《勾股定理》教學設計10篇
作為一名人民教師,常常需要準備教學設計,借助教學設計可以讓教學工作更加有效地進行。一份好的教學設計是什么樣子的呢?以下是小編為大家收集的《勾股定理》教學設計,歡迎大家分享。
《勾股定理》教學設計1
一、教學目標
1、讓學生通過對的圖形創(chuàng)造、觀察、思考、猜想、驗證等過程,體會勾股定理的產(chǎn)生過程。
2、通過介紹我國古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學生為祖國的復興努力學習。
3、培養(yǎng)學生數(shù)學發(fā)現(xiàn)、數(shù)學分析和數(shù)學推理證明的能力。
二、教學重難點
利用拼圖證明勾股定理
三、學具準備
四個全等的直角三角形、方格紙、固體膠
四、教學過程
(一) 趣味涂鴉,引入情景
教師:很多同學都喜歡在紙上涂涂畫畫,今天想請大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?
(1)在邊長為1的方格紙上任意畫一個頂點都在格點上的直角三角形。
(2)再分別以這個三角形的`三邊向三角形外作3個正方形。
學生活動:先獨立完成,再在小組內(nèi)互相交流畫法,最后班級展示。
(二)小組探究,大膽猜想
教師:觀察自己所涂鴉的圖形,回答下列問題:
1、請求出三個正方形的面積,再說說這些面積之間具有怎樣的數(shù)量關(guān)系?
2、圖中所畫的直角三角形的邊長分別是多少?請根據(jù)面積之間的關(guān)系寫出邊長之間存在的數(shù)量關(guān)系。
3、與小組成員交流探究結(jié)果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關(guān)系?
4、方法提煉:這種利用面積相等得出直角三角形三邊等量關(guān)系的方法叫做什么方法?
學生活動:先獨立思考,再在小組內(nèi)互相交流探究結(jié)果,并猜想直角三角形的三邊關(guān)系,最后班級展示。
(三)趣味拼圖,驗證猜想
教師:請利用四個全等的直角三角形進行拼圖。
1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?
2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請寫下自己的推理過程。
學生活動:獨立拼圖,并思考如何利用圖形寫出相應的證明過程,再在組內(nèi)交流算法,最后在班級展示。
(四)課堂訓練 鞏固提升
教師:請完成下列問題,并上臺進行展示。
1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對邊分別為a,b,c
已知a=6,b=8.求c.
已知c=25,b=15.求a .
已知c=9,a=3.求b.(結(jié)果保留根號)
學生活動:先獨立完成問題,再組內(nèi)交流解題心得,最后上臺展示,其他小組幫助解決問題。
(五)課堂小結(jié),梳理知識
教師:說說自己這節(jié)課有哪些收獲?請從數(shù)學知識、數(shù)學方法、數(shù)學運用等方向進行總結(jié)。
《勾股定理》教學設計2
一。教學目標
。ㄒ唬┲R點
1。體驗勾股定理的探索過程,由特例猜想勾股定理,再由特例驗證勾股定理。
2。會利用勾股定理解釋生活中的簡單現(xiàn)象。
。ǘ┠芰τ柧氁
1。在學生充分觀察、歸納、猜想、探索勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。
2。在探索勾股定理的`過程中,發(fā)展學生歸納、概括和有條理地表達活動過程及結(jié)論的能力。
。ㄈ┣楦信c價值觀要求
1。培養(yǎng)學生積極參與、合作交流的意識。
2。在探索勾股定理的過程中,體驗獲得成功的快樂,鍛煉學生克服困難的勇氣。
二。教學重、難點
重點:探索和驗證勾股定理。
難點:在方格紙上通過計算面積的方法探索勾股定理。
三。教學方法
交流探索猜想。
在方格紙上,同學們通過計算以直角三角形的三邊為邊長的三個正方形的面積,在合作交流的過程中,比較這三個正方形的面積,由此猜想出直角三角形的三邊關(guān)系。
四。教具準備
1。學生每人課前準備若干張方格紙。
2。投影片三張:
第一張:填空(記作1.1.1 A);
第二張:問題串(記作1.1.1 B);
第三張:做一做(記作1.1.1 C)。
五。教學過程
Ⅰ。創(chuàng)設問題情境,引入新課
出示投影片(1.1.1 A)
。1)三角形按角分類,可分為_________、_________、_________。
(2)對于一般的三角形來說,判斷它們?nèi)鹊臈l件有哪些?對于直角三角形呢?
