zhì)因數(shù),把它們所有的公有質(zhì)因數(shù)和獨有質(zhì)因數(shù)相乘,來求最小公倍數(shù)。45.把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù)(公分母),叫做通分。
46.求三個數(shù)的最大公因數(shù)和最小公倍數(shù)時,可以先求其中兩個數(shù)的最大公因數(shù)和最小公倍數(shù),用求出的最大公因數(shù)和最小公倍數(shù)再與第三個數(shù)求最大公因數(shù)和最小公倍數(shù)。
47.如果兩個數(shù)是倍數(shù)關系,那么兩個數(shù)的最大公因數(shù)是較小數(shù),最小公倍數(shù)是較大數(shù)。48.如果兩個數(shù)公因數(shù)只有1,那么這兩個數(shù)的最大公因數(shù)是1,最小公倍數(shù)是它們的乘積。49.兩個數(shù)公因數(shù)只有1的幾種特殊情況:1和其他自然數(shù),相鄰兩個自然數(shù),兩個質(zhì)數(shù)。
50.分數(shù)化成小數(shù):用分子除以分母化成小數(shù)。小數(shù)化成分數(shù):把小數(shù)寫成分母是10,100,1000……的分數(shù),然后再化成最簡分數(shù)。
。1)15=()+()
。2)16=()+()=()+()
(3)24=()+()=()+()=()+()
五年級下冊數(shù)學知識點總結(jié)2
一、學情分析
總體情況:多數(shù)學生已經(jīng)形成良好的學習習慣,上課能認真聽講,積極思維,課后認真按時完成作業(yè)。但也有一部分學困生,這些學生惰性強,上課不動腦筋思考問題,寫作業(yè)效率低,不能主動及時訂正。普遍存在的問題是學生做題較粗心,計算不用草稿紙,計算的正確率不高,解決問題不仔細審題,理解能力不夠強,需要在復習中加強訓練。
二、復習目標
1、一冊教材學完,學生頭腦中的知識結(jié)構(gòu)處于雜亂、含糊、無序的狀態(tài),必須進行系統(tǒng)歸類、整理、綜合,幫助學生形成網(wǎng)狀立體知識結(jié)構(gòu)系統(tǒng)。歸納過程中,要讓學生有序地多角度概括地思考問題,溝通內(nèi)在聯(lián)系。
2、進行區(qū)別比較,包括縱向、橫向的比較。分析知識的意義性質(zhì)、規(guī)律的異同,把各方面的知識像串珍珠一樣連接起來,納入學生的認知系統(tǒng),便于記憶儲存,理解運用。
3、復習內(nèi)容要有針對性。對學生知識的缺陷、誤區(qū)、理解困難的重點、難點、疑點進行有針對性的復習理解。復習課知識的覆蓋面廣、針對性和系統(tǒng)性要有機結(jié)合。
4、復習課不能忽視教師的主導地位:教師要主動理清知識體系,分層、分類、分項,拉緊貫穿全冊教材的主線。發(fā)現(xiàn)學生普遍不會的,難理解的,遺漏的要重點講。善于把多方面知識進行綜合復習,注意知識的多變性、包容性。
5、教師要認真設計好每節(jié)復習課所重點講解的例題。每一節(jié)復習課要環(huán)環(huán)相連,每道復習例題要體現(xiàn)循序漸進。一道復習例題擊中多個知識點,起一個牽一發(fā)而動全身的作用。
6、復習中的練習題,不是舊知識的單一重復,機械操作,要體現(xiàn)知識的綜合性,體現(xiàn)質(zhì)的飛躍,訓練學生思維的敏捷性、創(chuàng)造性。
7、復習課要發(fā)揮學生的主體作用,可以發(fā)動學生歸類分項,發(fā)動學生出題,發(fā)動學生討論,讓學生去求異、聯(lián)想、發(fā)散,主動探索,尋查知識點,讓學生形成知識框架。
三、復習內(nèi)容
1、復習分數(shù)乘法和除法時要使所有學生熟練掌握分數(shù)乘法和除法的意義,知道一道分數(shù)乘法或除法算式所表示的含義;使學生掌握分數(shù)乘法和除法的計算法則及乘除混合運算的計算方法。
2、復習分數(shù)四則混合運算順序與整數(shù)四則混合運算順序相同。整數(shù)的乘法運算定律在分數(shù)中同樣適用(重點掌握乘法分配律)。
