成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

高中物理知識點總結及公式

時間:2024-10-24 09:18:47 總結 投訴 投稿

高中物理知識點總結及公式大全

  總結是指對某一階段的工作、學習或思想中的經(jīng)驗或情況進行分析研究,做出帶有規(guī)律性結論的書面材料,它可以促使我們思考,不如靜下心來好好寫寫總結吧。總結怎么寫才不會千篇一律呢?以下是小編收集整理的高中物理知識點總結及公式大全,歡迎大家分享。

高中物理知識點總結及公式大全

  質點的運動(1)——————直線運動

  1)勻變速直線運動

  1、平均速度V平=s/t(定義式)

  2、有用推論Vt2—Vo2=2as

  3、中間時刻速度Vt/2=V平=(Vt+Vo)/2

  4、末速度Vt=Vo+at

  5、中間位置速度Vs/2=[(Vo2+Vt2)/2]1/2

  6、位移s=V平t=Vot+at2/2=Vt/2t

  7、加速度a=(Vt—Vo)/t {以Vo為正方向,a與Vo同向(加速)a>0;反向則a<0}

  8、實驗用推論Δs=aT2 {Δs為連續(xù)相鄰相等時間(T)內(nèi)位移之差}

  9、主要物理量及單位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;時間(t)秒(s);位移(s):米(m);路程:米;速度單位換算:1m/s=3.6km/h。

  注:

 。1)平均速度是矢量;

 。2)物體速度大,加速度不一定大;

 。3)a=(Vt—Vo)/t只是量度式,不是決定式;

 。4)其它相關內(nèi)容:質點、位移和路程、參考系、時間與時刻〔見第一冊P19〕/s——t圖、v——t圖/速度與速率、瞬時速度〔見第一冊P24〕。

  2)自由落體運動

  1、初速度Vo=0

  2、末速度Vt=gt

  3、下落高度h=gt2/2(從Vo位置向下計算)

  4、推論Vt2=2gh

  注:

 。1)自由落體運動是初速度為零的勻加速直線運動,遵循勻變速直線運動規(guī)律;

  (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近較小,在高山處比平地小,方向豎直向下)。

 。3)豎直上拋運動

  1、位移s=Vot—gt2/2 2、末速度Vt=Vo—gt (g=9.8m/s2≈10m/s2)

  3、有用推論Vt2—Vo2=—2gs 4、上升最大高度Hm=Vo2/2g(拋出點算起)

  5、往返時間t=2Vo/g (從拋出落回原位置的時間)

  注:

 。1)全過程處理:是勻減速直線運動,以向上為正方向,加速度取負值;

 。2)分段處理:向上為勻減速直線運動,向下為自由落體運動,具有對稱性;

 。3)上升與下落過程具有對稱性,如在同點速度等值反向等。

  質點的運動(2)————曲線運動、萬有引力

  1)平拋運動

  1、水平方向速度:Vx=Vo 2、豎直方向速度:Vy=gt

  3、水平方向位移:x=Vot 4、豎直方向位移:y=gt2/2

  5、運動時間t=(2y/g)1/2(通常又表示為(2h/g)1/2)

  6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

  合速度方向與水平夾角β:tgβ=Vy/Vx=gt/V0

  7、合位移:s=(x2+y2)1/2,位移方向與水平夾角α:tgα=y/x=gt/2Vo

  8、水平方向加速度:ax=0;豎直方向加速度:ay=g

  注:

  (1)平拋運動是勻變速曲線運動,加速度為g,通?煽醋魇撬椒较虻膭蛩僦本運與豎直方向的自由落體運動的合成;

  (2)運動時間由下落高度h(y)決定與水平拋出速度無關;

 。3)θ與β的關系為tgβ=2tgα;

 。4)在平拋運動中時間t是解題關鍵;

 。5)做曲線運動的物體必有加速度,當速度方向與所受合力(加速度)方向不在同一直線上時,物體做曲線運動。

  2)勻速圓周運動

  1、線速度V=s/t=2πr/T 2、角速度ω=Φ/t=2π/T=2πf

  3、向心加速度a=V2/r=ω2r=(2π/T)2r 4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