。3)有兩個直角三角形,如果有兩條邊對應相等,那么這兩個直角三角形一定全等嗎?
《勾股定理》教學設計3
今天我說課的課題是《勾股定理》。本課選自九年義務教育人教版八年級數(shù)學下冊第十八章第一節(jié)的第一課時。
一、教學背景分析
1、教材分析
本節(jié)課是學生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,通過20xx年國際數(shù)學家大會的會徽圖案,引入勾股定理,進而探索直角三角形三邊的數(shù)量關(guān)系,并應用它解決問題。學好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學習解直角三角形奠定基礎(chǔ),在實際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。
2、學情分析
通過前面的學習,學生已具備一些平面幾何的知識,能夠進行一般的推理和論證,但如何通過拼圖來證明勾股定理,學生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學生動手、動口、動腦,化難為易,深入淺出,讓學生感受學習知識的樂趣。
3、教學目標:
根據(jù)八年級學生的認知水平,依據(jù)新課程標準和教學大綱的要求,我制定了如下的教學目標:
知識與能力目標:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力.
過程與方法目標:通過創(chuàng)設情境,導入新課,引導學生探索勾股定理,并應用它解決問題,運用了觀察、演示、實驗、操作等方法學習新知。
情感態(tài)度價值觀目標:感受數(shù)學文化,激發(fā)學生學習的熱情,體驗合作學習成功的喜悅,滲透數(shù)形結(jié)合的思想。
4、教學重點、難點
通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學重難點為探索和證明勾股定理。
二、教材處理
根據(jù)學生情況,為有效培養(yǎng)學生能力,在教學過程中,以創(chuàng)設問題情境為先導,運用直觀教具、多媒體等手段,激發(fā)學生學習興趣,調(diào)動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的'。
三、教學策略
1、教法
“教必有法,而教無定法”,只有方法恰當,才會有效。根據(jù)本課內(nèi)容特點和八年級學生思維活動特點,我采用了引導發(fā)現(xiàn)教學法,合作探究教學法,逐步滲透教學法和師生共研相結(jié)合的方法。
2、學法
“授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現(xiàn)學習的自主性,從不同層次發(fā)掘不同學生的不同能力,從而達到發(fā)展學生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
3、教學模式
根據(jù)新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創(chuàng)設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質(zhì)能力。
四、教學過程
(一)創(chuàng)設情境,引入新課
利用多媒體課件,給學生出示20xx年國際數(shù)學家大會的場面,通過觀察會徽圖案,提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實生活中提出趙爽弦圖,激發(fā)學生學習的熱情和求知欲,同時為探索勾股定理提供背景材料,進而引出課題。
。ǘ┮龑W生,探究新知
1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當補充等腰直角三角形邊長為1、2時,所形成的規(guī)律,使學生再次感知發(fā)現(xiàn)的規(guī)律。
2、提出猜想:在活動1的基礎(chǔ)上,學生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看,想一想,做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學生由淺到深,由特殊到一般的提出問題,啟發(fā)學生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。
3、證明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明.通過活動3,充分引導學生利用直觀教具,進行拼圖實驗,在動手操作中放手讓學生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學生交流,獲取信息,從而有針對性地引導學生進行證法的探究,使學生創(chuàng)造性地得出拼圖的多種方法,并使學生在學習的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學生的發(fā)散思維、一題多解和探究數(shù)學問題的能力。
4、總結(jié)定理:讓學生自己總結(jié)定理,不完善之處由教師補充。在前面探究活動的基礎(chǔ)上,學生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學生的語言表達能力和歸納概括能力。
。ㄈ┓答佊柧殻柟绦轮
學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課目標的達成情況和加強對學生能力的培養(yǎng),設計一組有坡度的練習題:A組動腦筋,想一想,是本節(jié)基礎(chǔ)知識的理解和直接應用;B組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養(yǎng)學生綜合運用知識的能力。C組議一議,是一道實際應用題型,給學生施展才智的機會,讓學生獨立思考后,討論交流得出解決問題的方法,增強了數(shù)學來源于實踐,反過來又作用于實踐的應用意識,達到了學以致用的目的。
。ㄋ模w納小結(jié),深化新知
本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么?通過小結(jié),使學生進一步明確掌握教學目標,使知識成為體系。
(五)布置作業(yè),拓展新知
讓學生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。
。┌鍟O計,明確新知
本節(jié)課的板書設計分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。
《勾股定理》教學設計4
一、教材分析:
。ㄒ唬┍竟(jié)內(nèi)容在全書和章節(jié)的地位
這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。
。ǘ┤S教學目標:
1、理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運用勾股定理及其計算;
2、通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
在探索勾股定理的過程中,讓學生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。
通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。
(三)教學重點、難點:
勾股定理的證明與運用
用面積法等方法證明勾股定理
對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學結(jié)論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。
1、創(chuàng)設情景,激發(fā)思維:創(chuàng)設生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;
2、自主探索,敢于猜想:充分讓自己動手操作,大膽猜想數(shù)學問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;
3、張揚個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調(diào)動了學生的學習積極性。
二、教法與學法分析
數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的認知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神;镜慕虒W程序是“創(chuàng)設情景—動手操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)”六個方面。
新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。
三、教學過程設計
(一)創(chuàng)設情景
多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?