3、復習稍復雜的分數(shù)應用題,使學生掌握稍復雜的分數(shù)應用題的結(jié)構(gòu)特點、分析方法,熟練掌握算術(shù)解答的方法。
4、復習長方體和正方體,重點復習最基本的概念和計算(長方體的表面積、體積、容積的計算)和實際應用,體積單位、面積單位、長度單位之間的改寫,加強幾何知識內(nèi)容的聯(lián)系,注意綜合運用,靈活掌握。
5、復習統(tǒng)計,進一步認識扇形統(tǒng)計圖,了解條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖的不同特點,能根據(jù)實際需要選擇合適的統(tǒng)計圖表示數(shù)據(jù);了解中位數(shù)、眾數(shù)的意義,會求一組數(shù)據(jù)的中位數(shù)和眾數(shù),能根據(jù)實際需要選擇合適的統(tǒng)計量表示數(shù)據(jù)。
6、復習數(shù)學與購物,學會利用已有的知識和技能,對各種策略加以分析比較,選擇最有利的`夠物策略;用表面積等知識,繼續(xù)探索多個相同長方體疊放后使其表面積最小的最優(yōu)策略,體會解決問題的基本過程和方法,提高解決問題的能力。
四、復習時要注意的幾個問題
1、要重視查漏補缺。根據(jù)自己所教班級的情況,確定班級的復習計劃,對相對比較薄弱的內(nèi)容要加強復習和練習。
2、要注意區(qū)別對待不同的學生。對不同的學生要有不同的要求。在復習題的設計中要十分注意層次性。
3、要重視學生積極主動的參與到復習過程中去。可采用的一些形式:學生自己出題目練習,學生自己去整理知識;學生與學生之間去交流與合作。
這一冊教材內(nèi)容涉及的面比較廣,基本概念比較多,也比較抽象,很多內(nèi)容都是今后進一步學習的基礎知識。通過總復習把本冊內(nèi)容進行系統(tǒng)的整理和復習,使學生對所學概念、計算方法和其它知識更好地理結(jié)合掌握,并把各單元內(nèi)容聯(lián)系起來,形成較系統(tǒng)的知識,使計算能力和解答應用題的能力得到進一步的提高,圓滿完成本學期的教學任務,另外通過總復習,查缺補漏,使學習比較吃力的孩子,能彌補當初沒學會的知識,打好基礎。
五年級下冊數(shù)學知識點總結(jié)3
一、指導思想:
根據(jù)本學期工作計劃的安排,結(jié)合班級學生及數(shù)學學習的具體情況,本著以素質(zhì)教育為核心,以提高學生實際數(shù)學能力為重點,力求挖掘?qū)W生的積極性和學習潛在能力,在不增加學習負擔的前提下,進一步爭取數(shù)學整體教學質(zhì)量的提高。
二、復習目標:
1、使學生比較系統(tǒng)地、牢固地復習有關圖形的變換,分數(shù)的意義和性質(zhì),復習分數(shù)加、減法計算,長方體和正方體,簡單的統(tǒng)計,學會使用簡便算法,合理、靈活地進行計算,會解簡易方程,養(yǎng)成檢查和驗算的習慣。
2、使學生鞏固已獲得的一些計量單位的大小的表象,牢固地掌握所學的單位間的進率,能夠比較熟練地進行名數(shù)的簡單改寫。
3、使學生牢固地掌握所學的幾何形體的特征,能夠比較熟練地計算一些幾何形體的周長、面積和體積,鞏固所學的簡單的畫圖、測量等技能。
4、使學生掌握所學的統(tǒng)計初步知識,能夠看和繪制簡單的統(tǒng)計圖表,并且能夠計算求平均數(shù)問題。
5、使學生牢固地掌握所學的一些常見的數(shù)量關系和應用題的解答方法,能夠比較靈活地運用所學知識獨立地解答不復雜的應用題和生活中一些簡單的實際問題。
三、總復習中應注意的幾個問題:
1、重視基礎知識的復習和知識之間的聯(lián)系。
2、注意啟發(fā)、引導學生進行合理的整理和復習。
3、加強反饋,注意因材施教。
4、以“課標”為本,扣緊“三維”目標。
5、力求做到上不封頂,下要保底。
四、復習措施:
1、在復習分塊章節(jié)中,重視基礎知識的復習,加強知識之間的聯(lián)系。使學生在理解上進行記憶。比如:基礎概念、法則、性質(zhì)、公式……在課堂上、在系統(tǒng)復習中糾正學生的錯誤,同時防止學生機械地背誦;但是對于計量單位要求學生在記憶時,比較相對的單位,理順關系。
