圓柱體積教學(xué)設(shè)計(jì)
作為一位無私奉獻(xiàn)的人民教師,通常會(huì)被要求編寫教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)把教學(xué)各要素看成一個(gè)系統(tǒng),分析教學(xué)問題和需求,確立解決的程序綱要,使教學(xué)效果最優(yōu)化。那么什么樣的教學(xué)設(shè)計(jì)才是好的呢?下面是小編幫大家整理的圓柱體積教學(xué)設(shè)計(jì),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
圓柱體積教學(xué)設(shè)計(jì)1
教學(xué)內(nèi)容:
課本第7頁圓柱體積
教學(xué)目標(biāo):
理解圓柱體積公式的推導(dǎo)過程,掌握?qǐng)A柱體積計(jì)算公式,并能正確地計(jì)算圓柱的體積,提高知識(shí)的遷移和轉(zhuǎn)化的能力。
教學(xué)重點(diǎn):
圓柱體積計(jì)算
教學(xué)難點(diǎn):
圓柱體積的公式推導(dǎo)
教學(xué)關(guān)鍵:
實(shí)物演示幫助
教具準(zhǔn)備:
圓柱體積演示模型
教學(xué)過程:
一、復(fù)習(xí)鋪墊。
1、圓柱的側(cè)面積怎么求?(圓柱的側(cè)面積=底面周長(zhǎng)×高。)
2、長(zhǎng)方體的體積怎樣計(jì)算?
學(xué)生可能會(huì)答出“長(zhǎng)方體的體積=長(zhǎng)×寬×高”,教師繼續(xù)引導(dǎo)學(xué)生想到長(zhǎng)方體和正方體體積的統(tǒng)一公式“底面積×高”。
板書:長(zhǎng)方體的體積=底面積×高
3、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓拄的底面、高、側(cè)面、表面各是什么?圓柱有幾個(gè)底面?有多少條高?
請(qǐng)大家想一想,在學(xué)習(xí)圓的面積時(shí),我們是怎樣把因變成已學(xué)過的圖形再計(jì)算面積的?
怎樣計(jì)算圓柱的體積呢?大家仔細(xì)想想看,能不能把圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積?
二、學(xué)習(xí)探索。
這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積。
板書課題:圓柱的體積
出示目標(biāo):1、推導(dǎo)2、計(jì)算
1、圓柱體積計(jì)算公式的推導(dǎo)。
教師出示一個(gè)圓柱,提問:這是不是一個(gè)圓柱?用手捂住圓柱的側(cè)面,只把其中的一個(gè)底面出示給學(xué)生看提問:“大家看,這是不是一圓?”“這是一個(gè)圓,那么要求這個(gè)圓的面積,剛才我們已經(jīng)復(fù)習(xí)了,可以用什么方法求出它的面積?”
學(xué)生很容易想到可以將圓轉(zhuǎn)化成長(zhǎng)方形來求出圓的面積,于是教師可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引導(dǎo)學(xué)生觀察:沿著圓柱底面的'扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊。教師將這分成16塊的底面出示給學(xué)生看,問:現(xiàn)在把底面切成了16份,應(yīng)該怎樣把它拼成一個(gè)長(zhǎng)方形?
大家再看看整個(gè)圓柱,它又被拼成了什么形狀?(有點(diǎn)接近長(zhǎng)方體:)
指出:由于我們分得不夠細(xì),所以看起來還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。
把圓柱拼成近似的長(zhǎng)方體后,體積發(fā)生變化沒有?圓柱的體積可以怎樣求?
小結(jié):可以通過求切拼后的長(zhǎng)方體的體積來求圓柱的體積。
板書:“長(zhǎng)方體的體積=底面積×高”。
請(qǐng)大家觀察教具,拼成的近似長(zhǎng)方體的底面積與原來圓柱的哪一部分有關(guān)系?近似長(zhǎng)方體的高與原來圓柱的哪一部分有關(guān)系?
明確:長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高就是圓柱的高。
板書:圓柱的體積=底面積×高
如果用V表示圓柱的體積,S表示圓柱的底面積,h表示圓柱的高,可以得到圓柱的體積公式:V=Sh
2、自覺書本第7、8頁。
3、教學(xué)例3。
出示例3。
。1)教師指名學(xué)生分別回答下面的問題:
、龠@道題已知什么?求什么?
②能不能根據(jù)公式直接計(jì)算?
、塾(jì)算之前要注意什么?
。2)用投影片或小黑板出示下面幾種解答方案,讓學(xué)生判斷哪個(gè)是正確的?
、賄=sh=40×1.8=72
答:它的體積是72立方厘米。
、1.8米=180厘米
V=sh=40×1800=72000
答:它的體積是72000立方厘米。
、40平方厘米=0.4平方米
V=sh=0.4×1.8=0.72
答:它的體積是0.72立方米。
④40平方厘米=0.004平方米
V=sh=0.004×1.8=0.0072立方米
答:它的體積是0.0072立方米。
。3)自覺書本第8頁例3。提出質(zhì)疑。
。4)做第9頁“試一試”。
三、課堂小結(jié)。
通過這節(jié)課的學(xué)習(xí),你有什么收獲?你是怎樣聯(lián)系學(xué)過的知識(shí)進(jìn)行學(xué)習(xí)的。
四、鞏固練習(xí)。練一練1~4題。
五、《作業(yè)本》第4頁。
圓柱體積教學(xué)設(shè)計(jì)2
一、教學(xué)對(duì)象及學(xué)習(xí)內(nèi)容特點(diǎn)分析:
圓柱的體積是小學(xué)立體幾何圖形中的重要內(nèi)容之一,是已學(xué)的長(zhǎng)方體知識(shí)和將學(xué)的圓椎體知識(shí)的橋梁,其公式是長(zhǎng)方體、正方體體積公式V=Sh的延續(xù)。
二、教學(xué)目的:
學(xué)生能借助媒體提供的資源理解和掌握?qǐng)A柱體積的計(jì)算公式。
學(xué)生能應(yīng)用圓柱體積公式進(jìn)行圓柱體積的計(jì)算。
學(xué)生能利用知識(shí)之間相互"轉(zhuǎn)化"的思想探索解決新的問題。
三、教學(xué)基本指導(dǎo)思想、教學(xué)策略和方法:整個(gè)過程,充分利用計(jì)算機(jī)的優(yōu)點(diǎn),以小組學(xué)習(xí)的形式,發(fā)揮學(xué)生的主體作用,教師是學(xué)生學(xué)習(xí)過程的組織者和輔導(dǎo)者。長(zhǎng)方體的體積公式和平面圖形的面積公式已學(xué)過,因此引導(dǎo)學(xué)生用轉(zhuǎn)化的思想去學(xué)習(xí),并創(chuàng)設(shè)情景,讓學(xué)生自己發(fā)現(xiàn)問題,利用電腦、課本、實(shí)物提供的資源協(xié)商解決問題,使全體學(xué)生都成為學(xué)習(xí)的主人。
四、教學(xué)運(yùn)用的主要手段、技術(shù)、材料:電腦網(wǎng)絡(luò)、實(shí)物投影、圓柱體。
五、教學(xué)過程的設(shè)想和點(diǎn)評(píng)
教師的教學(xué)行為學(xué)生的學(xué)習(xí)行為點(diǎn)評(píng)
第一階段:創(chuàng)設(shè)情景,設(shè)疑引趣。
教師故事引入:圓柱形狀的"轉(zhuǎn)筆刀"和"漿糊筆"迎著朝陽高高興興上學(xué)了,走著走著,它們就為哪個(gè)體積大而爭(zhēng)論起來,"轉(zhuǎn)筆刀"很自信地說:"看我這么胖,肯定是我的體積大!""漿糊筆"很不服氣地說:"我比你高多了,一定是我的體積大!"就這樣你一言我一語,爭(zhēng)論了很久還沒個(gè)結(jié)果。
提問:小組討論尋找解決這兩個(gè)圓柱體積大小的方法。
1、學(xué)生小組討論解決的方法。
2、小結(jié)歸納:解決圓柱的體積的方法:尋找一種方法,導(dǎo)出圓柱的體積公式,然后應(yīng)用公式求圓柱的體積。
通過情景的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)熱情,讓他們發(fā)現(xiàn)問題,并通過討論找出解決的方法,使學(xué)生從被動(dòng)學(xué)習(xí)變?yōu)橹鲃?dòng)學(xué)習(xí),學(xué)生對(duì)這節(jié)課的學(xué)習(xí)也從宏觀上得到了解。學(xué)生解決問題的方法有出人意料的回答,老師根據(jù)情況,給予恰當(dāng)?shù)墓膭?lì)性的評(píng)價(jià),以激發(fā)學(xué)生的思維。
第二階段: 自主探究。概括規(guī)律
1、電腦提供學(xué)生探索資源:
(1)平面圖形(長(zhǎng)方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長(zhǎng)方體、正方體)體積公式的導(dǎo)出過程。
。2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個(gè)近似的長(zhǎng)方體。
2、學(xué)生反饋?zhàn)詫W(xué)內(nèi)容,師生共同導(dǎo)出圓柱的體積公式V=Sh1、學(xué)生打開電腦"自能學(xué)習(xí)"中的"尋方法",有選擇地看學(xué)過的平面圖形的面積公式和立體圖形體積公式的導(dǎo)出過程,從中找到推導(dǎo)圓柱體積公式的方法
2、學(xué)生通過觀察圓柱公式的推導(dǎo)過程。
3、小組討論填寫實(shí)驗(yàn)報(bào)告。
4、師生導(dǎo)出圓柱的體積公式后,學(xué)生自學(xué)課本例題,并完成例4內(nèi)容。通過利用資源、自能學(xué)習(xí),讓全體學(xué)生都能動(dòng)腦、動(dòng)口、動(dòng)手參與到學(xué)習(xí)中去,使學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)協(xié)作,所學(xué)知識(shí)的理解更為深刻、透徹。在自學(xué)的過程中教師通過監(jiān)控密切觀察著學(xué)生的學(xué)習(xí)情況,發(fā)現(xiàn)問題及時(shí)解決。
圓柱體積公式的推導(dǎo)過程,學(xué)生會(huì)有不同的方法,如用課本的方法或用類比的方法,教師應(yīng)給予恰當(dāng)?shù)脑u(píng)價(jià)。
第三階段:拓展公式,自能訓(xùn)練。
1、公式拓展。
在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?