問題的設計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉(zhuǎn)化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。
。ǘ﹦邮植僮
1、課件出示課本P99圖19、2、1:
觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結(jié)論?
學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結(jié)合的思想。
2、緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的`直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19、2、2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。
3、再問:當邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個邊長分別為1、5,3、6,3、9這種含有小數(shù)的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。
(三)歸納驗證
通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。
先后三次驗證“勾股定理”這一結(jié)論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。
。ㄋ模﹩栴}解決
1、讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。
2、自學課本P101例1,然后完成P102練習。
。ㄎ澹┱n堂小結(jié)1、小組成員從內(nèi)容、數(shù)學思想方法、獲取知識的途徑進行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。2、教師用多媒體介紹“勾股定理史話”
、佟吨荀滤銖健罚何髦艿纳谈撸ü磺Ф嗄昵埃┌l(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。
、诳滴鯏(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。
目的是對學生進行愛國主義教育,激勵學生奮發(fā)向上。
。┎贾米鳂I(yè):課本P104習題19、2中的第1、2、3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。
以上內(nèi)容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導對本次說課提出寶貴的意見,謝謝!
《勾股定理》優(yōu)秀說課稿3
一、教材分析:
勾股定理是學生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學習的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。
教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學目標如下:
1、理解并掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、培養(yǎng)學生觀察、比較、分析、推理的能力。
4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
二、教學重點:
勾股定理的證明和應用。
三、教學難點:
勾股定理的證明。
四、教法和學法:
教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:
以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。
切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。
通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。
五、教學程序
本節(jié)內(nèi)容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設計如下:
。ㄒ唬﹦(chuàng)設情境以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學生進入樂學狀態(tài)。
3、板書課題,出示學習目標。
。ǘ┏醪礁兄斫饨滩
教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。
。ㄈ┵|(zhì)疑解難、討論歸納:
1、教師設疑或?qū)W生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。
2、教師引導學生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
。2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學生分組討論,調(diào)動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
。ㄋ模╈柟叹毩晱娀岣
1、出示練習,學生分組解答,并由學生總結(jié)解題規(guī)律。課堂教學中動靜結(jié)合,以免引起學生的疲勞。
2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。
(五)歸納總結(jié)練習反饋
引導學生對知識要點進行總結(jié),梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。
本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助多媒體提高課堂教學效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。
