成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

《直線的方程》的教學(xué)反思

時(shí)間:2022-10-06 12:49:34 教育反思 投訴 投稿
  • 相關(guān)推薦

《直線的方程》的教學(xué)反思

  直線方程的教學(xué)是在學(xué)習(xí)了直線的傾斜角和斜率公式之后推導(dǎo)引入直線的點(diǎn)斜式方程,進(jìn)一步延伸出其他形式的直線方程和相互轉(zhuǎn)化,為下面直線方程的應(yīng)用如中點(diǎn)公式、距離公式、直線和圓的位置關(guān)系等打下良好的基礎(chǔ)。

《直線的方程》的教學(xué)反思

  以下是在課堂教學(xué)中的幾點(diǎn)體會(huì)和建議:

  (一)初步培養(yǎng)了學(xué)生平面解析幾何的思想和一般方法。

  在初中,學(xué)生熟知一次函數(shù)y=kx+b(也可以看成是二次方程)的圖象是一條直線,但反過(guò)來(lái)任意畫(huà)一條,要同學(xué)們寫(xiě)出方程表達(dá)式,學(xué)生剛開(kāi)始會(huì)無(wú)從下手,從而激發(fā)學(xué)生學(xué)習(xí)的興趣。隨著教學(xué)的展開(kāi),讓學(xué)生逐步形成平面解析幾何的方法,如建立坐標(biāo)啊,設(shè)點(diǎn)啊,建立關(guān)系式啊,得出方程啊等等,初步培養(yǎng)學(xué)生的平面解析幾何思維,為后面學(xué)習(xí)圓、橢圓和相關(guān)圓錐曲線打下良好的基礎(chǔ)。

 。ǘ┰诮虒W(xué)中貫徹“精講多練”的教學(xué)改革探索。

  我們都知道,對(duì)于職中的學(xué)生,基礎(chǔ)差,底子薄,理解能力差,動(dòng)手能力差,要想讓學(xué)生學(xué)有所得,最好的辦法就是精講多練,提高學(xué)生的動(dòng)手能力。因此在教學(xué)中,我們通常是由練習(xí)引入,簡(jiǎn)單講講,一例一練,配以一定的鞏固提高題,最后還有配套作業(yè),做到每個(gè)內(nèi)容經(jīng)過(guò)三輪的練習(xí),讓學(xué)生能夠很容易的掌握。

  (三)注意數(shù)形結(jié)合的教學(xué)。

  解析幾何的特點(diǎn)就是形數(shù)結(jié)合,而形數(shù)結(jié)合的思想是一種重要的數(shù)學(xué)思想,是教學(xué)大綱中要求學(xué)生學(xué)習(xí)的內(nèi)容之一,所以在教學(xué)中要注意這種數(shù)學(xué)思想的教學(xué)。每一種直線方程的講解都進(jìn)行畫(huà)圖演示,讓學(xué)生對(duì)每一種直線方程所需的條件根深蒂固,如點(diǎn)斜式一定要點(diǎn)和斜率;斜截式一定要斜率和在y軸上的截距;截距式一定要兩個(gè)坐標(biāo)軸上的截距等等。并在直線方程的相互轉(zhuǎn)化過(guò)程中也配以圖形(請(qǐng)參考一般方程的課件)

 。ㄋ模┳⒅刂本方程的承前啟后的作用。

  教材承接了初中函數(shù)的圖像之后,并作為研究曲線(圓、圓錐曲線)之前,以之來(lái)介紹平面解析幾何的思想和一般方法,可見(jiàn)本節(jié)內(nèi)容所處的重要地位,學(xué)好直線對(duì)以后的學(xué)習(xí)尤為重要。事實(shí)上,教材在研究了直線的方程和討論了直線的幾何性質(zhì)后,緊接著就以直線方程為基礎(chǔ),進(jìn)一步討論曲線與方程的一般概念。

【《直線的方程》的教學(xué)反思】相關(guān)文章:

直線跑教學(xué)反思10-06

直線跑教學(xué)反思01-28

直線、射線、線段教學(xué)反思03-27

線段射線直線的教學(xué)反思02-11

式與方程教學(xué)反思04-18

等式與方程教學(xué)反思04-18

《方程的意義》教學(xué)反思03-01

《式與方程》教學(xué)反思10-06

《方程的意義》教學(xué)反思10-06

簡(jiǎn)易方程教學(xué)反思07-23