2、教師小結(jié):無論已知圓柱的底面半徑、直徑還是底面周長(zhǎng),我們都必須根據(jù)V=Sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。
3、質(zhì)疑
1、學(xué)生可根據(jù)已學(xué)的'"圓的面積"公式導(dǎo)出。
。ó(dāng)已知圓柱底面的半徑時(shí)V=∏r2h、當(dāng)已知直徑時(shí)V=∏(d÷2)2h、當(dāng)已知周長(zhǎng)時(shí),先求半徑,再求底面積,然后求圓柱體積。
2、判斷。并說明原因
。1) 一個(gè)圓柱體的底面積是8平方厘米,高是6厘米,這個(gè)圓柱體的體積是48立方厘米。
。2) 一個(gè)圓柱的底面積是10平方米,高是10米,它的體積是100平方米。
。3) 一個(gè)圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。 列式是:3.14×22×3
1、根據(jù)生活實(shí)際,當(dāng)知道圓柱底面半徑、直徑或周長(zhǎng)時(shí),怎樣求圓柱的體積這個(gè)問題,可以讓學(xué)生充分拓展思維,不要停留在只會(huì)死記公式、生搬硬套的低層次上。并大力鼓勵(lì)、表揚(yáng)愛動(dòng)腦筋的同學(xué)
2、通過練習(xí),學(xué)生對(duì)基本知識(shí)有一定的理解,教師也了解了學(xué)生對(duì)知識(shí)的掌握情況。
第四階段:反饋學(xué)習(xí)、應(yīng)用提高。
1、提出練習(xí)要求:先做"鞏固"練習(xí),有余力的再做"提高"練習(xí)。
2、小結(jié)練習(xí)情況,及時(shí)表揚(yáng)對(duì)而快的同學(xué)及小組
3、回應(yīng)開頭,解決"漿糊筆"和"轉(zhuǎn)筆刀"爭(zhēng)論的問題。學(xué)生在電腦上完成。
1、賽車游戲:看誰跑得快。
(1)圓柱的底面積是15平方米,高是3米,體積是( )立方米。
。2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是( )平方厘米。
(3)一個(gè)圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個(gè)糧囤能裝稻谷( )立方米。
。4)一個(gè)圓柱的體積是80立方分米,底面積是16平方分米,它的高是( )分米。
2、提高練習(xí)?寄阒腔郏嚎凑l攀得高。
。1)一個(gè)圓柱,它的底面直徑4厘米,高是3米,體積是( )立方厘米。
。2)一個(gè)圓柱體鐵架,它的底面周長(zhǎng)是62.8分米,高是6分米,它的體積是( )立方分米。
在計(jì)算過程中,學(xué)生會(huì)遇到不少問題,可通過師生交流或小組互相幫助解決,從而實(shí)現(xiàn)互幫、互學(xué)共同提高。
六、歸納總結(jié)、自我評(píng)價(jià)。
1、提出要求,學(xué)生談收獲。
2、總結(jié)本節(jié)情況。 談收獲,并作出自我評(píng)價(jià)。通過談收獲,體現(xiàn)學(xué)習(xí)的自主性,體驗(yàn)獲得成功的樂趣。
七、對(duì)教學(xué)過程的設(shè)想和點(diǎn)評(píng):
新課程標(biāo)準(zhǔn)注重小學(xué)生對(duì)周圍世界與生俱來的探究興趣和需要,在小學(xué)階段,學(xué)生的知識(shí)積累與思維能力較為有限,強(qiáng)調(diào)用符合小學(xué)生年齡特點(diǎn)的方式學(xué)習(xí),提倡課程貼近小學(xué)生的生活,這節(jié)課從學(xué)生身邊學(xué)習(xí)用品"卷筆刀"和"漿糊筆"的入手,通過擬人的方式,由它們上學(xué)過程中引起的爭(zhēng)論導(dǎo)出學(xué)習(xí)的內(nèi)容,激發(fā)學(xué)生學(xué)習(xí)的積極性。這樣在教學(xué)進(jìn)程中安排好相關(guān)的情景組織學(xué)生參與其中,親歷過程,自主地開展活動(dòng),通過看、做、玩、想等方式,讓學(xué)生既學(xué)會(huì)知識(shí)與技能,又培養(yǎng)智能、情感態(tài)度與價(jià)值觀,促進(jìn)學(xué)生科學(xué)素養(yǎng)的形成。
新課標(biāo)還積極倡導(dǎo)讓學(xué)生親身經(jīng)歷以探究為主的學(xué)習(xí)活動(dòng),培養(yǎng)他們的好奇心和探究欲,使他們學(xué)會(huì)探究解決問題的策略,為他們終身的學(xué)習(xí)和生活打好基礎(chǔ)。這是一節(jié)在網(wǎng)絡(luò)環(huán)境下開展的探究型數(shù)學(xué)課,引入后,教師則大膽放手,營(yíng)造了一個(gè)開放的探究空間,通過學(xué)生小組討論尋找比較圓柱大小的方法,引導(dǎo)學(xué)生通過自主、合作探究這種學(xué)習(xí)方式進(jìn)行實(shí)踐活動(dòng),觀察由圓柱轉(zhuǎn)變成已學(xué)過長(zhǎng)方體的過程,在觀察中相互啟發(fā),共同提高,形成共識(shí)后并加以記錄。再將大家的記錄結(jié)果對(duì)比、討論、從而得出結(jié)論:圓柱的體積=轉(zhuǎn)變成的長(zhǎng)方體的體積,從而導(dǎo)出圓柱的體積公式V=SH。在這一過程中,教師以學(xué)生的發(fā)展為本,關(guān)注每一位的發(fā)展,珍視每位學(xué)生的探究體驗(yàn)及獨(dú)特見解,在學(xué)生探究結(jié)果的表述過程中,對(duì)同一個(gè)問題,不同的人可以得出不同的結(jié)論,他們通過互相交流互相討論,思維更是得到發(fā)展與創(chuàng)新。不僅激發(fā)了每一位學(xué)生主動(dòng)參與探究實(shí)踐活動(dòng),更讓學(xué)生在探究中學(xué)會(huì)合作、懂得思考、大膽發(fā)表自己的獨(dú)特見解,更學(xué)會(huì)傾聽、尊重他人的意見,從而實(shí)現(xiàn)互幫、互學(xué)共同提高,并在探究中發(fā)現(xiàn)、學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)的興趣,培養(yǎng)了實(shí)踐的能力。
網(wǎng)絡(luò)環(huán)境下的教學(xué)方式不僅改變了以往教師滿堂灌的現(xiàn)象,在拓寬學(xué)生知識(shí)面的同時(shí),更培養(yǎng)了學(xué)生搜集信息、處理信息并進(jìn)行合理解釋的能力,大大地激發(fā)了學(xué)生自主學(xué)習(xí)的積極性,學(xué)生的創(chuàng)新意識(shí)日漸增強(qiáng),真正實(shí)現(xiàn)了利用信息技術(shù)為教學(xué)內(nèi)容服務(wù)。
圓柱體積教學(xué)設(shè)計(jì)3
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)與技能
用已學(xué)的圓柱體積知識(shí)解決生活中的實(shí)際問題,并滲透轉(zhuǎn)化思想。
。ǘ┻^程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測(cè)量和計(jì)算過程,讓學(xué)生在動(dòng)手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗(yàn)“等積變形”的轉(zhuǎn)化過程。
。ㄈ┣楦袘B(tài)度和價(jià)值觀
通過實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識(shí)。
二、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):利用所學(xué)知識(shí)合理靈活地分析、解決不規(guī)則物體的體積的計(jì)算方法。
教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。
三、教學(xué)準(zhǔn)備
每組一個(gè)礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)舊知,做好鋪墊
1、板書:圓柱的體積。
問:圓柱的體積怎么計(jì)算?體積和容積有什么區(qū)別?
2、揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識(shí)來解決生活中的實(shí)際問題。(完整板書:用圓柱的體積解決問題)
【設(shè)計(jì)意圖】通過復(fù)習(xí)圓柱的體積計(jì)算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識(shí)上的準(zhǔn)備。
(二)探索實(shí)踐,體驗(yàn)轉(zhuǎn)化過程
1、創(chuàng)設(shè)情境,提出問題。
每個(gè)小組桌子上有一個(gè)沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個(gè)數(shù)學(xué)問題嗎?(隨機(jī)板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個(gè)瓶子一共能裝多少水?(也就是這個(gè)瓶子的容積是多少?)
2、你覺得你能輕松解決什么問題?
。1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個(gè)圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個(gè)問題的確輕而易舉。請(qǐng)你準(zhǔn)備好直尺,或許等會(huì)兒有用哦!
。2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計(jì)算。
教師:當(dāng)物體形狀不規(guī)則時(shí),我們想求出它的`體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個(gè)規(guī)則的立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個(gè)圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結(jié):這個(gè)方法不錯(cuò),我們利用水的流動(dòng)性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個(gè)圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個(gè)問題還難得到你嗎?
圓柱體積教學(xué)設(shè)計(jì)4
教學(xué)目標(biāo):
1.結(jié)合具體情境,讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡(jiǎn)單的實(shí)際問題。
2.讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3.通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡(jiǎn)單的實(shí)際問題。
教學(xué)難點(diǎn):讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程掌握?qǐng)A柱體積的計(jì)算方法。
教學(xué)方法:操作法、推理法、講授法
教學(xué)過程:
一、復(fù)習(xí)引新。
我們以前學(xué)過哪些立體圖形?
生答:長(zhǎng)方體和正方體。
它們的體積是怎么求的?
長(zhǎng)方體:長(zhǎng)×寬×高,正方體:棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng)。
二、教學(xué)例4。
1、出示長(zhǎng)方體和正方體。
它們的底面積相等,高也相等。長(zhǎng)方體和正方體的體積相等嗎?為什么?
生答:體積=底面積×高,所以長(zhǎng)方體和正方體的體積相等。
2、出示圓柱。
猜一猜,圓柱的體積與長(zhǎng)方體和正方體的體積相等嗎?
生猜測(cè):相等。
究竟如何,今天我們就一起來研究圓柱的體積。
板書課題:圓柱的體積。
問:剛才只是你們的猜測(cè),你準(zhǔn)備怎么驗(yàn)證?依據(jù)是什么?(4人小組討論)
生:準(zhǔn)備把圓柱轉(zhuǎn)化成我們以前學(xué)過的`立體圖形,來求它的體積。
依據(jù)是圓可以轉(zhuǎn)化成長(zhǎng)方形計(jì)算面積。
3、出示課件。
回顧圓的面積計(jì)算公式是怎樣推導(dǎo)的。
4、回顧了圓的面積公式推導(dǎo),你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長(zhǎng)方體計(jì)算體積。
5、動(dòng)手操作。
請(qǐng)2位同學(xué)上臺(tái)用教具來演示,邊演示邊講解。
把圓柱的底面平均分成16份,切開后把它拼成一個(gè)近似地長(zhǎng)方體。
多請(qǐng)幾組同學(xué)上臺(tái)講解,完善語言。
提問:為什么用“近似”這個(gè)詞?
6、教師演示課件。
把圓柱拼成了一個(gè)近似的長(zhǎng)方體。
7、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會(huì)有什么變化?
生答:拼成的物體越來越接近長(zhǎng)方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長(zhǎng)方體的長(zhǎng)就越近似于一條線段,這樣整個(gè)形體就越近似于長(zhǎng)方體。
8、剛才我們通過動(dòng)手操作,把圓柱切拼成一個(gè)近似的長(zhǎng)方體。
師:拼成的長(zhǎng)方體和原來的圓柱有什么聯(lián)系?請(qǐng)與同學(xué)們進(jìn)行交流?
出示討論題。
1、拼成的長(zhǎng)方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
2、拼成的長(zhǎng)方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
3、拼成的長(zhǎng)方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長(zhǎng)方體體積=底面積×高
圓柱體積=底面積×高
9、根據(jù)上面的實(shí)驗(yàn)和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個(gè)近似的長(zhǎng)方體,拼成的長(zhǎng)方體的底面積等于圓柱的底面積,拼成長(zhǎng)方體的高等于圓柱的高,因?yàn)殚L(zhǎng)方體體積=底面積×高,所以圓柱體積=底面積×高。
10、用字母如何表示。
11、出示例4。
現(xiàn)在你知道圓柱的體積與長(zhǎng)方體、正方體的體積相等了嗎?