  5、周期與頻率:T=1/f 6、角速度與線速度的關系:V=ωr

  7、角速度與轉速的關系ω=2πn(此處頻率與轉速意義相同)

  8、主要物理量及單位:弧長(s):米(m);角度(Φ):弧度(rad);頻率(f):赫(Hz);周期(T):秒(s);轉速(n):r/s;半徑(r):米(m);線速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2、

  注:

 。1)向心力可以由某個具體力提供,也可以由合力提供,還可以由分力提供,方向始終與速度方向垂直,指向圓心;

 。2)做勻速圓周運動的物體,其向心力等于合力,并且向心力只改變速度的方向,不改變速度的大小,因此物體的動能保持不變,向心力不做功,但動量不斷改變。

  3)萬有引力

  1、開普勒第三定律:T2/R3=K(=4π2/GM){R:軌道半徑,T:周期,K:常量(與行星質量無關,取決于中心天體的質量)}

  2、萬有引力定律:F=Gm1m2/r2 (G=6.67×10—11N?m2/kg2,方向在它們的連線上)

  3、天體上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天體半徑(m),M:天體質量(kg)}

  4、衛(wèi)星繞行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天體質量}

  5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

  6、地球同步衛(wèi)星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半徑}

  注:

 。1)天體運動所需的向心力由萬有引力提供,F(xiàn)向=F萬;

 。2)應用萬有引力定律可估算天體的質量密度等;

  (3)地球同步衛(wèi)星只能運行于赤道上空,運行周期和地球自轉周期相同;

  (4)衛(wèi)星軌道半徑變小時,勢能變小、動能變大、速度變大、周期變。ㄒ煌矗;

  (5)地球衛(wèi)星的最大環(huán)繞速度和最小發(fā)射速度均為7.9km/s。

  力(常見的力、力的合成與分解)

  1)常見的力

  1、重力G=mg (方向豎直向下,g=9.8m/s2≈10m/s2,作用點在重心,適用于地球表面附近)

  2、胡克定律F=kx {方向沿恢復形變方向,k:勁度系數(shù)(N/m),x:形變量(m)}

  3、滑動摩擦力F=μFN {與物體相對運動方向相反,μ:摩擦因數(shù),F(xiàn)N:正壓力(N)}

  4、靜摩擦力0≤f靜≤fm (與物體相對運動趨勢方向相反,fm為最大靜摩擦力)

  5、萬有引力F=Gm1m2/r2 (G=6.67×10—11N?m2/kg2,方向在它們的連線上)

  6、靜電力F=kQ1Q2/r2 (k=9.0×109N?m2/C2,方向在它們的連線上)

  7、電場力F=Eq (E:場強N/C,q:電量C,正電荷受的電場力與場強方向相同)

  8、安培力F=BILsinθ (θ為B與L的夾角,當L⊥B時:F=BIL,B//L時:F=0)

  9、洛侖茲力f=qVBsinθ (θ為B與V的夾角,當V⊥B時:f=qVB,V//B時:f=0)

  注:

  (1)勁度系數(shù)k由彈簧自身決定;

 。2)摩擦因數(shù)μ與壓力大小及接觸面積大小無關,由接觸面材料特性與表面狀況等決定;

 。3)fm略大于μFN,一般視為fm≈μFN;

 。4)其它相關內(nèi)容:靜摩擦力(大小、方向)〔見第一冊P8〕;

 。5)物理量符號及單位B:磁感強度(T),L:有效長度(m),I:電流強度(A),V:帶電粒子速度(m/s),q:帶電粒子(帶電體)電量(C);

 。6)安培力與洛侖茲力方向均用左手定則判定。

  2)力的合成與分解

  1、同一直線上力的合成同向:F=F1+F2,反向:F=F1—F2 (F1>F2)

  2、互成角度力的合成:

  F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2時:F=(F12+F22)1/2

  3、合力大小范圍:|F1—F2|≤F≤|F1+F2|

  4、力的正交分解:Fx=Fcosβ,F(xiàn)y=Fsinβ(β為合力與x軸之間的夾角tgβ=Fy/Fx)

  注:

  (1)力(矢量)的合成與分解遵循平行四邊形定則;

 。2)合力與分力的關系是等效替代關系,可用合力替代分力的共同作用,反之也成立;

  (3)除公式法外,也可用作圖法求解,此時要選擇標度,嚴格作圖;

 。4)F1與F2的值一定時,F(xiàn)1與F2的夾角(α角)越大,合力越。

 。5)同一直線上力的合成,可沿直線取正方向,用正負號表示力的方向,化簡為代數(shù)運算。

  動力學(運動和力)

  1、牛頓第一運動定律(慣性定律):物體具有慣性,總保持勻速直線運動狀態(tài)或靜止狀態(tài),直到有外力迫使它改變這種狀態(tài)為止

  2、牛頓第二運動定律:F合=ma或a=F合/ma{由合外力決定,與合外力方向一致}

  3、牛頓第三運動定律:F=—F′{負號表示方向相反,F(xiàn)、F′各自作用在對方,平衡力與作用力反作用力區(qū)別,實際應用:反沖運動}

  4、共點力的平衡F合=0,推廣{正交分解法、三力匯交原理}

  5、超重:FN>G,失重:FN

  6、牛頓運動定律的適用條件:適用于解決低速運動問題,適用于宏觀物體,不適用于處理高速問題,不適用于微觀粒子〔見第一冊P67〕

  注:平衡狀態(tài)是指物體處于靜止或勻速直線狀態(tài),或者是勻速轉動。

  振動和波(機械振動與機械振動的傳播)

  1、簡諧振動F=—kx {F:回復力,k:比例系數(shù),x:位移,負號表示F的方向與x始終反向}

  2、單擺周期T=2π(l/g)1/2 {l:擺長(m),g:當?shù)刂亓铀俣戎担闪l件:擺角θ<100;l>>r}

  3、受迫振動頻率特點:f=f驅動力

  4、發(fā)生共振條件:f驅動力=f固,A=max,共振的防止和應用〔見第一冊P175〕

  5、機械波、橫波、縱波〔見第二冊P2〕

  6、波速v=s/t=λf=λ/T{波傳播過程中,一個周期向前傳播一個波長;波速大小由介質本身所決定}

  7、聲波的波速(在空氣中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(聲波是縱波)

  8、波發(fā)生明顯衍射(波繞過障礙物或孔繼續(xù)傳播)條件:障礙物或孔的尺寸比波長小,或者相差不大

  9、波的干涉條件:兩列波頻率相同(相差恒定、振幅相近、振動方向相同)

  10、多普勒效應:由于波源與觀測者間的相互運動,導致波源發(fā)射頻率與接收頻率不同{相互接近,接收頻率增大,反之,減小〔見第二冊P21〕}

  注:

 。1)物體的固有頻率與振幅、驅動力頻率無關,取決于振動系統(tǒng)本身;

  (2)加強區(qū)是波峰與波峰或波谷與波谷相遇處,減弱區(qū)則是波峰與波谷相遇處;

 。3)波只是傳播了振動,介質本身不隨波發(fā)生遷移,是傳遞能量的一種方式;

 。4)干涉與衍射是波特有的;

  (5)振動圖象與波動圖象;

  (6)其它相關內(nèi)容:超聲波及其應用〔見第二冊P22〕/振動中的能量轉化〔見第一冊P173〕。

  沖量與動量(物體的受力與動量的變化)