《勾股定理》教學設計5
教材分析
1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。
2.通過勾股定理與它的逆定理的學習,加深了學生對性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認識。
3. 完善了知識結(jié)構(gòu),為后繼學習打下基礎(chǔ)。
學情分析
初中生已經(jīng)具備一定的獨立思考和探索能力,并能在探索過程中形成自已的觀點,能在傾聽別人意見的過程中逐漸完善自已的想法,而且本班學生比較上進,思維活躍,愿意表達自已的見解,有一定的互動互助基礎(chǔ)。
教學目標
1.知識與技能:
(1)理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。
。2)掌握勾股定理的逆定理,并能應用勾股定理的逆定理判定一個三角形是不是直角三角形。
2.過程與方法
。1)通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成過程。
(2)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應用。
。3)通過對勾股定理的逆定理的證明,體會數(shù)形結(jié)合方法在問題解決中的作用,并能應用勾股定理的逆定理來解決相關(guān)問題。
3.情感態(tài)度
。1)通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的.和諧與辨證統(tǒng)一的關(guān)系
。2)在探索勾股定理的逆定理的活動中,通過一系列的富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
教學重點和難點
教學重點:勾股定理的逆定理及起應用
教學難點:勾股定理的逆定理的證明
《勾股定理》教學設計6
教學目標
一、知識與技能
1.掌握直角三角形的判別條件。
2.熟記一些勾股數(shù)。
3.掌握勾股定理的逆定理的探究方法。
二、過程與方法
1.用三邊的數(shù)量關(guān)系來判斷一個三角形是否為直角三角形,培養(yǎng)學生數(shù)形結(jié)合的思想。
2.通過對Rt△判別條件的研究,培養(yǎng)學生大膽猜想,勇于探索的創(chuàng)新精神。
三、情感態(tài)度與價值觀
1.通過介紹有關(guān)歷史資料,激發(fā)學生解決問題的愿望。
2.通過對勾股定理逆定理的探究;培養(yǎng)學生學習數(shù)學的興趣和創(chuàng)新精神。
教學重點探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關(guān)概念及關(guān)系.理解并掌握勾股定理的逆定理,并會應用。
教學難點理解勾股定理的逆定理的推導。
教具準備多媒體課件。
教學過程
一、創(chuàng)設問屬情境,引入新課
活動1
。1)總結(jié)直角三角形有哪些性質(zhì)。
。2)一個三角形,滿足什么條件是直角三角形?
設計意圖:通過對前面所學知識的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個三角形為直角三角形,提高學生發(fā)現(xiàn)反思問題的能力。
師生行為學生分組討論,交流總結(jié);教師引導學生回憶。
本活動,教師應重點關(guān)注學生:①能否積極主動地回憶,總結(jié)前面學過的舊知識;②能否“溫故知新”。
生:直角三角形有如下性質(zhì):
。1)有一個角是直角;
(2)兩個銳角互余;
(3)兩直角邊的平方和等于斜邊的平方;
。4)在含30°角的直角三角形中,30°的角所對的直角邊是斜邊的一半。
師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形。
生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形。
師:前面我們剛學習了勾股定理,知道一個直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來判定它是否為直角三角形呢?我們來看一下古埃及人如何做?
二、講授新課
活動2
問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角。
這個問題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關(guān)系“32+42=52”。那么圍成的三角形是直角三角形。
畫畫看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.
設計意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個三角形就為直免三角形的結(jié)論,培養(yǎng)學生動手操作能力和尋求解決數(shù)學問題的一般方法。
師生行為讓學生在小組內(nèi)共同合作,協(xié)手完成此活動。教師參與此活動,并給學生以提示、啟發(fā)。在本活動中,教師應重點關(guān)注學生:①能否積極動手參與;②能否從操作活動中,用數(shù)學語言歸納、猜想出結(jié)論;③學生是否有克服困難的勇氣。
生:我們不難發(fā)現(xiàn)上圖中,第(1)個結(jié)到第(4)個結(jié)是3個單位長度即AC=3;同理BC=4,AB=5.因為32+42=52。我們圍成的三角形是直角三角形。
生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,發(fā)現(xiàn)6.5cm的邊所對的角是直角,并且2.52+62=6.52.
再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標可以發(fā)現(xiàn)8.5cm的`邊所對的角是直角,且也有42+7.52=8.52.
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
活動3下面的三組數(shù)分別是一個三角形的三邊長a,b,c
5,12,13;7,24,25;8,15,17。
。1)這三組效都滿足a2+b2=c2嗎?