為什么?
生答:體積相等,都是用底面積×高。
V=sh
三、鞏固練習(xí)。
1、出示練習(xí)七第一題。
學(xué)生直接把答案填寫在表中。
提問:你是根據(jù)什么填寫的?
2、練一練。
這兩題,你打算怎么計(jì)算?
生答:不知道底面積,要先算出底面積,再乘高。
3.14×2×5 = 62.8(平方厘米)
3.14×(6÷2)×8 = 226.08(平方厘米)
3、一個(gè)圓柱形狀的糧囤,從里面量得底面周長(zhǎng)是12.56米,高是2米。它的容積是多少立方米?
問:這道題和前面做的有什么不同?怎么計(jì)算?
生答:這是求容積的。所以數(shù)據(jù)是從里面量的。
4、練習(xí)七第2題。
觀察下面的3個(gè)杯子,你能看出哪個(gè)杯子的飲料多?
請(qǐng)學(xué)生猜一猜。
請(qǐng)學(xué)生列出三道算式。
。1)3.14×(8÷2)×4
。2)3.14×(6÷2)×7
(3)3.14×(5÷2)×10
問:你能不求出結(jié)果直接比較出大小嗎?
生答:第一個(gè)杯子的飲料多。
5、練習(xí)七第三題。
學(xué)生獨(dú)立解答。
指名說說是怎樣算的?
3.14×3×5×1= 141.3(千克)
141.3千克<150千克
答:這個(gè)保溫茶桶不能盛150千克水。
四、總結(jié)。
今天這節(jié)課你學(xué)到了什么?
圓柱體積教學(xué)設(shè)計(jì)5
教學(xué)目標(biāo)
知識(shí)與能力
1.運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,并理解這個(gè)過程。
2.會(huì)用圓柱的體積計(jì)算圓柱形物體的體積和容積,運(yùn)用公式解決一些簡(jiǎn)單的問題。
3.引導(dǎo)學(xué)生逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力
4.借助實(shí)物演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
過程與方法
1.通過觀察、實(shí)驗(yàn)、討論,學(xué)生理解所學(xué)知識(shí)。
2.通過新舊知識(shí)的轉(zhuǎn)化貫通,學(xué)生對(duì)所學(xué)知識(shí)形成體系,領(lǐng)悟數(shù)學(xué)思想遷移的重要性。
3.在講解例題與鞏固練習(xí)中,學(xué)生掌握基本的解題方法。
情感、態(tài)度與價(jià)值觀
1.使學(xué)生感覺到數(shù)學(xué)就在身邊,激發(fā)其學(xué)習(xí)數(shù)學(xué)的興趣。
2.通過實(shí)驗(yàn)操作及設(shè)問,培養(yǎng)其創(chuàng)造性思維和大膽的猜想。
教學(xué)重點(diǎn)
圓柱體體積的計(jì)算
教學(xué)難點(diǎn)
圓柱體體積的公式推導(dǎo)方法
教學(xué)突破
本節(jié)的內(nèi)容是這單元的重點(diǎn)的內(nèi)容,且與實(shí)際生活有著密切關(guān)系。在教學(xué)上對(duì)于圓柱體積的計(jì)算,首先應(yīng)從圓的面積推導(dǎo)人手,可以借助一些教具演示及鼓勵(lì)學(xué)生實(shí)驗(yàn)操作來明確。
教 具
圓柱的體積公式演示教具,多媒體課件
教學(xué)過程
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學(xué)過的方法計(jì)算出這些水的體積嗎?
。3)討論后匯報(bào):把水倒入長(zhǎng)方體容器中,量出數(shù)據(jù)后再計(jì)算。(4)說一說長(zhǎng)方體體積的計(jì)算公式。
。5)在求圓柱體積的時(shí)候,有沒有像求長(zhǎng)方體或正方體體積那樣的計(jì)算公式呢?
2,復(fù)習(xí)相關(guān)知識(shí),為新課教學(xué)作鋪墊。
。1)什么叫物體的體積?我們學(xué)過什么立體圖形的體積計(jì)算?(學(xué)生自由回答)
(2)出示圓柱體物品,指名學(xué)生指出各部分名稱。
二、新課教學(xué)
設(shè)疑揭題:
我們能把一個(gè)圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個(gè)問題。。
1.探究推導(dǎo)圓柱的體積計(jì)算公式。
課件演示拼、組的過程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成16份、32份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。依次解決上面三個(gè)問題:
、 把圓柱拼成長(zhǎng)方體后,形狀變了,體積不變。(板書:長(zhǎng)方體的體積=圓柱的體積)
、 拼成的長(zhǎng)方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)
、 圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)
討論并得出結(jié)果。你能根據(jù)這個(gè)實(shí)驗(yàn)得出圓柱的體積計(jì)算公式嗎?為什么?讓學(xué)生再討論:圓柱體通過切拼,圓柱體轉(zhuǎn)化成近似的長(zhǎng)方體。這個(gè)長(zhǎng)方體的底面積與圓柱體的底面積 ,這個(gè)長(zhǎng)方體的高與圓柱體的高 。因?yàn)殚L(zhǎng)方體的體積等于底面積乘以高,所以,圓柱體的體積計(jì)算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設(shè)計(jì)意圖:要用這個(gè)公式計(jì)算圓柱的體積必須知道什么條件?
填表:請(qǐng)同學(xué)看屏幕回答下面問題,
、 底面積(㎡)高(m)圓柱體積(m3)
4 3
5 6
9 2
。ㄔO(shè)計(jì)意圖:設(shè)計(jì)練習(xí)能使學(xué)生達(dá)到舉一反三的效果,從而訓(xùn)練學(xué)生的技能。這是第一層基本練習(xí),通過這道題可以使學(xué)生更好的'掌握本課重點(diǎn),)
例:一個(gè)圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米.它的容積約是多少立方分米?(得數(shù)保留整立方分米)
解: d=6dm,h=7dm.r=3dm
S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3 答:油桶的容積約是198立方分
。ㄔO(shè)計(jì)意圖:使學(xué)生注意解題格式,注意體積的單位為三次方)
三、鞏固反饋
1.求下面圓柱體的體積。(單位:厘米)
同學(xué)板演,其余同學(xué)在作業(yè)本上做。板演的同學(xué)講解自己的解題方法題。
、 ,教師歸納學(xué)生所用的解題方法,強(qiáng)調(diào)在解題的過程中格式。(設(shè)計(jì)意圖:這是第二層變式練習(xí)。是讓學(xué)生在掌握公式的基礎(chǔ)上理解公式,學(xué)會(huì)靈活運(yùn)用公式的訓(xùn)練題。通過對(duì)公式的拓展性理解,可以進(jìn)一步加深學(xué)生對(duì)圓柱體積公式的理解和掌握,同時(shí)也能培養(yǎng)學(xué)生的邏輯思維能力。)
練習(xí):(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm.已知水杯中水的體積是整個(gè)水杯體積的 2/3 計(jì)算水杯中水的體積?
四、拓展練習(xí)
1.一個(gè)長(zhǎng)方形的紙片長(zhǎng)是6分米,寬4分米.用它分別圍成兩個(gè)圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請(qǐng)你計(jì)算說明理由.(結(jié)果保留π)
2.一個(gè)底面直徑是20cm的圓柱形容體里,放進(jìn)一個(gè)不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、
五、課堂小結(jié)
1.談?wù)勥@節(jié)課你有哪些收獲。
2.解題時(shí)需要注意那些方面。
六、布置作業(yè)
1.課后練習(xí)1,2題
2.拓展練習(xí)2題
板書設(shè)計(jì)
圓柱的體積
長(zhǎng)方體的體積=底面積x高
圓柱——長(zhǎng)方體 圓柱的體積=底面積x高
V=sh
圓柱體積教學(xué)設(shè)計(jì)6
教材版本
《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》 (人教版) 六年級(jí)數(shù)學(xué)下冊(cè)。
課程標(biāo)準(zhǔn)摘錄
1、結(jié)合具體情境,探索并掌握長(zhǎng)方體、正方體、圓柱體的體積和表面積以及圓錐體體積的計(jì)算方法。
2、探索某些實(shí)物體積的測(cè)量方法。
學(xué)情與教材分析
“圓柱的體積” 是人教版六年級(jí)下冊(cè)“圓柱和圓錐”這一單元的第四節(jié)的內(nèi)容,在學(xué)習(xí)本節(jié)內(nèi)容之前,學(xué)生已經(jīng)認(rèn)識(shí)了圓柱,學(xué)習(xí)了體積,經(jīng)歷了長(zhǎng)、正方體的體積推導(dǎo)過程以及圓面積公式的推導(dǎo)過程。在推導(dǎo)圓柱的體積公式時(shí),把圓柱體轉(zhuǎn)化成長(zhǎng)方體,高并沒有變,只是把底面的圓形轉(zhuǎn)化成長(zhǎng)方形,它的轉(zhuǎn)化過程實(shí)際上和圓轉(zhuǎn)化成長(zhǎng)方形求面積的方法相同,學(xué)生已具備有學(xué)習(xí)本課的技能。教學(xué)中不僅要讓學(xué)生知道圓柱體積計(jì)算公式是什么,而且要讓學(xué)生主動(dòng)探索、經(jīng)歷圓柱體體積計(jì)算公式的推導(dǎo)過程,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。
學(xué)習(xí)目標(biāo)
1、經(jīng)歷探究和推導(dǎo)圓柱的體積計(jì)算公式的過程,理解并掌握?qǐng)A柱體積計(jì)算方法,并能正確計(jì)算圓柱體積,達(dá)標(biāo)率100%。
2、能運(yùn)用圓柱的體積計(jì)算方法,解決有關(guān)的實(shí)際問題,發(fā)展學(xué)生的實(shí)踐能力,達(dá)標(biāo)率95%。
3、能積極參與圓柱體積計(jì)算公式推導(dǎo)活動(dòng),能有條理地、清晰地闡述活動(dòng)過程,發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力,達(dá)標(biāo)率95%。
4、激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)成功的快樂,達(dá)標(biāo)率100%。
5、培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想,達(dá)標(biāo)率95%。
學(xué)習(xí)重點(diǎn)
圓柱的體積計(jì)算方法
學(xué)習(xí)難點(diǎn)
圓柱體積計(jì)算公式的推導(dǎo)。
教具、學(xué)具準(zhǔn)備:
1、師:圓柱體積計(jì)算公式推導(dǎo)教具,課件。
2、生:削好的圓柱體蘿卜或土豆、或圓柱體橡皮泥,小刀。
教學(xué)設(shè)想
本節(jié)課第一個(gè)環(huán)節(jié)激活舊知、引出新知,采用復(fù)習(xí)長(zhǎng)方體、正方體的體積公式,圓面積計(jì)算公式的推導(dǎo)過程,從轉(zhuǎn)化的思想、方法上為推導(dǎo)圓柱的體積公式做一些鋪墊。第二個(gè)環(huán)節(jié)自主合作、探索新知,采用了激趣設(shè)疑的方法層層深入,調(diào)動(dòng)同學(xué)們學(xué)習(xí)的熱情,激發(fā)學(xué)生探究的欲望。學(xué)生積極合作交流,主動(dòng)參與到圓柱體積計(jì)算公式的推導(dǎo)過程中,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。然后通過例題教學(xué)加深對(duì)圓柱的體積公式的理解,體會(huì)計(jì)算公式在實(shí)際生活中的應(yīng)用,發(fā)展學(xué)生的實(shí)踐能力。第三個(gè)環(huán)節(jié)鞏固練習(xí)、拓展提高,采用了分層教學(xué)的方法,設(shè)計(jì)的練習(xí)題由易到難,這樣設(shè)計(jì)的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。通過本節(jié)課的教學(xué),學(xué)生在自主探索和合作交流過程中真正理解和掌握數(shù)學(xué)的知識(shí)與技能、特別是讓學(xué)生獲得數(shù)學(xué)的思想和方法,獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),同時(shí)陶冶了情操。
教法、學(xué)法
演示法、啟發(fā)引導(dǎo);實(shí)驗(yàn)、合作探究、嘗試練習(xí)。
評(píng)價(jià)方案
1、通過小組合作實(shí)驗(yàn)完成活動(dòng)檢測(cè)目標(biāo)1、4、5的達(dá)成。
2、通過提問檢測(cè)目標(biāo)3、4、5的達(dá)成。
3、通過評(píng)價(jià)樣題檢測(cè)目標(biāo)1、2、4的達(dá)成。
評(píng)價(jià)樣題
1、
2、
教學(xué)過程
一、激活舊知,引出新知
1、計(jì)算下面物體的體積
(1)長(zhǎng)方體的長(zhǎng)20厘米,寬10厘米,高8厘米。
。2)正方體棱6分米
2、回憶一下圓面積的計(jì)算公式是如何推導(dǎo)出來的?