2、在復習基礎知識的同時,緊抓學生的能力的培養(yǎng)。
。1)四則混合運算方面,重視整數(shù)、小數(shù)、分數(shù)的四則混合運算,既要提高學生計算的正確率,又要培養(yǎng)學生善于利用簡便方法計算。利用晚自習與課后輔導時間對學生進行多次的過關練習。
。2)在量的計量和幾何初步知識上,多利用實物的直觀性培養(yǎng)學生的空間想象能力,利用習題類型的全面性,指導學生學習。
(3)應用題中著重訓練學生的審題,分析數(shù)量關系,尋求合理的簡便解題方法,練講結(jié)合,歸納總結(jié),抓訂正、抓落實。
(4)其它的'知識將在復習過程中穿插的進行,以學生的不同情況做出具體要求。
3、在復習過程中注意啟發(fā),加強“培優(yōu)補差”工作。對學習能力較差,基礎薄弱的學生,要求盡量跟上復習進度,同時開“小灶”,利用課間與課后時間,按最低的要求進行輔導。而對于能力較強,程度較好的學生,鼓勵他們多看多想多做,老師隨時給他們提供指導和幫助。
4、在復習期間,引導學生主動、自覺的復習,進行系統(tǒng)化的歸納和整理,對學生多采用鼓勵、表揚的方法,調(diào)動學習的積極性。
5、在復習過程中,對學生的掌握情況要做到心中有數(shù),認真地與學生進行反饋交流,達到預期的復習目標。
五、復習時間安排:
1、6月16、17日復習圖形的變換、因數(shù)和倍數(shù);
2、6月18日復習分數(shù)的意義和性質(zhì)和分數(shù)加、減法計算;
3、6月19日復習長方體和正方體;
4、6月20日復習簡單統(tǒng)計、數(shù)學廣角;
5、6月23日第五次檢測;
5、6月24、25日準備期末測試。
五年級下冊數(shù)學知識點總結(jié)4
一、學習目標:
1、理解分數(shù)的意義和基本性質(zhì),會比較分數(shù)的大小,會把假分數(shù)化成帶分數(shù)或整數(shù),會進行整數(shù)、小數(shù)的互化,能夠比較熟練地進行約分和通分;
2、掌握因數(shù)和倍數(shù)、質(zhì)數(shù)和合數(shù)、奇數(shù)和偶數(shù)等概念,以及2、3、5的倍數(shù)的特征;會求100以內(nèi)的兩個數(shù)的公因數(shù)和最小公倍數(shù);
3、理解分數(shù)加、減法的意義,掌握分數(shù)加、減法的計算方法,比較熟練地計算簡單的分數(shù)加、減法,會解決有關分數(shù)加、減法的簡單實際問題;
4、知道體積和容積的意義以及度量單位,會進行單位之間的換算,感受有關體積和容積單位的實際意義;
5、結(jié)合具體情境,探索并掌握長方體和正方體的體積和表面積的計算方法,探索某些實物體積的測量方法;
6、能在方格紙上畫出一個圖形的軸對稱圖形,以及將簡單圖形旋轉(zhuǎn)90度;欣賞生活中的圖案,靈活運用平移、對稱和旋轉(zhuǎn)在方格紙上設計圖案;
7、通過豐富的實例,理解眾數(shù)的意義,會求一組數(shù)據(jù)的眾數(shù),并解釋結(jié)果的實際意義;根據(jù)具體的問題,能選擇適當?shù)慕y(tǒng)計量表示數(shù)據(jù)的不同特征;
8、認識復式折線統(tǒng)計圖,能根據(jù)需要選擇合適的統(tǒng)計圖表示數(shù)據(jù)。
二、學習難點:
1、用軸對稱的知識畫對稱圖形;
2、確區(qū)別平移和旋轉(zhuǎn)的現(xiàn)象,并能在方格紙上畫出一個簡單圖形沿水平方向、豎直方向平移后的圖形;
3、理解因數(shù)和倍數(shù)的意義;因數(shù)和倍數(shù)等概念間的聯(lián)系和區(qū)別;正確判斷一個常見數(shù)是質(zhì)數(shù)還是合數(shù);
4、長方體表面積的計算方法;長方體、正方體體積計算;
5、理解、歸納分數(shù)與除法的關系;用除法的意義理解分數(shù)的意義;
6、理解真分數(shù)和假分數(shù)的意義及特征;
7、理解和掌握分數(shù)和小數(shù)互化的方法。
三、知識點概括總結(jié):