。2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
設計意圖:本活動通過讓學生按已知數(shù)據(jù)作出三角形,并測量三角形三個內(nèi)角的度數(shù)來進一步獲得一個三角形是直角三角形的有關(guān)邊的條件。
師生行為:學生進一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅信前面猜想出的結(jié)論。
教師對學生歸納出的結(jié)論應給予解釋,我們將在下一節(jié)給出證明.本活動教師應重點關(guān)注學生:①對猜想出的結(jié)論是否還有疑慮;②能否積極主動的操作,并且很有耐心。
生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。
師:很好,我們進一步通過實際操作,猜想結(jié)論。
命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形。
同時,我們也進一步明白了古埃及人那樣做的道理.實際上,古代中國人也曾利用相似的方法得到直角,直至科技發(fā)達的今天。
《勾股定理》教學設計7
一、教案背景概述:
教材分析: 勾股定理是直角三角形的重要性質(zhì),它把三角形有一個直角的"形"的特點,轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質(zhì),是初中數(shù)學教學內(nèi)容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
學生分析:1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節(jié)課的本質(zhì)。2、以與勾股定理有關(guān)的人文歷史知識為背景展開對直角三角形三邊關(guān)系的討論,能激發(fā)學生的學習興趣。
設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終, 讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向?qū)W生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
教學目標:
1、 經(jīng)歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。
2、 經(jīng)歷用多種割、補圖形的方法驗證勾股定理的.過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
3、 培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
4、 欣賞設計圖形美。
二、教案運行描述:
教學準備階段:
學生準備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。
三、教學流程:
(一)引入
同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關(guān)系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關(guān)系)
。ǘ⿲嶒炋骄
1、取方格紙片,在上面先設計任意格點直角三角形,再以它們的每一邊分別向三角形外作正方形,如圖1
設網(wǎng)格正方形的邊長為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
(討論難點:以斜邊為邊的正方形的面積找法)
交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)
。ㄈ┨剿魉媒Y(jié)論的正確性
當直角三角形的直角邊分別為a 、b,斜邊為c時, 是否一定成立?
1、指導學生運用拼圖、或正方形網(wǎng)格紙構(gòu)造或設計合理分割(或補全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進行)
在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
如圖2(用補的方法說明)
師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)
如圖3(用割的方法去探索)
師介紹: (出示圖片) 中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結(jié)論。早在公元前20xx年左右,大禹治水時期,就曾經(jīng)用過此方法測量土地的等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結(jié)論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構(gòu)造此圖驗證了這一結(jié)論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關(guān)系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結(jié)論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結(jié)論命名為"勾股定理"。(點題)
20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)
如圖4(構(gòu)造新圖形的方法去探索)
師介紹:(出示圖片)勾股定理是數(shù)學史上的一顆璀璨明珠,它的證明在數(shù)學史上屢創(chuàng)奇跡,從畢達哥拉斯到現(xiàn)在,吸引著世界上無數(shù)的數(shù)學家、物理學家、數(shù)學愛好者對它的探究,甚至政界要人——美國第20任總統(tǒng)加菲爾德,也加入到對它的探索證明中,如圖是他當年設計的證明方法。據(jù)說至今已經(jīng)找到的證明方法有四百多種,且每年還會有所增加。(若有時間可以繼續(xù)出示學生中有價值的圖片進行討論),有興趣的同學課后可以繼續(xù)探索……
四、總結(jié):
本節(jié)課學習的勾股定理用語言敘說為:
五、作業(yè):
1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問題并交流。
2、探索勾股定理的運用。
《勾股定理》教學設計8
教學目標具體要求:
1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。
2.過程與方法目標:經(jīng)歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。
3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數(shù)學知識的感受;通過有關(guān)勾股定理的歷史講解,對學生進行德育教育。
重點:
勾股定理的應用
難點:
勾股定理的應用
教案設計
一、知識點講解
知識點1:(已知兩邊求第三邊)
1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為_____________。
2.已知直角三角形的兩邊長為3、4,則另一條邊長是______________。
3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長?
知識點2:
利用方程求線段長
1、如圖,公路上A,B兩點相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車站E,
。1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?
。2)DE與CE的位置關(guān)系
(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?
利用方程解決翻折問題
2、如圖,用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,長BC為10cm.當折疊時,頂點D落在BC邊上的點F處(折痕為AE).想一想,此時EC有多長?
3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點B與點D重合,折痕為EF,求DE的'長。
4.如圖,將一個邊長分別為4、8的矩形形紙片ABCD折疊,使C點與A點重合,則EF的長是多少?
5、折疊矩形ABCD的一邊AD,折痕為AE,且使點D落在BC邊上的點F處,已知AB=8cm,BC=10cm,以B點為原點,BC為x軸,BA為y軸建立平面直角坐標系。求點F和點E坐標。
6、邊長為8和4的矩形OABC的兩邊分別在直角坐標系的x軸和y軸上,若沿對角線AC折疊后,點B落在第四象限B1處,設B1C交x軸于點D,求(1)三角形ADC的面積,(2)點B1的坐標,(3)AB1所在的直線解析式.