[學(xué)情預(yù)設(shè):學(xué)生可能說出通過分割、拼合的辦法變成長(zhǎng)方形或者平行四邊形,或者三角形,或者梯形來推導(dǎo)出圓的面積。這時(shí)教師要及時(shí)總結(jié)不論是拼成哪種圖形都是把圓轉(zhuǎn)化成已學(xué)過面積計(jì)算的圖形,再根據(jù)轉(zhuǎn)化后的圖形與圓各部分之間的關(guān)系推導(dǎo)出它的面積。]
教師(結(jié)合課件演示)把一個(gè)圓平均分割,再拼合就變成了一個(gè)近似的平行四邊形,分的份數(shù)越多越接近一個(gè)長(zhǎng)方形。長(zhǎng)方形的長(zhǎng),相當(dāng)于圓周長(zhǎng)的一半,長(zhǎng)方形的寬相當(dāng)于圓的半徑。因?yàn)殚L(zhǎng)方形的面積=長(zhǎng)×寬,所以,用圓周長(zhǎng)的一半×半徑就可以求出圓的面積,周長(zhǎng)一半就等于πR,半徑是R,所以圓的面積是S=πR。
[設(shè)計(jì)意圖:從轉(zhuǎn)化的思想、方法上為推導(dǎo)圓柱的體積公式做一些鋪墊。]
3、什么叫體積?如何求長(zhǎng)方體的體積?如何求正方體的體積?長(zhǎng)方體和正方體的通用公式是什么?
。墼O(shè)計(jì)意圖:為定義圓柱體的體積,為推導(dǎo)圓柱體的體積公式做知識(shí)上的鋪墊。]
板書:長(zhǎng)方體的體積=底面積×高.
。墼O(shè)計(jì)意圖:原有的基礎(chǔ)是后續(xù)學(xué)習(xí)的前提和起點(diǎn),新知總是在舊知的基礎(chǔ)上生長(zhǎng)發(fā)展的。這種承上啟下的關(guān)系決定了我們的教學(xué)必須從學(xué)生原有的認(rèn)知結(jié)構(gòu)出發(fā),找準(zhǔn)新舊知識(shí)的連接點(diǎn),為新課的學(xué)習(xí)做好思想方法與知識(shí)的鋪墊。]
圓柱體也有體積,說一說什么是圓柱的體積?學(xué)生交流后匯報(bào)。
板書:圓柱體所占空間的大小叫做圓柱的體積。
師:這節(jié)課,我們就來學(xué)習(xí)圓柱的體積.(板書課題:圓柱的體積)
二、自主合作,探索新知
1.求圓柱體容器中水的體積
出示長(zhǎng)方體容器:?jiǎn),這是什么?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出長(zhǎng)方體容器。]
問:怎么求長(zhǎng)方體容器中水的體積呢?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出量出它所容納水的長(zhǎng)、寬、高,就可以求出水的體積。] 問:如果換成圓柱體容器又如何求其中水的.體積呢?
[學(xué)情預(yù)設(shè):學(xué)生可能說出,把圓柱體容器中的水倒入長(zhǎng)方體容器,量出長(zhǎng)方體容器所容納水的長(zhǎng)、寬、高,就可以求出圓柱體容器中水的體積。](演示:把圓柱體容器中的水倒入長(zhǎng)方體容器)
2.橡皮泥圓柱體的體積
。ǔ鍪鞠鹌つ嘧龀傻膱A柱體)
問:這是一個(gè)什么樣的立體圖形?
問:它是用橡皮泥做成的。你能想辦法求出它的體積嗎?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出把這個(gè)圓柱體捏成一個(gè)長(zhǎng)方體,從而量出長(zhǎng)方體的長(zhǎng)、寬、高,求出這個(gè)圓柱的體積。]
3.常用圓柱的體積.
課件出示圓柱體壓路機(jī)的滾筒的圖片。
問:壓路機(jī)的滾筒是一個(gè)很大的的圓柱體,你又如何求出它的體積呢?
。墼O(shè)計(jì)意圖:用圓柱體容器所盛的沒有形狀的水到可以變形的圓柱形橡皮泥,這些都可以轉(zhuǎn)化的辦法轉(zhuǎn)化為長(zhǎng)方體來求出體積,這一過程就是要逐步滲透把圓柱體轉(zhuǎn)化為長(zhǎng)方體的方法和思想,這樣從思想上、方法上給學(xué)生一個(gè)思維的臺(tái)階。當(dāng)出示圓柱體壓路機(jī)的滾筒圖片后,由于前面的物體是可以變形的,而壓路機(jī)的滾筒是不可以變形的,學(xué)生想不出解決的辦法,學(xué)生處于憤悱狀態(tài),對(duì)學(xué)生來說解決求壓路機(jī)的滾筒體積具有很強(qiáng)的挑戰(zhàn)性,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性。這樣設(shè)計(jì),為后面同學(xué)們操作、討論推導(dǎo)圓柱的體積從思想方法上作了進(jìn)一步的鋪墊,并通過構(gòu)造認(rèn)知沖突,層層深入,調(diào)動(dòng)同學(xué)們學(xué)習(xí)的熱情,激發(fā)學(xué)生探求的欲望。這樣,對(duì)學(xué)生思想方法的鋪墊也已水到渠成。]
小結(jié):看來我們以上的方法求圓柱的體積有它的局限性,所以必須探究求圓柱體積的一般規(guī)律。
4.探究規(guī)律
問:圓我們可以通過分割、拼合轉(zhuǎn)化成已學(xué)過的長(zhǎng)方形面積計(jì)算公式的圖形推導(dǎo)出圓的面積,圓柱體能不能也轉(zhuǎn)化成已學(xué)過體積的圖形來求出它的體積呢?下面請(qǐng)四人小組討論,圍繞下面幾個(gè)問題進(jìn)行討論、操作:
課件出示操作討論提綱:
。1)圓柱體可以轉(zhuǎn)化為什么樣的立體圖形?
。2)轉(zhuǎn)化后的立體圖形體積與圓柱的體積大小是否有變化?
。3)轉(zhuǎn)化后的形體與與原來圓柱體各部分間的對(duì)應(yīng)關(guān)系,推導(dǎo)出圓柱的體積。
學(xué)生討論,教師參與小組討論、點(diǎn)撥、操作。
問:下面哪個(gè)小組來先進(jìn)行匯報(bào)。
各組派代表邊匯報(bào)邊演示。
。蹖W(xué)情預(yù)設(shè):學(xué)生可能會(huì)說圓柱體可以轉(zhuǎn)化為長(zhǎng)方體,轉(zhuǎn)化后的長(zhǎng)方體不是標(biāo)準(zhǔn)的長(zhǎng)方體,只有把圓柱分割的份數(shù)多一些,才可以拼成一個(gè)標(biāo)準(zhǔn)的長(zhǎng)方體。因?yàn)殚L(zhǎng)方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長(zhǎng)方體的體積,也就相當(dāng)于求出了圓柱體的體積。長(zhǎng)方體的體積等于圓柱體的體積,長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高相當(dāng)于圓柱體的高。因?yàn)殚L(zhǎng)方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。]
問:誰還有補(bǔ)充?(學(xué)生補(bǔ)充講解)
教師拿兩個(gè)相同的圓柱體體積演示模型演示,邊演示邊講解。
師:同學(xué)們看,老師這里有兩個(gè)圓柱體,它們的底相同,高也完全相同,這是兩個(gè)完全相同的圓柱體。我把其中的一個(gè)沿著它的底面直徑剪開,兩等分、四等分、八等分、十六等分,還可以繼續(xù)分割,通過分割、拼合,把圓柱體轉(zhuǎn)化成近似的長(zhǎng)方體,如果我把它分割的份數(shù)越多,拼成的圖形就越接近長(zhǎng)方體。因?yàn)殚L(zhǎng)方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長(zhǎng)方體的體積,也就相當(dāng)于求出了圓柱體的體積。
結(jié)合課件演示講解。
師:長(zhǎng)方體的體積等于圓柱體的體積,長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高相當(dāng)于圓柱體的高。因?yàn)殚L(zhǎng)方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。
師:如果圓柱的體積用V來表示,底面積用S表示,高用h來表示。如何表示圓柱的體積計(jì)算公式呢?(板書:V=Sh)
〔設(shè)計(jì)意圖:學(xué)生合作交流,自主探索、經(jīng)歷圓柱體體積計(jì)算公式的推導(dǎo)過程,理解和掌握了計(jì)算方法,加深了印象,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。達(dá)成目標(biāo)1、3、4、5.〕
5、實(shí)際應(yīng)用
。1)、師:給你圓柱的底面積和高,你會(huì)求圓柱的體積嗎?