1、軸對稱:
如果一個圖形沿一條直線折疊,直線兩側(cè)的圖形能夠互相重合,這個圖形就叫做軸對稱圖形,這時,我們也說這個圖形關于這條直線(成軸)對稱。
對稱軸:折痕所在的這條直線叫做對稱軸。如下圖所示:
2、軸對稱圖形的性質(zhì):把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,這條直線叫做對稱軸,折疊后重合的點是對應點。軸對稱和軸對稱圖形的'特性是相同的,對應點到對稱軸的距離都是相等的。
3、軸對稱的性質(zhì):經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。這樣我們就得到了以下性質(zhì):
。1)如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。
。2)類似地,軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(3)線段的垂直平分線上的點與這條線段的兩個端點的距離相等。
(4)對稱軸是到線段兩端距離相等的點的集合。
4、軸對稱圖形的作用:
。1)可以通過對稱軸的一邊從而畫出另一邊;
(2)可以通過畫對稱軸得出的兩個圖形全等。
5、因數(shù):整數(shù)B能整除整數(shù)A,A叫作B的倍數(shù),B就叫做A的因數(shù)或約數(shù)。在自然數(shù)的范圍內(nèi)例:在算式6÷2=3中,2、3就是6的因數(shù)。
6、自然數(shù)的因數(shù)(舉例):
6的因數(shù)有:1和6,2和3
10的因數(shù)有:1和10,2和5
15的因數(shù)有:1和15,3和5
25的因數(shù)有:1和25,5
7、因數(shù)的分類:除法里,如果被除數(shù)除以除數(shù),所得的商都是自然數(shù)而沒有余數(shù),就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。
我們將一個合數(shù)分成幾個質(zhì)數(shù)相乘的形式,這樣的幾個質(zhì)數(shù)叫做這個合數(shù)的質(zhì)因數(shù)。
8、倍數(shù):對于整數(shù)m,能被n整除(n/m),那么m就是n的倍數(shù)。如15能夠被3或5整除,因此15是3的倍數(shù),也是5的倍數(shù)。
一個數(shù)的倍數(shù)有無數(shù)個,也就是說一個數(shù)的倍數(shù)的集合為無限集。注意:不能把一個數(shù)單獨叫做倍數(shù),只能說誰是誰的倍數(shù)。
9、完全數(shù):完全數(shù)又稱完美數(shù)或完備數(shù),是一些特殊的自然數(shù)。它所有的真因子(即除了自身以外的約數(shù))的和(即因子函數(shù)),恰好等于它本身。
10、偶數(shù):整數(shù)中,能夠被2整除的數(shù),叫做偶數(shù)。
11、奇數(shù):整數(shù)中,能被2整除的數(shù)是偶數(shù),不能被2整除的數(shù)是奇數(shù),
12、奇數(shù)偶數(shù)的性質(zhì):
關于奇數(shù)和偶數(shù),有下面的性質(zhì):
。1)奇數(shù)不會同時是偶數(shù);兩個連續(xù)整數(shù)中必是一個奇數(shù)一個偶數(shù);
(2)奇數(shù)跟奇數(shù)和是偶數(shù);偶數(shù)跟奇數(shù)的和是奇數(shù);任意多個偶數(shù)的和都是偶數(shù);
。3)兩個奇(偶)數(shù)的差是偶數(shù);一個偶數(shù)與一個奇數(shù)的差是奇數(shù);
。4)除2外所有的正偶數(shù)均為合數(shù);
。5)相鄰偶數(shù)公約數(shù)為2,最小公倍數(shù)為它們乘積的一半。
。6)奇數(shù)的積是奇數(shù);偶數(shù)的積是偶數(shù);奇數(shù)與偶數(shù)的積是偶數(shù);
。7)偶數(shù)的個位上一定是0、2、4、6、8;奇數(shù)的個位上是1、3、5、7、9、