  1、動量:p=mv {p:動量(kg/s),m:質量(kg),v:速度(m/s),方向與速度方向相同}

  3、沖量:I=Ft {I:沖量(N?s),F(xiàn):恒力(N),t:力的作用時間(s),方向由F決定}

  4、動量定理:I=Δp或Ft=mvt–mvo {Δp:動量變化Δp=mvt–mvo,是矢量式}

  5、動量守恒定律:p前總=p后總或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′

  6、彈性碰撞:Δp=0;ΔEk=0 {即系統(tǒng)的動量和動能均守恒}

  7、非彈性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:損失的動能,EKm:損失的最大動能}

  8、完全非彈性碰撞Δp=0;ΔEK=ΔEKm {碰后連在一起成一整體}

  9、物體m1以v1初速度與靜止的物體m2發(fā)生彈性正碰:

  v1′=(m1—m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)

  10、由9得的推論—————等質量彈性正碰時二者交換速度(動能守恒、動量守恒)

  11、子彈m水平速度vo射入靜止置于水平光滑地面的長木塊M,并嵌入其中一起運動時的機械能損失

  E損=mvo2/2—(M+m)vt2/2=fs相對{vt:共同速度,f:阻力,s相對子彈相對長木塊的位移}

  注:

  (1)正碰又叫對心碰撞,速度方向在它們“中心”的連線上;

 。2)以上表達式除動能外均為矢量運算,在一維情況下可取正方向化為代數(shù)運算;

 。3)系統(tǒng)動量守恒的條件:合外力為零或系統(tǒng)不受外力,則系統(tǒng)動量守恒(碰撞問題、爆炸問題、反沖問題等);

 。4)碰撞過程(時間極短,發(fā)生碰撞的物體構成的系統(tǒng))視為動量守恒,原子核衰變時動量守恒;

  (5)爆炸過程視為動量守恒,這時化學能轉化為動能,動能增加;(6)其它相關內(nèi)容:反沖運動、火箭、航天技術的發(fā)展和宇宙航行〔見第一冊P128〕。

  功和能(功是能量轉化的量度)

  1、功:W=Fscosα(定義式){W:功(J),F(xiàn):恒力(N),s:位移(m),α:F、s間的夾角}

  2、重力做功:Wab=mghab {m:物體的質量,g=9.8m/s2≈10m/s2,hab:a與b高度差(hab=ha—hb)}

  3、電場力做功:Wab=qUab {q:電量(C),Uab:a與b之間電勢差(V)即Uab=φa—φb}

  4、電功:W=UIt(普適式) {U:電壓(V),I:電流(A),t:通電時間(s)}

  5、功率:P=W/t(定義式) {P:功率[瓦(W)],W:t時間內(nèi)所做的功(J),t:做功所用時間(s)}

  6、汽車牽引力的功率:P=Fv;P平=Fv平{P:瞬時功率,P平:平均功率}

  7、汽車以恒定功率啟動、以恒定加速度啟動、汽車最大行駛速度(vmax=P額/f)

  8、電功率:P=UI(普適式) {U:電路電壓(V),I:電路電流(A)}

  9、焦耳定律:Q=I2Rt {Q:電熱(J),I:電流強度(A),R:電阻值(Ω),t:通電時間(s)}

  10、純電阻電路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

  11、動能:Ek=mv2/2 {Ek:動能(J),m:物體質量(kg),v:物體瞬時速度(m/s)}

  12、重力勢能:EP=mgh {EP :重力勢能(J),g:重力加速度,h:豎直高度(m)(從零勢能面起)}

  13、電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)(從零勢能面起)}

  14、動能定理(對物體做正功,物體的動能增加):

  W合=mvt2/2—mvo2/2或W合=ΔEK

  {W合:外力對物體做的總功,ΔEK:動能變化ΔEK=(mvt2/2—mvo2/2)}

  15、機械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

  16、重力做功與重力勢能的變化(重力做功等于物體重力勢能增量的負值)WG=—ΔEP

  注:

 。1)功率大小表示做功快慢,做功多少表示能量轉化多少;

  (2)O0≤α<90O做正功;90O<α≤180O做負功;α=90o不做功(力的方向與位移(速度)方向垂直時該力不做功);