例1、一根圓柱形木料,底面積75平方厘米,高是90厘米,它的體積是多少? 學(xué)生獨(dú)立完成,集體反饋矯正,說思路。
(2)、完成評(píng)價(jià)樣題
〔設(shè)計(jì)意圖:通過嘗試練習(xí)加深對(duì)圓柱的體積公式的理解,體會(huì)計(jì)算公式在實(shí)際生活中的應(yīng)用,發(fā)展學(xué)生的實(shí)踐能力。達(dá)成目標(biāo)2、4. 〕
三、鞏固練習(xí),拓展提高
1、應(yīng)用公式進(jìn)行口算:
2、
3、
[設(shè)計(jì)意圖:第一層次是已知底面積和高求圓柱體積的口算題,面向全體學(xué)生;第二個(gè)層次是已知底面半徑和高、底面直徑和高、底面周長(zhǎng)和高,求體積的三種練習(xí)題,面向全體學(xué)生;第三個(gè)層次是求放入水中物體的體積就是求上升的圓柱形水的體積,面向中上層學(xué)生。這樣設(shè)計(jì)的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。在做練習(xí)過程中,一、二層次的練習(xí)板演盡量讓學(xué)困生和中等生去做,給他們展示自己的機(jī)會(huì)。并及時(shí)了解學(xué)生信息并根據(jù)學(xué)生反饋及時(shí)調(diào)整教學(xué)進(jìn)程,同時(shí)對(duì)學(xué)生存在的問題及時(shí)指導(dǎo)。達(dá)成目標(biāo)2、4. ]
四、全課總結(jié),共談收獲
通過今天的學(xué)習(xí),你有什么收獲?
。墼O(shè)計(jì)意圖:師生共同小結(jié),學(xué)會(huì)了什么?怎樣求圓柱的體積?這樣起到強(qiáng)化重點(diǎn)的目的。]
五、課外創(chuàng)新,拓展延伸
長(zhǎng)方體可以這樣放(上、下面朝下),還可以這樣放(左、右面朝下),還可哪樣放(前、后面朝下)。 上、下面朝下時(shí)求出圓柱的體積=底面積×高,圓柱的體積還有沒
圓柱體積教學(xué)設(shè)計(jì)7
一、情景引入
1、教學(xué)開始首先出示了一個(gè)裝了半杯水的燒杯,然后拿出一個(gè)圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:會(huì)發(fā)生什么情況?由這個(gè)發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(設(shè)計(jì)意圖:在這個(gè)環(huán)節(jié)設(shè)計(jì)觀察活動(dòng),意圖是讓學(xué)生通過觀察自主得出圓柱體積的定義,進(jìn)一步加深對(duì)體積概念的理解,并為下面的探究活動(dòng)提供研究方法。)
二、自主探究
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)、先出示了兩個(gè)大小不等的圓柱體讓學(xué)生判斷哪個(gè)體積大?
。2)、提問:“要比較兩個(gè)圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個(gè)水面升得高。
。3)、讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實(shí)驗(yàn)結(jié)果填入實(shí)驗(yàn)報(bào)告1中。(課件出示)
(4)、學(xué)生通過動(dòng)手操作匯報(bào)結(jié)論:當(dāng)?shù)椎葧r(shí),圓柱越高體積越大;當(dāng)高等時(shí),圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
。ㄔO(shè)計(jì)意圖:本環(huán)節(jié)教學(xué)讓學(xué)生根據(jù)已有的知識(shí)解決簡(jiǎn)單的問題,通過探究活動(dòng),引導(dǎo)學(xué)生找出決定圓柱體積的兩個(gè)因素,為學(xué)習(xí)新知識(shí)作鋪墊,同時(shí)也發(fā)展了學(xué)生的抽象概括能力。)
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
。1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個(gè)圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計(jì)算圓柱的體積。
。2)、引導(dǎo)學(xué)生回憶圓的面積公式和長(zhǎng)方體的體積公式的推導(dǎo)過程。
(3)、讓學(xué)生思考:怎樣計(jì)算圓柱的體積呢,依據(jù)學(xué)過的知識(shí),你可以做出怎樣的假設(shè)?
(4)、學(xué)生小組討論交流并匯報(bào):圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個(gè)近似長(zhǎng)方體;圓柱的體積可能也是用底面積乘高來計(jì)算。
。5)、讓學(xué)生依據(jù)假設(shè)結(jié)論分組測(cè)量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計(jì)算器計(jì)算體積,并填入實(shí)驗(yàn)報(bào)告2中。(課件出示)
(設(shè)計(jì)意圖 : 通過設(shè)疑使學(xué)生認(rèn)識(shí)到學(xué)習(xí)圓柱體積公式的必要性,激發(fā)學(xué)生的探究興趣。接著通過設(shè)計(jì)猜想的過程,充分運(yùn)用學(xué)生已有的知識(shí)經(jīng)驗(yàn),讓學(xué)生回憶了學(xué)習(xí)長(zhǎng)方體體積時(shí)的實(shí)踐方法和將圓形轉(zhuǎn)化成長(zhǎng)方形的過程,學(xué)生在如此豐富的知識(shí)經(jīng)驗(yàn)基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強(qiáng)。)
4、確定方法,探究實(shí)驗(yàn),驗(yàn)證體積公式。
。1)、首先要求學(xué)生利用實(shí)驗(yàn)工具,自主商討確定研究方法。
。2)、學(xué)生通過討論交流確定了兩種驗(yàn)證方案。
方案一:將圓柱c放入水中,驗(yàn)證圓柱c的體積。
方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的'形體,計(jì)算新形體的體積,驗(yàn)證圓柱d的體積。
。3)、學(xué)生按照自己所設(shè)想的方案動(dòng)手實(shí)驗(yàn),并記錄有關(guān)數(shù)據(jù),填入實(shí)驗(yàn)報(bào)告2中。(課件出示)
。4)、實(shí)驗(yàn)后讓學(xué)生對(duì)數(shù)據(jù)進(jìn)行分析:用實(shí)驗(yàn)的方法得出的數(shù)據(jù)與實(shí)驗(yàn)前假想計(jì)算的數(shù)據(jù)進(jìn)行比較,你發(fā)現(xiàn)了什么?
。5)、學(xué)生匯報(bào):實(shí)驗(yàn)的結(jié)果與猜想的結(jié)果基本相同。
。6)、教師用課件演示將圓柱體轉(zhuǎn)化成長(zhǎng)方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計(jì)算長(zhǎng)方體體積那樣,用底面積乘以高。(課件出示)
(7)、小結(jié):
要想求出一個(gè)圓柱的體積,需要知道什么條件?
。8)、學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋?zhàn)詫W(xué)情況:
v=sh ( 設(shè)計(jì)意圖 這部分教學(xué)采用以小組合作探究的學(xué)習(xí)方式進(jìn)行數(shù)學(xué)活動(dòng),充分調(diào)動(dòng)學(xué)生各種感官,完成從操作→觀察、比較→歸納推理的認(rèn)知過程,讓學(xué)生通過自己動(dòng)手、動(dòng)腦得到結(jié)論。通過讓學(xué)生自己設(shè)計(jì)實(shí)驗(yàn)方案和自主實(shí)驗(yàn)探究的活動(dòng),培養(yǎng)了學(xué)生的創(chuàng)新精神和實(shí)踐能力。)
圓柱體積教學(xué)設(shè)計(jì)8
教學(xué)內(nèi)容:
人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)》(第十二冊(cè))圓柱體積
教學(xué)目標(biāo):
1、結(jié)合具體情境,讓學(xué)生探索并掌握?qǐng)A柱體積的計(jì)算方法,并能運(yùn)用計(jì)算公式解決簡(jiǎn)單的實(shí)際問題。
2、讓學(xué)生經(jīng)歷觀察、實(shí)驗(yàn)、猜想、證明等數(shù)學(xué)活動(dòng)過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗(yàn)數(shù)學(xué)研究的方法。
3、通過圓柱體積計(jì)算公式的推導(dǎo)、運(yùn)用的過程,體驗(yàn)數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):
圓柱體積計(jì)算公式的推導(dǎo)過程
教學(xué)過程
一、情景引入
1、教學(xué)開始首先出示了一個(gè)裝了半杯水的燒杯,然后拿出一個(gè)圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:會(huì)發(fā)生什么情況?由這個(gè)發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(設(shè)計(jì)意圖:在這個(gè)環(huán)節(jié)設(shè)計(jì)觀察活動(dòng),意圖是讓學(xué)生通過觀察自主得出圓柱體積的定義,進(jìn)一步加深對(duì)體積概念的理解,并為下面的探究活動(dòng)提供研究方法。)
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
。1)、先出示了兩個(gè)大小不等的圓柱體讓學(xué)生判斷哪個(gè)體積大?
。2)、提問:“要比較兩個(gè)圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個(gè)水面升得高。
。3)、讓學(xué)生運(yùn)用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積.
。4)、學(xué)生通過動(dòng)手操作匯報(bào)結(jié)論:當(dāng)?shù)椎葧r(shí),圓柱越高體積越大;當(dāng)高等時(shí),圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
(設(shè)計(jì)意圖:本環(huán)節(jié)教學(xué)讓學(xué)生根據(jù)已有的知識(shí)解決簡(jiǎn)單的問題,通過探究活動(dòng),引導(dǎo)學(xué)生找出決定圓柱體積的兩個(gè)因素,為學(xué)習(xí)新知識(shí)作鋪墊,同時(shí)也發(fā)展了學(xué)生的抽象概括能力。)
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
。1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個(gè)圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計(jì)算圓柱的體積。
。2)、引導(dǎo)學(xué)生回憶圓的面積公式和長(zhǎng)方體的體積公式的推導(dǎo)過程。
。3)、讓學(xué)生思考:怎樣計(jì)算圓柱的體積呢,依據(jù)學(xué)過的知識(shí),你可以做出怎樣的假設(shè)?
(4)、學(xué)生小組討論交流并匯報(bào):圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個(gè)近似長(zhǎng)方體;圓柱的體積可能也是用底面積乘高來計(jì)算。
。ㄔO(shè)計(jì)意圖:通過設(shè)疑使學(xué)生認(rèn)識(shí)到學(xué)習(xí)圓柱體積公式的必要性,激發(fā)學(xué)生的探究興趣。接著通過設(shè)計(jì)猜想的過程,充分運(yùn)用學(xué)生已有的知識(shí)經(jīng)驗(yàn),讓學(xué)生回憶了學(xué)習(xí)長(zhǎng)方體體積時(shí)的.實(shí)踐方法和將圓形轉(zhuǎn)化成長(zhǎng)方形的過程,學(xué)生在如此豐富的知識(shí)經(jīng)驗(yàn)基礎(chǔ)上就做到了心中有數(shù),猜想的膽量就更大,假想的合理性就更強(qiáng)。)
4、確定方法,探究實(shí)驗(yàn),推導(dǎo)公式。
(1)、思考你發(fā)現(xiàn)了什么?
。5)、學(xué)生匯報(bào):實(shí)驗(yàn)的結(jié)果與猜想的結(jié)果基本相同。
。6)、教師用課件演示將圓柱體轉(zhuǎn)化成長(zhǎng)方體的過程,向?qū)W生明確圓柱的體積確實(shí)可以像計(jì)算長(zhǎng)方體體積那樣,用底面積乘以高。(課件出示)
。7)、小結(jié):要想求出一個(gè)圓柱的體積,需要知道什么條件?