13、質(zhì)數(shù):指在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,沒法被其他自然數(shù)整除的數(shù)。
14、合數(shù):比1大但不是素數(shù)的數(shù)稱為合數(shù)。1和0既非素數(shù)也非合數(shù)。合數(shù)是由若干個質(zhì)數(shù)相乘而得到的。
質(zhì)數(shù)是合數(shù)的基礎,沒有質(zhì)數(shù)就沒有合數(shù)。
15、長方體:由六個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形叫長方體、長方體的任意一個面的對面都與它完全相同。
16、長、寬、高:長方體的每一個矩形都叫做長方體的面,面與面相交的線叫做長方體的棱,三條棱相交的點叫做長方體的頂點,相交于一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
17、長方體的特征:
。1)長方體有6個面,每個面都是長方形,至少有兩個相對的兩個面完全相同。特殊情況時有兩個面是正方形,其他四個面都是長方形,并且完全相同。
。3)長方體有12條棱,相對的棱長度相等?煞譃槿M,每一組有4條棱。還可分為四組,每一組有3條棱。
。3)長方體有8個頂點。每個頂點連接三條棱。
(4)長方體相鄰的兩條棱互相(相互)垂直。
18、長方體的表面積:因為相對的2個面相等,所以先算上下兩個面,再算前后兩個面,最后算左右兩個面。
設一個長方體的長、寬、高分別為a、b、c,則它的表面積S:S=2ab+2bc+2ca=2(ab+bc+ca)
19、長方體的體積:
長方體的體積=長×寬×高
設一個長方體的長、寬、高分別為a、b、c,則它的體積V:V=abc=Sh
20、長方體的棱長:
長方體的棱長之和=(長+寬+高)×4
長方體棱長字母公式C=4(a+b+c)
相對的棱長長度相等
長方體棱長分為3組,每組4條棱。每一組的棱長度相等
21、正方體:側(cè)面和底面均為正方形的直平行六面體叫正方體,即棱長都相等的六面體,又稱“立方體”、“正六面體”。正方體是特殊的長方體。
22、正方體的特征:
。1)有6個面,每個面完全相同。
。2)有8個頂點。
。3)有12條棱,每條棱長度相等。
(4)相鄰的兩條棱互相(相互)垂直。
23、正方體的表面積:
因為6個面全部相等,所以正方體的表面積=一個面的面積×6=棱長×棱長×6
設一個正方體的棱長為a,則它的表面積S:S=6×a×a或等于S=6a2
24、正方體的體積:
正方體的體積=棱長×棱長×棱長;設一個正方體的棱長為a,則它的體積為:
V=a×a×a
25、正方體的展開圖:正方體的平面展開圖一共有11種。
小學數(shù)學知識點
26、分數(shù):把單位“1”平均分成若干份,表示這樣的一份或幾份的數(shù)叫分數(shù)。表示這樣的一份的數(shù)叫分數(shù)單位。
27、分數(shù)分類:分數(shù)可以分成:真分數(shù),假分數(shù),帶分數(shù),百分數(shù)
28、真分數(shù):分子比分母小的分數(shù),叫做真分數(shù)。真分數(shù)小于一。如:1/2,3/5,8/9等等。真分數(shù)一般是在正數(shù)的范圍內(nèi)研究的。
29、假分數(shù):分子大于或者等于分母的分數(shù)叫假分數(shù),假分數(shù)大于1或等于1、
假分數(shù)通?梢曰癁閹Х謹(shù)或整數(shù)。如果分子和分母成倍數(shù)關系,就可化為整數(shù),如不是倍數(shù)關系,則化為帶分數(shù)。
30、分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘以或除以一個不為0的數(shù),分數(shù)的值不變。
31、約分:
【五年級下冊數(shù)學知識點總結(jié)】相關文章:
滬教版數(shù)學五年級下冊知識點10-26
數(shù)學的知識點總結(jié)02-16
數(shù)學的知識點總結(jié)05-11