 。3)重力(彈力、電場力、分子力)做正功,則重力(彈性、電、分子)勢能減少

  (4)重力做功和電場力做功均與路徑無關(見2、3兩式);

 。5)機械能守恒成立條件:除重力(彈力)外其它力不做功,只是動能和勢能之間的轉化;

 。6)能的其它單位換算:1kWh(度)=3.6×106J,1eV=1.60×10—19J;

 。7)彈簧彈性勢能E=kx2/2,與勁度系數(shù)和形變量有關。

  分子動理論、能量守恒定律

  1、阿伏加德羅常數(shù)NA=6.02×1023/mol;分子直徑數(shù)量級10—10米

  2、油膜法測分子直徑d=V/s {V:單分子油膜的體積(m3),S:油膜表面積(m)2}

  3、分子動理論內(nèi)容:物質是由大量分子組成的;大量分子做無規(guī)則的熱運動;分子間存在相互作用力。

  4、分子間的引力和斥力(1)r

 。2)r=r0,f引=f斥,F(xiàn)分子力=0,E分子勢能=Emin(最小值)

 。3)r>r0,f引>f斥,F(xiàn)分子力表現(xiàn)為引力

 。4)r>10r0,f引=f斥≈0,F(xiàn)分子力≈0,E分子勢能≈0

  5、熱力學第一定律W+Q=ΔU{(做功和熱傳遞,這兩種改變物體內(nèi)能的方式,在效果上是等效的),W:外界對物體做的正功(J),Q:物體吸收的熱量(J),ΔU:增加的內(nèi)能(J),涉及到第一類永動機不可造出〔見第二冊P40〕}

  6、熱力學第二定律

  克氏表述:不可能使熱量由低溫物體傳遞到高溫物體,而不引起其它變化(熱傳導的方向性);

  開氏表述:不可能從單一熱源吸收熱量并把它全部用來做功,而不引起其它變化(機械能與內(nèi)能轉化的方向性){涉及到第二類永動機不可造出〔見第二冊P44〕}

  7、熱力學第三定律:熱力學零度不可達到{宇宙溫度下限:—273.15攝氏度(熱力學零度)}

  注:

 。1)布朗粒子不是分子,布朗顆粒越小,布朗運動越明顯,溫度越高越劇烈;

 。2)溫度是分子平均動能的標志;

  3)分子間的引力和斥力同時存在,隨分子間距離的增大而減小,但斥力減小得比引力快;

 。4)分子力做正功,分子勢能減小,在r0處F引=F斥且分子勢能最;

 。5)氣體膨脹,外界對氣體做負功W<0;溫度升高,內(nèi)能增大δu>0;吸收熱量,Q>0

  (6)物體的內(nèi)能是指物體所有的分子動能和分子勢能的總和,對于理想氣體分子間作用力為零,分子勢能為零;

 。7)r0為分子處于平衡狀態(tài)時,分子間的距離;

  (8)其它相關內(nèi)容:能的轉化和定恒定律〔見第二冊P41〕/能源的開發(fā)與利用、環(huán)保〔見第二冊P47〕/物體的內(nèi)能、分子的動能、分子勢能〔見第二冊P47〕。

  氣體的性質

  1、氣體的狀態(tài)參量:

  溫度:宏觀上,物體的冷熱程度;微觀上,物體內(nèi)部分子無規(guī)則運動的劇烈程度的標志,熱力學溫度與攝氏溫度關系:T=t+273 {T:熱力學溫度(K),t:攝氏溫度(℃)}

  體積V:氣體分子所能占據(jù)的空間,單位換算:1m3=103L=106mL

  壓強p:單位面積上,大量氣體分子頻繁撞擊器壁而產(chǎn)生持續(xù)、均勻的壓力,標準大氣壓:1atm=1.013×105Pa=76cmHg(1Pa=1N/m2)

  2、氣體分子運動的特點:分子間空隙大;除了碰撞的瞬間外,相互作用力微弱;分子運動速率很大

  3、理想氣體的狀態(tài)方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T為熱力學溫度(K)}

  注:

 。1)理想氣體的內(nèi)能與理想氣體的體積無關,與溫度和物質的量有關;

 。2)公式3成立條件均為一定質量的理想氣體,使用公式時要注意溫度的單位,t為攝氏溫度(℃),而T為熱力學溫度(K)。

  電場

  1、兩種電荷、電荷守恒定律、元電荷:(e=1.60×10—19C);帶電體電荷量等于元電荷的整數(shù)倍

  2、庫侖定律:F=kQ1Q2/r2(在真空中){F:點電荷間的作用力(N),k:靜電力常量k=9.0×109N?m2/C2,Q1、Q2:兩點電荷的電量(C),r:兩點電荷間的距離(m),方向在它們的連線上,作用力與反作用力,同種電荷互相排斥,異種電荷互相吸引}

  3、電場強度:E=F/q(定義式、計算式){E:電場強度(N/C),是矢量(電場的疊加原理),q:檢驗電荷的電量(C)}

  4、真空點(源)電荷形成的電場E=kQ/r2 {r:源電荷到該位置的距離(m),Q:源電荷的電量}

  5、勻強電場的場強E=UAB/d {UAB:AB兩點間的電壓(V),d:AB兩點在場強方向的距離(m)}

  6、電場力:F=qE {F:電場力(N),q:受到電場力的電荷的電量(C),E:電場強度(N/C)}

  7、電勢與電勢差:UAB=φA—φB,UAB=WAB/q=—ΔEAB/q

  8、電場力做功:WAB=qUAB=Eqd{WAB:帶電體由A到B時電場力所做的功(J),q:帶電量(C),UAB:電場中A、B兩點間的電勢差(V)(電場力做功與路徑無關),E:勻強電場強度,d:兩點沿場強方向的距離(m)}

  9、電勢能:EA=qφA {EA:帶電體在A點的電勢能(J),q:電量(C),φA:A點的電勢(V)}

  10、電勢能的變化ΔEAB=EB—EA {帶電體在電場中從A位置到B位置時電勢能的差值}

  11、電場力做功與電勢能變化ΔEAB=—WAB=—qUAB (電勢能的增量等于電場力做功的負值)

  12、電容C=Q/U(定義式,計算式) {C:電容(F),Q:電量(C),U:電壓(兩極板電勢差)(V)}

  13、平行板電容器的電容C=εS/4πkd(S:兩極板正對面積,d:兩極板間的垂直距離,ω:介電常數(shù))

  常見電容器〔見第二冊P111〕

  14、帶電粒子在電場中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

  15、帶電粒子沿垂直電場方向以速度Vo進入勻強電場時的偏轉(不考慮重力作用的情況下)

  類平垂直電場方向:勻速直線運動L=Vot(在帶等量異種電荷的平行極板中:E=U/d)

  拋運動平行電場方向:初速度為零的勻加速直線運動d=at2/2,a=F/m=qE/m

  注:

 。1)兩個完全相同的帶電金屬小球接觸時,電量分配規(guī)律:原帶異種電荷的先中和后平分,原帶同種電荷的總量平分;

 。2)電場線從正電荷出發(fā)終止于負電荷,電場線不相交,切線方向為場強方向,電場線密處場強大,順著電場線電勢越來越低,電場線與等勢線垂直;

 。3)常見電場的電場線分布要求熟記〔見圖[第二冊P98];

 。4)電場強度(矢量)與電勢(標量)均由電場本身決定,而電場力與電勢能還與帶電體帶的電量多少和電荷正負有關;

 。5)處于靜電平衡導體是個等勢體,表面是個等勢面,導體外表面附近的電場線垂直于導體表面,導體內(nèi)部合場強為零,導體內(nèi)部沒有凈電荷,凈電荷只分布于導體外表面;

 。6)電容單位換算:1F=106μF=1012PF;

 。7)電子伏(eV)是能量的單位,1eV=1.60×10—19J;