。8)、學(xué)生自學(xué)第17頁例4上面的一段話:用字母表示公式。
圓柱體積教學(xué)設(shè)計(jì)9
教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識(shí)和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時(shí)讓學(xué)生通過實(shí)驗(yàn)來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體
積等于和它等底等高的圓柱體積的三分之一,并能運(yùn)用這個(gè)關(guān)系計(jì)算圓錐的體積,讓學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí)。
我讓學(xué)生觀察,先猜測(cè)圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實(shí)物圖形到空間圖形,采用對(duì)比的方法,不斷加深學(xué)生對(duì)形體的認(rèn)識(shí)。然后讓學(xué)生動(dòng)手實(shí)驗(yàn):有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計(jì)算的方法。讓孩子親歷教學(xué)的驗(yàn)證過程,從實(shí)驗(yàn)中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時(shí)候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時(shí)候,圓柱和圓錐又會(huì)有什么樣的關(guān)系?這樣,就有一種水到渠成的感覺。對(duì)圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實(shí)際的生活問題,起到鞏固深化知識(shí)點(diǎn)的.作用。
圓錐的體積這節(jié)課的教學(xué)具有下面的特點(diǎn),一是在教學(xué)新課時(shí),沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實(shí)驗(yàn),而是通過師生交流、問答、猜想等形式,調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然;二是在實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動(dòng)手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,即動(dòng)手操作,又動(dòng)腦思考,努力探索圓錐體積的計(jì)算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)
在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實(shí)驗(yàn)的學(xué)生不多,如果每個(gè)小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個(gè)學(xué)生都能真切的參與到探究中去,這樣每個(gè)學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個(gè)學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會(huì)了知識(shí),更重要的是培養(yǎng)了學(xué)生的能力。
教材中圓錐體積的相對(duì)練習(xí)較少,但在考試?yán)锩鎸?shí)際解決問題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時(shí)練習(xí)。教學(xué)中的一組填空題,對(duì)于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價(jià)值。通過練習(xí),學(xué)生們明確了圓柱與等底等高的圓錐體積和為4個(gè)圓錐的體積(或三分之四個(gè)圓柱的體積),而它們的體積相差2個(gè)圓錐的體積(或三分之二個(gè)圓柱的體積)??。掌握這些知識(shí)對(duì)于解決實(shí)際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計(jì)算簡(jiǎn)便。
教學(xué)的最后我與孩子們一起通過大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計(jì)算是教學(xué)的重點(diǎn)和難點(diǎn),也是考試中學(xué)生容易丟分的危險(xiǎn)高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺方為最高層次!
圓柱體積教學(xué)設(shè)計(jì)10
學(xué) 科:數(shù)學(xué)
教學(xué)內(nèi)容:最新人教版六年級(jí)數(shù)學(xué)下冊(cè)第三章《圓柱的體積》
教材分析:
〈〈圓柱的體積〉〉是數(shù)學(xué)課程標(biāo)準(zhǔn)中“空間與圖形”領(lǐng)域內(nèi)容的一部分!础磮A柱的體積〉〉一課,是在學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo)和長(zhǎng)方體、正方體的體積公式的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,而這節(jié)課的順利學(xué)習(xí)將為以后圓錐體積的學(xué)習(xí)鋪平道路。學(xué)生已經(jīng)有了把圓形拼成近似的長(zhǎng)方形的經(jīng)驗(yàn),聯(lián)想到把圓柱切拼成長(zhǎng)方體并不難,但是學(xué)生還是喜歡用自己的方法解決問題,所以我給學(xué)生創(chuàng)設(shè)盡情展示自我的空間,通過自主的學(xué)習(xí)、合作探究、動(dòng)手操作,讓學(xué)生感知立體圖形間的一些關(guān)系,從而解決生活當(dāng)中常見的問題。由此、我制定以下三維教學(xué)目標(biāo):
教學(xué)目標(biāo)
知識(shí)目標(biāo):
。1)通過學(xué)生體驗(yàn)圓柱體體積公式的推導(dǎo)過程,掌握?qǐng)A柱的體積公式并能應(yīng)用公式解決實(shí)際問題。
。2)通過操作讓學(xué)生知道知識(shí)間的相互轉(zhuǎn)化。
能力目標(biāo):
倡導(dǎo)自主學(xué)習(xí)、小組合作、動(dòng)手操作的.學(xué)習(xí)方式,培養(yǎng)學(xué)生動(dòng)手操作的能力,合作交流的意識(shí)。從而建立空間觀念培養(yǎng)學(xué)生的邏輯推理能力。
情感目標(biāo):
讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系,體驗(yàn)探索數(shù)學(xué)奧秘的樂趣,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極情感。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):推導(dǎo)圓柱體積計(jì)算公式的過程。
教具、學(xué)具準(zhǔn)備:
采用的教具為PPT課件和學(xué)具。(圓柱體切割組合學(xué)具,各小組自備所需演示的用具)。 教學(xué)過程:
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?
。2)你能用以前學(xué)過的方法計(jì)算出這些水的體積嗎?
。3)討論后匯報(bào):把水倒入長(zhǎng)方體容器中,量出數(shù)據(jù)后再計(jì)算。
。4)說一說長(zhǎng)方體體積的計(jì)算公式。
2、出示橡皮泥捏成的圓柱體。
出示問題:大家想一想用什么辦法來求出這個(gè)圓柱體橡皮泥的體積呢?
。ㄓ械膶W(xué)生會(huì)想到:老師將它捏成長(zhǎng)方體就可以了;還有的學(xué)生會(huì)想到捏成正方體也可以的。
3、創(chuàng)設(shè)問題情景。
(課件顯示)如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?
剛才的方法不是一種普遍的方法,那么在求圓柱體積的時(shí)候,有沒有像求長(zhǎng)方體或正方體體積那樣的計(jì)算公式呢?今天,我們就來一起研究圓柱體積的計(jì)算方法。(出示課題:圓柱的體積)
。ㄔO(shè)計(jì)意圖:?jiǎn)栴}是思維的動(dòng)力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,積極思考,去探索和解決實(shí)際問題,并能制造認(rèn)知沖突,形成任務(wù)驅(qū)動(dòng)的探究氛圍。)
二、新課教學(xué)
設(shè)疑揭題:我們能把一個(gè)圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個(gè)問題。板書課題:圓柱的體積。
。ㄒ唬⿲W(xué)生動(dòng)手操作探究
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系? 啟發(fā)學(xué)生回憶得出:圓柱的上下兩個(gè)底面是圓形;側(cè)面展開是長(zhǎng)方形:所以……
。2)請(qǐng)大家回憶一下:在學(xué)習(xí)圓的面積時(shí),我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的圖形,來推導(dǎo)出圓面積公式的。
。ㄍㄟ^想象,進(jìn)一步發(fā)展學(xué)生的空間觀念,由“形”到“體”;同時(shí)使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實(shí)現(xiàn)經(jīng)驗(yàn)和方法的遷移作鋪墊)
2、小組合作,探究推導(dǎo)圓柱的體積計(jì)算公式。
。1)啟發(fā)猜想:可見,大部分圖形公式的推導(dǎo)都可以把所學(xué)的轉(zhuǎn)化為學(xué)過的。那么你覺得圓柱的體積和什么有關(guān)系?你能猜一猜圓柱的體積可以怎樣計(jì)算呢? (這是學(xué)生會(huì)有圓的面積想到把圓柱轉(zhuǎn)化為長(zhǎng)方體)
老師激勵(lì)同學(xué)們:大家同意他的猜想嗎?但我們還是要小心地驗(yàn)證猜想的科學(xué)性。都說實(shí)踐出真知,接下來同學(xué)們以小組為單位拿出學(xué)具,動(dòng)手嘗試著進(jìn)行轉(zhuǎn)化,并說一說轉(zhuǎn)化的過程。
(2)學(xué)生以小組為單位操作體驗(yàn)。
老師引導(dǎo)學(xué)生探究:
① 說說你們小組是如何轉(zhuǎn)化的。這是一個(gè)標(biāo)準(zhǔn)的長(zhǎng)方體嗎?為什么?
、 如果分割得份數(shù)越多,你有什么發(fā)現(xiàn)?(電腦演示轉(zhuǎn)化過程)
、 這是同學(xué)們剛才的轉(zhuǎn)化過程。那書上是怎么說的?下面就請(qǐng)同學(xué)們打開書,自由讀,用直線標(biāo)記,找出關(guān)鍵句。全班齊讀。
。ǎ常┈F(xiàn)在再請(qǐng)一位同學(xué)到前面來演示轉(zhuǎn)化過程。其他同學(xué)邊觀察邊思考: ①切割后拼成了一個(gè)近似于什么的形體?
、趫A柱的體積與拼成后的長(zhǎng)方體的體積有什么關(guān)系?
③這個(gè)長(zhǎng)方體的底面積等于圓柱的什么?
、荛L(zhǎng)方體的高與圓柱體的高有什么關(guān)系?
。ǘ┙處熣n件演示
1、課件演示拼、組的過程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成16份、32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。依次解決問題。 ①把圓柱拼成長(zhǎng)方體后,形狀變了,體積不變。
。ò鍟洪L(zhǎng)方體的體積=圓柱的體積)
②拼成的長(zhǎng)方體的底面積等于圓柱的底面積,高就是圓柱的高。
(配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)
、蹐A柱的體積=底面積×高 字母公式是V=Sh(板書公式)討論并得出結(jié)果。你能根據(jù)這個(gè)實(shí)驗(yàn)得出圓柱的體積計(jì)算公式嗎?為什么?
圓柱體積教學(xué)設(shè)計(jì)11
教學(xué)目標(biāo)
1.使學(xué)生初步理解和掌握?qǐng)A柱的體積計(jì)算公式。會(huì)用公式計(jì)算圓柱的體積,并能應(yīng)用分式解答一些實(shí)際問題。
2.在充分展示體積公式推導(dǎo)過程的基礎(chǔ)上,培養(yǎng)學(xué)生推理歸納能力和自學(xué)能力。
教學(xué)重點(diǎn): 圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教學(xué)難點(diǎn):圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教 法:?jiǎn)l(fā)點(diǎn)撥,歸納總結(jié),直觀演示
學(xué) 法:自學(xué)歸納法,小組交流法
課前準(zhǔn)備:課件
教學(xué)過程:
一、定向?qū)W(xué)(5分)
。ㄒ唬⿲(dǎo)學(xué)
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學(xué)過哪些體積的計(jì)算公式?(指名回答)
根據(jù)學(xué)生的回答,板書:
長(zhǎng)方體體積=底面積×高
2.圓面積公式是怎樣推導(dǎo)出來的?
生:把一個(gè)圓,平均分成數(shù)個(gè)扇形,拼成一個(gè)近似長(zhǎng)方形,長(zhǎng)方形的長(zhǎng)相當(dāng)于圓周長(zhǎng)的一半,寬相當(dāng)于圓的半徑,(根據(jù)學(xué)生的敘述,邊用幻燈片演示。)得到圓面積公式s=2πr。
3.動(dòng)腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學(xué)過的形體,推導(dǎo)出計(jì)算圓柱體積的公式?
4、導(dǎo)入
我們已經(jīng)認(rèn)識(shí)了圓柱體,學(xué)會(huì)了圓柱體側(cè)面積和表面積的計(jì)算,今天研究圓柱的體積。(板書:圓柱的體積)
。ǘ┒ㄏ
出示學(xué)習(xí)目標(biāo):
1、理解和掌握?qǐng)A柱的體積計(jì)算公式。
2、會(huì)用公式計(jì)算圓柱的體積,并能運(yùn)用公式解答一些實(shí)際問題。
二、合作交流(15分)
1.閱讀書25頁。
2、看書回答:
(1)圓柱體是怎樣變成近似長(zhǎng)方體的?