知識點3:判斷一個三角形是否為直角三角形間接給出三邊的長度或比例關(guān)系
1.(1).若一個三角形的周長12cm,一邊長為3cm,其他兩邊之差為1cm,則這個三角形是___________。
。2).將直角三角形的三邊擴大相同的倍數(shù)后,得到的三角形是____________。
(3)在ABC中,a:b:c=1:1:,那么ABC的確切形狀是_____________。
2.如圖,正方形ABCD中,邊長為4,F(xiàn)為DC的中點,E為BC上一點,CE=BC,你能說明∠AFE是直角嗎?
變式:如圖,正方形ABCD中,F(xiàn)為DC的中點,E為BC上一點,且CE=BC,你能說明∠AFE是直角嗎?
3.一位同學向西南走40米后,又走了50米,再走30米回到原地。問這位同學又走了50米后向哪個方向走了
二、課堂小結(jié)
談一談你這節(jié)課都有哪些收獲?
應用勾股定理解決實際問題
三、課堂練習以上習題。
四、課后作業(yè)卷子。
本節(jié)課是人教版數(shù)學八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學生在學習了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學習勾股定理,加深對勾股定理的理解,提高學生對數(shù)形結(jié)合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學生解決問題的意識和應用能力。
針對本班學生的特點,學生知識水平、學習能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復習引入
對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學生的注意力集中時間較短,學生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習,總結(jié)數(shù)學思想方法
活動一:用對媒體展示搬運工搬木板的問題,讓學生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學生展示交流結(jié)果,之后教師引導學生書寫板書。整個活動以學生為主體,教師及時的引導和強調(diào)。
活動二:解決例二梯子滑落的問題。學生自主討論解決問題,書寫過程,之后投影學生書寫過程,教師與學生一起合作修改解題過程。
活動三:學生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學活動中發(fā)展了學生的探究意識和合作交流的習慣;體會勾股定理的應用價值,讓學生體會到數(shù)學來源于生活,又應用到生活中去,在學習的過程中體會獲得成功的喜悅,提高了學生學習數(shù)學的興趣和信心。
二、鞏固練習,熟練新知
通過測量旗桿活動,發(fā)展學生的探究意識,培養(yǎng)學生動手操作的能力,增加學生應用數(shù)學知識解決實際問題的經(jīng)驗和感受。
在教學設計的實施中,也存在著一些問題:
1.由于本班學生能力的差距,本想著通過學生幫帶活動,使學困生充分參與課堂,但在學生合作交流是由于學習能力強的學生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設計中轉(zhuǎn)接的快,未給學困生充分的時間,導致部分學生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學生課堂展示的評價方式應體現(xiàn)生評生,師評生,及評價的針對性和及時性。
《勾股定理》教學設計9
一、教學任務分析
勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運算和代數(shù)學習的必然基礎(chǔ)。《20xx版數(shù)學課程標準》對勾股定理教學內(nèi)容的要求是:
1、在研究圖形性質(zhì)和運動等過程中,進一步發(fā)展空間觀念;
2、在多種形式的數(shù)學活動中,發(fā)展合情推理能力;
3、經(jīng)歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;
4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
本節(jié)《勾股定理的應用》是北師大版八年級數(shù)學上冊第一章《勾股定理》第3節(jié)、具體內(nèi)容是運用勾股定理及其逆定理解決簡單的實際問題、在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;有些探究活動具有一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力、
本節(jié)課的教學目標是:
1、能正確運用勾股定理及其逆定理解決簡單的實際問題。
2、經(jīng)歷實際問題抽象成數(shù)學問題的過程,學會選擇適當?shù)臄?shù)學模型解決實際問題,提高學生分析問題、解決問題的能力并體會數(shù)學建模的思想、
教學重點和難點:
應用勾股定理及其逆定理解決實際問題是重點。
把實際問題化歸成數(shù)學模型是難點。
二、教學設想
根據(jù)新課標提出的“要從學生已有的生活經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋和運用的同時,在思維能力情感態(tài)度和價值觀等方面得到進步和發(fā)展”的理念,我想盡量給學生創(chuàng)設豐富的實際問題情境 ,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數(shù)學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的.靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。
在教學設計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發(fā)展。
三、教學過程分析
本節(jié)課設計了七個環(huán) 《勾股定理的應用》教學設計節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)、
第一環(huán)節(jié):情境引入
情景1:復習提 問:勾股定理的語言表述以及幾何語言表達?