  (8)其它相關內(nèi)容:靜電屏蔽〔見第二冊P101〕/示波管、示波器及其應用〔見第二冊P114〕等勢面〔見第二冊P105〕。

  恒定電流

  1、電流強度:I=q/t{I:電流強度(A),q:在時間t內(nèi)通過導體橫載面的電量(C),t:時間(s)}

  2、歐姆定律:I=U/R {I:導體電流強度(A),U:導體兩端電壓(V),R:導體阻值(Ω)}

  3、電阻、電阻定律:R=ρL/S{ρ:電阻率(Ω?m),L:導體的長度(m),S:導體橫截面積(m2)}

  4、閉合電路歐姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U內(nèi)+U外

  {I:電路中的總電流(A),E:電源電動勢(V),R:外電路電阻(Ω),r:電源內(nèi)阻(Ω)}

  5、電功與電功率:W=UIt,P=UI{W:電功(J),U:電壓(V),I:電流(A),t:時間(s),P:電功率(W)}

  6、焦耳定律:Q=I2Rt{Q:電熱(J),I:通過導體的電流(A),R:導體的電阻值(Ω),t:通電時間(s)}

  7、純電阻電路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

  8、電源總動率、電源輸出功率、電源效率:P總=IE,P出=IU,η=P出/P總{I:電路總電流(A),E:電源電動勢(V),U:路端電壓(V),η:電源效率}

  9、電路的串/并聯(lián)串聯(lián)電路(P、U與R成正比)并聯(lián)電路(P、I與R成反比)

  電阻關系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+

  電流關系I總=I1=I2=I3 I并=I1+I2+I3+

  電壓關系U總=U1+U2+U3+ U總=U1=U2=U3

  功率分配P總=P1+P2+P3+ P總=P1+P2+P3+

  10、歐姆表測電阻

 。1)電路組成(2)測量原理

  兩表筆短接后,調節(jié)Ro使電表指針滿偏,得

  Ig=E/(r+Rg+Ro)

  接入被測電阻Rx后通過電表的電流為

  Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

  由于Ix與Rx對應,因此可指示被測電阻大小

 。3)使用方法:機械調零、選擇量程、歐姆調零、測量讀數(shù){注意擋位(倍率)}、撥off擋。

 。4)注意:測量電阻時,要與原電路斷開,選擇量程使指針在中央附近,每次換擋要重新短接歐姆調零。

  11、伏安法測電阻

  電流表內(nèi)接法:

  電壓表示數(shù):U=UR+UA

  電流表外接法:

  電流表示數(shù):I=IR+IV

  Rx的測量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

  選用電路條件Rx>>RA [或Rx>(RARV)1/2]

  選用電路條件Rx<

  12、滑動變阻器在電路中的限流接法與分壓接法

  限流接法

  電壓調節(jié)范圍小,電路簡單,功耗小

  便于調節(jié)電壓的選擇條件Rp>Rx

  電壓調節(jié)范圍大,電路復雜,功耗較大

  便于調節(jié)電壓的選擇條件Rp

  注:

 。1)單位換算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

  (2)各種材料的電阻率都隨溫度的變化而變化,金屬電阻率隨溫度升高而增大;

 。3)串聯(lián)總電阻大于任何一個分電阻,并聯(lián)總電阻小于任何一個分電阻;

 。4)當電源有內(nèi)阻時,外電路電阻增大時,總電流減小,路端電壓增大;

  (5)當外電路電阻等于電源電阻時,電源輸出功率最大,此時的輸出功率為E2/(2r);

 。6)其它相關內(nèi)容:電阻率與溫度的關系半導體及其應用超導及其應用〔見第二冊P127〕。

  磁場

  1、磁感應強度是用來表示磁場的強弱和方向的物理量,是矢量,單位T),1T=1N/A?m

  2、安培力F=BIL;(注:L⊥B) {B:磁感應強度(T),F(xiàn):安培力(F),I:電流強度(A),L:導線長度(m)}

  3、洛侖茲力f=qVB(注V⊥B);質譜儀〔見第二冊P155〕 {f:洛侖茲力(N),q:帶電粒子電量(C),V:帶電粒子速度(m/s)}

  4、在重力忽略不計(不考慮重力)的情況下,帶電粒子進入磁場的運動情況(掌握兩種):