(2)切拼成的長(zhǎng)方體的體積、底面積和高分別與圓柱體的`體積、底面積、高有什么關(guān)系?
(3)怎樣計(jì)算切拼成的長(zhǎng)方體體積?為什么 ?用字母怎樣表示?
3、小組展評(píng)交流結(jié)果。
(1)展評(píng)題(1)。圓柱體是怎樣變成長(zhǎng)方體的?把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個(gè)近似長(zhǎng)方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長(zhǎng)方體。)
(2)展評(píng)題2。
切拼成的長(zhǎng)方體的體積相當(dāng)于圓柱的體積,長(zhǎng)方體的底面積相當(dāng)于圓柱體的底面積,長(zhǎng)方體的高相當(dāng)于圓柱體的高。
(3)展評(píng)題3
圓柱體積=底面積×高
v=sh
4、公式檢測(cè)
學(xué)生獨(dú)立完成書上做一做1、2題。
三、自主學(xué)習(xí)(5)
1、出示例6
下面這個(gè)杯子能不能裝下這袋奶
直徑8厘米 高10厘米 這袋奶498毫升
2、嘗試列式計(jì)算.
3、學(xué)生展示自學(xué)結(jié)果。
4、小結(jié)
小結(jié):要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長(zhǎng),先求出底面積)和高。注意統(tǒng)一單位名稱。
四、質(zhì)疑探究(2)
已知圓柱的底面周長(zhǎng)和高又怎樣求圓柱的體積?
五、
小結(jié)檢測(cè)
。
13
分)
。ㄒ唬┬〗Y(jié)
讓學(xué)生說出圓柱體積的推導(dǎo)過程,體積公式。
。ǘz測(cè)
1、把圓柱切開,可拼成一個(gè)( ),圓柱的體積等于近似長(zhǎng)方體的( ),圓柱的底面積等于( ),圓柱的高等于( ),所以圓柱的體積=( )。
2.圓柱體的底面積3.14平方分米,高40厘米。它的體積是多少?
3.一根圓柱形鐵棒,底面周長(zhǎng)是12.56厘米,長(zhǎng)是100厘米,它的體積是多少?
4 判斷正誤,對(duì)的畫“√”,錯(cuò)誤的畫“×”。
。1)圓柱體的底面積越大,它的體積越大。( )
。2)圓柱體的高越長(zhǎng),它的體積越大。( )
。3)圓柱體的體積與長(zhǎng)方體的體積相等。( )
。4)圓柱體的底面直徑和高可以相等。( )
5、 一張長(zhǎng)方形的紙長(zhǎng)6.28分米,寬4分米。用它分別圍成兩個(gè)圓柱體,它們的體積大小一樣嗎?請(qǐng)你計(jì)算一下。
板書設(shè)計(jì):
圓柱的體積
圓柱體積=底面積×高
v=sh
75× 90=6750(立方厘米) 杯子的底面積:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的體積是6750立方米。答:這個(gè)杯子能裝下這袋奶。
圓柱體積教學(xué)設(shè)計(jì)12
教學(xué)目標(biāo):
1、通過教學(xué),使學(xué)生經(jīng)歷觀察、猜想、操作、驗(yàn)證、交流和歸納等數(shù)學(xué)活動(dòng)過程,探索并掌握?qǐng)A柱的體積公式,初步學(xué)會(huì)應(yīng)用公式計(jì)算圓柱的體積,并解決相關(guān)的簡(jiǎn)單實(shí)際問題;
2、使學(xué)生在活動(dòng)中進(jìn)一步體會(huì)“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識(shí)解決新問題的能力。
3、培養(yǎng)學(xué)生初步的空間概念、動(dòng)手能力、操作能力和邏輯思維推理能力。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式進(jìn)行正確計(jì)算。
教學(xué)難點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過程,體會(huì)“轉(zhuǎn)化”方法的價(jià)值。
教學(xué)準(zhǔn)備:
1、用于演示把圓柱體積轉(zhuǎn)化成長(zhǎng)方體體積的教具。
2、多媒體課件。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入、揭示課題
談話:前幾節(jié)課我們已經(jīng)認(rèn)識(shí)了圓柱體,學(xué)會(huì)了計(jì)算圓柱的側(cè)面積、底面積和表面積,今天這節(jié)課我們繼續(xù)來研究圓柱的體積。同學(xué)們回憶一下,什么叫體積?(指名回答,生:物體所占空間的大小叫做體積。)我們學(xué)會(huì)計(jì)算哪些立體圖形的體積呢?(指名學(xué)生回答,教師演示課件。根據(jù)學(xué)生的回答,板書:長(zhǎng)方體的體積=底面積×高)
1、呈現(xiàn)長(zhǎng)方體、正方體和圓柱的直觀圖。
2、揭題:老師為大家準(zhǔn)備了長(zhǎng)方體、正方體、圓柱。其中我們學(xué)過了長(zhǎng)方體和正方體的體積計(jì)算方法。大家想不想知道圓柱體的體積計(jì)算方法?今天我們一起來探索圓柱體積的計(jì)算方法。(板書課題:圓柱的體積)
3、教師:在研究這個(gè)問題之前,我們先來復(fù)習(xí)一下,圓的面積是怎樣計(jì)算的呢?圓的面積計(jì)算公式是怎樣推導(dǎo)出來的?(學(xué)生:把一個(gè)圓,平均分成若干個(gè)扇形,拼成一個(gè)近似長(zhǎng)方形,長(zhǎng)方形的長(zhǎng)相當(dāng)于圓周長(zhǎng)的一半,寬相當(dāng)于圓的半徑。)根據(jù)學(xué)生的敘述,教師課件演示。
二、自主探究,精講點(diǎn)撥
1、教師:那么今天我們要研究的圓柱的體積,能不能也像剛才圓的面積公式推導(dǎo)過程一樣,轉(zhuǎn)化成我們學(xué)過的立體圖形,推導(dǎo)出計(jì)算圓柱體積的公式呢?
2、學(xué)生小組討論、交流。
教師:同學(xué)們自己先在小組里討論一下
。1)你準(zhǔn)備把圓柱體轉(zhuǎn)化成什么立體圖形?
。2)你是怎樣轉(zhuǎn)化成這個(gè)立體圖形的?
。3)轉(zhuǎn)化以后的立體圖形和圓柱體之間有什么關(guān)系?
3、推導(dǎo)圓柱體積公式。
學(xué)生交流,教師動(dòng)畫演示。
。1)把圓柱體轉(zhuǎn)化成長(zhǎng)方體。
。2)怎樣轉(zhuǎn)化成長(zhǎng)方體呢?(指名敘述:把圓柱體底面分成平均分成若干個(gè)扇形(例如分成16份),然后把圓柱切開,拼成一個(gè)近似長(zhǎng)方體。)你會(huì)操作嗎?(學(xué)生演示教具)
。3)教師說明:底面扇形平均分的份數(shù)越多,拼成的立體圖形就越接近長(zhǎng)方體。
。4)教師:這個(gè)長(zhǎng)方體與圓柱體比較一下,什么變了?什么沒變?(生:形狀變了,體積大小沒變。)
。5)推導(dǎo)圓柱體積公式。
討論:切拼成的長(zhǎng)方體與圓柱體有什么關(guān)系?(學(xué)生回答:切拼成的長(zhǎng)方體的體積相當(dāng)于圓柱的體積,長(zhǎng)方體的底面積相當(dāng)于圓柱體的底面積,長(zhǎng)方體的高相當(dāng)于圓柱體的高。教師根據(jù)學(xué)生回答演示課件。)
教師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?板書:
圓柱的體積 = 底面積×高
V = S h
三、運(yùn)用公示,解決問題
教師:根據(jù)圓柱體積的計(jì)算公式,如果要求圓柱的體積,你必須知道哪些條件就可以求?
、僦缊A柱的底面積和高,可以求圓柱的體積。
練習(xí)七的第1題:填表。
②知道圓柱的底面半徑和高,可以求圓柱的體積。
試一試。
③知道圓柱的底面積直徑和高,可以求圓柱的體積。
練一練的第1題:計(jì)算下面各圓柱的體積。
、苤缊A柱的底面周長(zhǎng)和高,可以求圓柱的體積。
一根圓柱形零件,底面周長(zhǎng)是12.56厘米,長(zhǎng)是10厘米,它的體積是多少?
四、遷移應(yīng)用,質(zhì)疑反饋。
1、判斷正誤,對(duì)的畫“√”,錯(cuò)誤的畫“×”。
2、計(jì)算下面各圓柱的體積。
3、智慧屋:已知一個(gè)圓柱的側(cè)面積為37.68平方厘米,底面半徑為3厘米,求這個(gè)圓柱的體積。
五、全課小結(jié)。
這節(jié)課我們一起學(xué)習(xí)了運(yùn)用轉(zhuǎn)化的方法推導(dǎo)出圓柱體積的'計(jì)算公式,并且能夠運(yùn)用圓柱體積的計(jì)算公式解決一些實(shí)際問題。在今后的學(xué)習(xí)中,特別提醒大家一定正確計(jì)算出圓柱的體積,并且能靈活運(yùn)用圓柱的體積計(jì)算公式。
六、作業(yè)布置:
完成作業(yè)紙上的習(xí)題
教學(xué)反思
本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育蘇教版六年級(jí)下冊(cè)的《圓柱的體積》,以前教學(xué)此內(nèi)容時(shí),直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學(xué)生套公式練習(xí);我教此內(nèi)容時(shí),不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。對(duì)此,我作如下反思:
一、學(xué)生學(xué)到了有價(jià)值的知識(shí)。
學(xué)生通過實(shí)踐、探索、發(fā)現(xiàn),得到的知識(shí)是“活”的,這樣的知識(shí)對(duì)學(xué)生自身智力和創(chuàng)造力發(fā)展會(huì)起到積極的推動(dòng)作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識(shí)具有個(gè)人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實(shí)踐增強(qiáng)探究和創(chuàng)新意識(shí),學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動(dòng)手實(shí)踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識(shí),把學(xué)生當(dāng)成知識(shí)的“容器”。學(xué)生的學(xué)習(xí)只是被動(dòng)地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。
而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。
不足之處是:
1、
2、 留給學(xué)生自由討論、實(shí)踐和思考的時(shí)間較少。 教學(xué)時(shí)教師語言過于平緩,沒有調(diào)動(dòng)起學(xué)生的積極性。
圓柱體積教學(xué)設(shè)計(jì)13
教學(xué)目標(biāo):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問題。
3、進(jìn)一步提高學(xué)生解決問題的能力。
教學(xué)重、難點(diǎn):
1、理解圓柱體積公式的推導(dǎo)過程。
2、能夠初步地學(xué)會(huì)運(yùn)用體積公式解決簡(jiǎn)單的實(shí)際問題。
3、理解圓柱體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
圓柱切割組合模具、小黑板。
教學(xué)過程:
一、創(chuàng)設(shè)情境,生成問題
1、什么是體積?(物體所占空間的大小叫做物體的體積。)
2、長(zhǎng)方體的體積該怎樣計(jì)算?歸納到底面積乘高上來。
3、圓的面積怎樣計(jì)算?