設計意圖:溫習舊知識,規(guī)范語言及數(shù)學表達,體現(xiàn)
數(shù)學的 嚴謹性和規(guī)范性。《勾股定理的應用》教學設計情景2: 腦筋急轉(zhuǎn)彎一個三角形的兩條邊是3和4,第三邊是多少?
設計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關(guān)系。
第二環(huán)節(jié):合作探究(圓柱體表面路程最短問題)
情景3:課本引例(螞蟻怎樣走最近)
設計意圖:從有趣的生活場景引入,學生探究熱情高漲,通過實際動手操作,結(jié)合問題逆向思考,或是回想兩點之間線段最短,通過合作交流將實際問題轉(zhuǎn)化為數(shù)學模型從而利用勾股定理解決,在活動中體驗數(shù)學建模,培養(yǎng)學生與人合作交流的能力,增強學生探究能力,操作能力,分析能力,發(fā)展空間觀念、
第三環(huán)節(jié):變式訓練(由圓柱體表面路程最短問題逐步變?yōu)殚L方體表面的距離最短問題)
設計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變?yōu)檎襟w長方體問題,學生有了之前的經(jīng)驗,自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。
第四環(huán)節(jié):議一議
內(nèi)容:李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,《勾股定理的應用》教學設計(1)你能替他想辦法完成任務嗎?
。2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?
。3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?
設計意圖:
運用勾股定理逆定理來解決實際問題,讓學生學會分析問題,正確合理選擇數(shù)學模型,感受由數(shù)到形的轉(zhuǎn)化,利用允許的工具靈活處理問題、
第五環(huán)節(jié):方程與勾股定理
在我國古代數(shù)學著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池的中央有《勾股定理的應用》教學設計一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面,請問這個水池的深度和這根蘆葦?shù)拈L度各是多 少尺?《勾股定理的應用》教學設計意圖:學生可以進一步了解勾股定理的悠久歷史和廣泛應用,了解我國古代人民的聰明才智;學會運用方程的思想借助勾股定理解決實際問題。、
第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
1、解決實際問題的方法是建立數(shù)學模型求解、
2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題、
3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
意圖:鼓勵學生結(jié)合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史、《勾股定理的應用》教學設計第七環(huán)作業(yè)設計:
第一道題難度較小,大部分學生可以獨立完成,第二道題有較大難度,可以交流討論完成。
《勾股定理》教學設計10
教學目標:
理解并掌握勾股定理及其證明。 在學生經(jīng)歷“觀察—猜想—歸納—驗證”勾股定理的過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合和從特殊到一般的思想。 通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,培養(yǎng)學生的合作交流意識和探索精神
重點
探索和證明勾股定理。
難點
用拼圖方法證明勾股定理。
教學準備:
教具
多媒體課件。
學具
剪刀和邊長分別為a、b的兩個連體正方形紙片。
教學流程安排
活動流程圖 活動內(nèi)容和目的
活動1 創(chuàng)設情境→激發(fā)興趣 通過對趙爽弦圖的了解,激發(fā)起學生對勾股定理的`探索興趣。
活動2 觀察特例→發(fā)現(xiàn)新知 通過問題激發(fā)學生好奇、探究和主動學習的欲望。
活動3 深入探究→交流歸納 觀察分析方格圖,得出直角三角形的性質(zhì)——勾股定理,發(fā)展學生分析問題的能力。
活動4 拼圖驗證→加深理解 通過剪拼趙爽弦圖證明勾股定理,體會數(shù)形結(jié)合思想,激發(fā)探索精神。
活動5 實踐應用→拓展提高 初步應用所學知識,加深理解。
活動6 回顧小結(jié)→整體感知 回顧、反思、交流。
活動7 布置作業(yè)→鞏固加深 鞏固、發(fā)展提高。
【《勾股定理》教學設計】相關(guān)文章:
《勾股定理》教學設計04-28
勾股定理教學設計范文04-02
《勾股定理》教學設計11篇04-30
勾股定理教學反思04-09
《勾股定理》教學反思04-09
勾股定理數(shù)學教學反思04-09
《勾股定理的證明》教學反思05-03
八年級數(shù)學勾股定理教學設計05-09
勾股定理教案02-11