 。1)帶電粒子沿平行磁場方向進入磁場:不受洛侖茲力的作用,做勻速直線運動V=V0

 。2)帶電粒子沿垂直磁場方向進入磁場:做勻速圓周運動,規(guī)律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)運動周期與圓周運動的半徑和線速度無關,洛侖茲力對帶電粒子不做功(任何情況下);(c)解題關鍵:畫軌跡、找圓心、定半徑、圓心角(=二倍弦切角)。

  注:

 。1)安培力和洛侖茲力的方向均可由左手定則判定,只是洛侖茲力要注意帶電粒子的正負;

 。2)磁感線的特點及其常見磁場的磁感線分布要掌握〔見圖及第二冊P144〕;(3)其它相關內(nèi)容:地磁場/磁電式電表原理〔見第二冊P150〕/回旋加速器〔見第二冊P156〕/磁性材料

  電磁感應

  1、[感應電動勢的大小計算公式]

  1)E=nΔΦ/Δt(普適公式){法拉第電磁感應定律,E:感應電動勢(V),n:感應線圈匝數(shù),ΔΦ/Δt:磁通量的變化率}

  2)E=BLV垂(切割磁感線運動) {L:有效長度(m)}

  3)Em=nBSω(交流發(fā)電機最大的感應電動勢) {Em:感應電動勢峰值}

  4)E=BL2ω/2(導體一端固定以ω旋轉切割) {ω:角速度(rad/s),V:速度(m/s)}

  2、磁通量Φ=BS {Φ:磁通量(Wb),B:勻強磁場的磁感應強度(T),S:正對面積(m2)}

  3、感應電動勢的正負極可利用感應電流方向判定{電源內(nèi)部的電流方向:由負極流向正極}

  4、自感電動勢E自=nΔΦ/Δt=LΔI/Δt{L:自感系數(shù)(H)(線圈L有鐵芯比無鐵芯時要大),ΔI:變化電流,t:所用時間,ΔI/Δt:自感電流變化率(變化的快慢)}

  注:

  (1)感應電流的方向可用楞次定律或右手定則判定,楞次定律應用要點〔見第二冊P173〕;

 。2)自感電流總是阻礙引起自感電動勢的電流的變化;

 。3)單位換算:1H=103mH=106μH;

 。4)其它相關內(nèi)容:自感〔見第二冊P178〕/日光燈〔見第二冊P180〕。

  交變電流(正弦式交變電流)

  1、電壓瞬時值e=Emsinωt電流瞬時值i=Imsinωt;(ω=2πf)

  2、電動勢峰值Em=nBSω=2BLv電流峰值(純電阻電路中)Im=Em/R總

  3、正(余)弦式交變電流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2

  4、理想變壓器原副線圈中的電壓與電流及功率關系

  U1/U2=n1/n2; I1/I2=n2/n2; P入=P出

  5、在遠距離輸電中,采用高壓輸送電能可以減少電能在輸電線上的損失損′=(P/U)2R;(P損′:輸電線上損失的功率,P:輸送電能的總功率,U:輸送電壓,R:輸電線電阻)〔見第二冊P198〕;

  6、公式1、2、3、4中物理量及單位:ω:角頻率(rad/s);t:時間(s);n:線圈匝數(shù);B:磁感強度(T);

  S:線圈的面積(m2);U輸出)電壓(V);I:電流強度(A);P:功率(W)。

【高中物理知識點總結及公式】相關文章:

高中物理知識點總結及公式08-29

高中物理知識點總結03-21

高中物理知識點總結06-24

高中物理知識點總結01-13

高中物理知識點總結07-25

高中物理必修一的重點公式筆記11-02

高中物理重點知識點總結11-02

高中物理知識點總結 12篇11-02

高中物理必修二知識點總結10-31