二、探索交流,解決問題
1、計(jì)算圓的面積時(shí),是把圓面積轉(zhuǎn)化成我們學(xué)過的長(zhǎng)方形進(jìn)行計(jì)算的,能不能把圓柱轉(zhuǎn)化成我們學(xué)過的立體圖形來計(jì)算它的體積?
(啟發(fā)學(xué)生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會(huì)拼成怎樣的圖形?教師演示,引導(dǎo)學(xué)生進(jìn)行觀察。
3、思考:
(1)圓柱切開后可以拼成一個(gè)什么形體?(長(zhǎng)方體)
(2)通過實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?小組討論:實(shí)驗(yàn)前后,什么變了?什么沒變?討論后,整理出來,再進(jìn)行匯報(bào)。
(拼成的近似長(zhǎng)方體體積大小沒變,形狀變了,拼成的近似長(zhǎng)方體和圓柱相比,底面形狀變了,由圓變成了近似長(zhǎng)方形,而底面的面積大小沒有發(fā)生變化。近似長(zhǎng)方形的高就是圓柱的高,沒有變化。)
4、推導(dǎo)圓柱體積公式
小組討論:怎樣計(jì)算圓柱的體積?
學(xué)生匯報(bào)討論結(jié)果。
長(zhǎng)方體的體積可以用底面積乘高來計(jì)算,而在推導(dǎo)過程中,長(zhǎng)方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的`體積也可以用底面積乘高來計(jì)算。
師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?
板書:V=Sh
5、算一算:已知一根柱子的底面半徑為米,高為5米。你能算出它的體積嗎?
三、鞏固應(yīng)用練習(xí)。
1、一個(gè)圓柱形水桶,從桶內(nèi)量得底面直徑是3分米,高是4分米,這個(gè)水桶的容積是多少升?說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長(zhǎng)是厘米,長(zhǎng)是100厘米,它的體積是多少?先求底面半徑再求底面積,最后求體積。已知底面周長(zhǎng)對(duì)解決問題有什么幫助嗎?必須先求出什么?
四:課堂小結(jié):
通過這節(jié)課你學(xué)會(huì)了哪些知識(shí),有什么收獲?
五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
圓柱體積教學(xué)設(shè)計(jì)14
一、教學(xué)內(nèi)容
教材第25頁 例5、例6
二、學(xué)習(xí)目標(biāo)
1、知識(shí)目標(biāo):理解、掌握?qǐng)A柱的體積公式的推導(dǎo)過程,能利用圓柱的體積計(jì)算公式解決問題。
2、能力目標(biāo):經(jīng)歷圓柱的體積公式的推導(dǎo)過程,學(xué)會(huì)運(yùn)用轉(zhuǎn)化的思想解決一些具體問題。
3、情感目標(biāo):感受圓柱的體積的計(jì)算與生活密不可分,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
三、教學(xué)重難點(diǎn)
1、重點(diǎn):理解、掌握?qǐng)A柱的體積公式的推導(dǎo)過程。
2、難點(diǎn):圓柱體積公式的推導(dǎo)過程。
四、教學(xué)準(zhǔn)備
多媒體課件
五、教學(xué)過程
<一>創(chuàng)設(shè)情境、生成問題
師:前面我們學(xué)過長(zhǎng)方體和正方體的體積計(jì)算方法,你還記得是怎么計(jì)算的嗎?(課件出示一個(gè)長(zhǎng)方體和一個(gè)正方體)
生答:長(zhǎng)方體的體積用長(zhǎng)X寬X高,正方體的體積是用棱長(zhǎng)X棱長(zhǎng)X棱長(zhǎng),或者用一個(gè)公用的底面積X高來計(jì)算
師:這位同學(xué)回答的非常好,今天這節(jié)課我們就一起來研究圓柱體的體積計(jì)算方法。
板書:圓柱的體積(課件)
<二>探索交流、解決問題
1、猜想
師:長(zhǎng)方體和正方體體積的大小取決于三條棱的長(zhǎng)度,或者說取決于底面積和高,那么你認(rèn)為圓柱的體積取決于什么呢?
。ㄉ杂刹孪,并討論交流)師適當(dāng)板書記錄
剛才那幾個(gè)同學(xué)都很有想法,覺得圓柱的體積的大小可能和XXXX有關(guān)系,有人這樣說過,偉大的猜想必須要經(jīng)過驗(yàn)證才能得到證明,否則的話只能是空想,接下來通過兩組圖片大家進(jìn)行驗(yàn)證一下
(課件出示兩組圖片,第一組兩個(gè)圓柱等底不等高,第二組兩個(gè)圓柱等高不等底)
師:第一組圖片中的兩個(gè)圓柱有什么特征?
生:底面一樣,但是高度卻不一樣,體積也不一樣
師:第二組圖片中的兩個(gè)圓柱有什么特征?
生:這組圖片中的兩個(gè)圓柱高度一樣,但是底面卻不一樣,體積也不一樣
師:那么通過剛才兩個(gè)同學(xué)的回答,你能得出什么結(jié)論呢?
小結(jié):圓柱的體積的大小取決于圓柱底面的大小和高度的大小
師:那么你能大膽的猜想一下圓柱的體積是如何計(jì)算的嗎?
生猜想......
師:我們的猜想對(duì)不對(duì),還是要用實(shí)驗(yàn)去證明
2、推導(dǎo)圓柱體積計(jì)算公式
師:怎么樣進(jìn)行實(shí)驗(yàn)?zāi)兀拷Y(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),小組討論交流,說說自己的想法
生:我們是把圓柱的底面分成若干偶數(shù)分,然后用刀割開,在進(jìn)行拼組,變成一個(gè)長(zhǎng)方體,這樣通過轉(zhuǎn)化,圓柱就變成了一個(gè)近似的長(zhǎng)方體,分的份數(shù)越多,越接近一個(gè)長(zhǎng)方體,然后通過求長(zhǎng)方體的體積去求圓柱的體積
師:用心思考的同學(xué)總能找到解決問題的辦法,那么接下來同學(xué)們就利用手里的.學(xué)習(xí)用具完成這個(gè)驗(yàn)證實(shí)驗(yàn)并完成老師給你們的實(shí)踐作業(yè)紙
。ㄕn件出示作業(yè)紙)對(duì)應(yīng)和公式推導(dǎo)
選取小組的作業(yè)紙進(jìn)行展示,有其他同學(xué)進(jìn)行評(píng)定
課件演示結(jié)果
小結(jié):通過轉(zhuǎn)化的數(shù)學(xué)思想我們將圓柱的體積轉(zhuǎn)化成已經(jīng)學(xué)過的長(zhǎng)方體的體積,圓柱的體積計(jì)算公式是底面積乘高。
另外,圓柱的底面積、直徑、半徑和周長(zhǎng)四個(gè)數(shù)據(jù)中的任意一個(gè)和圓柱的高兩個(gè)數(shù)據(jù)就可以求出圓柱的體積。
<三>鞏固應(yīng)用、內(nèi)化提高
2、
3、下面這個(gè)杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測(cè)量得到的)
8cm
8cm
498ml
498ml
10cm
10cm
<四>回顧整理、反思提升
今天這節(jié)課你有什么新的收獲說出來和大家一起分享吧!
圓柱體積教學(xué)設(shè)計(jì)15
一、復(fù)習(xí)導(dǎo)入
1、回顧上節(jié)課內(nèi)容,提問:圓柱的特征,圓柱的表面積計(jì)算方法。
導(dǎo)入:這節(jié)課我們學(xué)習(xí)圓柱的體積、
2、想一想,提問:什么叫做體積?我們學(xué)過哪些物體的體積計(jì)算公式?
(物體所占空間的大小叫做體積、學(xué)過長(zhǎng)方體正方體的、)
它們的計(jì)算公式是什么?可以歸納為:
長(zhǎng)(正)方體的體積===底面積*高
3、想一想:圓面積計(jì)算公式的推導(dǎo)過程、
(把圓面積轉(zhuǎn)化為一個(gè)近似的長(zhǎng)方形的面積,從而推導(dǎo)出圓面積的計(jì)算公式)
那么,能不能把圓柱轉(zhuǎn)化為我們已學(xué)過的圖形來計(jì)算它的體積?
二、新授:
敘:以上研究圓面積計(jì)算公式的方法叫做割補(bǔ)法,這種方法也適用于推導(dǎo)圓柱體積的計(jì)算公式、下面請(qǐng)同學(xué)們打開課本看書自學(xué)。
演示并提問:
。1)拼成的長(zhǎng)方體的體積與圓柱的體積有什么關(guān)系?
。2)拼成的長(zhǎng)方體的底面積與圓柱的哪部分有關(guān)系?有什么關(guān)系?
。3)拼成的長(zhǎng)方體的高與圓柱的哪部分有關(guān)系?有什么關(guān)系?
總結(jié):長(zhǎng)方體的.體積與圓柱的體積相等,長(zhǎng)方體的底面積與圓柱的底面積相等,長(zhǎng)方體的高與圓柱的高相等。
因?yàn)椋簣A柱的體積===長(zhǎng)方體的體積
長(zhǎng)方體的體積===底面積*高
↓↓↓
所以:圓柱的體積===底面積*高
用字母表示為:v==sh
運(yùn)用以上公式,完成練習(xí)題、
。ㄗ⒁猓?jiǎn)挝灰y(tǒng)一,要認(rèn)真審題,認(rèn)真計(jì)算、)
動(dòng)腦筋,思考以下幾個(gè)問題:
已知如下條件,如何求圓柱的體積?
(1)底面積s、高h(yuǎn)→→體積v==
。2)底面半徑r、高h(yuǎn)→→體積v==
。3)底面直徑d、高h(yuǎn)→→體積v==
。4)底面周長(zhǎng)c、高h(yuǎn)→→體積v==
強(qiáng)調(diào):圓柱的體積v=sh=rh,在沒有告訴底面積和高時(shí),要先找底面半徑和高,應(yīng)用v=rh去計(jì)算。
三、鞏固練習(xí)(填表)
hvs=20平方分米
4分米
r=5厘米
10厘米
d=8分米
6分米
c=12、56米
2米
四、課堂小結(jié)
同學(xué)們,通過這堂課的學(xué)習(xí)你知道了些什么?誰來說一下。
回答得非常好,下去以后可以應(yīng)用所學(xué)知識(shí)去解答一些實(shí)際問題。
板書設(shè)計(jì):
圓柱的體積
圓柱的體積===底面積*高
↓↓↓
長(zhǎng)方體的體積===底面積*高v==sh
作業(yè)設(shè)計(jì):完成習(xí)題
【圓柱體積教學(xué)設(shè)計(jì)】相關(guān)文章:
《圓柱的體積》教學(xué)設(shè)計(jì)05-13
《圓柱的體積》教學(xué)設(shè)計(jì)15篇05-13
《圓柱的體積》教學(xué)設(shè)計(jì)(15篇)05-16
《圓柱的體積》教學(xué)設(shè)計(jì)范文(精選8篇)04-20
圓柱的體積教學(xué)反思07-07
《圓柱的體積》教學(xué)反思09-24
《圓柱的體積》教學(xué)設(shè)計(jì)模板(通用5篇)04-20
《圓柱的體積》教案09-01
圓柱的體積教案03-19