- 相關推薦
乘法結合律和乘法交換律教學設計
作為一位杰出的老師,很有必要精心設計一份教學設計,借助教學設計可以更好地組織教學活動。那要怎么寫好教學設計呢?以下是小編收集整理的乘法結合律和乘法交換律教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。
乘法結合律和乘法交換律教學設計1
【教材分析】
本課是北師大版數(shù)學實驗教材四年級上冊的一個教學內容,它是在學習了兩位數(shù)乘兩位數(shù)乘法和初次體驗有趣算式規(guī)律探索的基礎上進一步拓展。乘法結合律這一內容與以往教材安排不同的是把認識乘法結合律放在學生自主探索中,通過創(chuàng)設情境活動,讓學生逐步發(fā)現(xiàn)乘法計算中的特殊現(xiàn)象。這樣安排不僅是讓學生能發(fā)現(xiàn)乘法運算定律,更主要的是讓學生經歷探索過程,通過對乘法結合律探索基本步驟的體驗為學生今后的數(shù)學探索活動打下基礎。
【學情分析】
學習方式上:四年級的學生,經歷四年的課改實驗,已具有一定的發(fā)現(xiàn)問題、提出問題、解決問題的能力。同學之間能夠較好地合作交流與傾聽。能比較主動地探究新知,運用已有的知識經驗來學習新知。
知識技能上:在學習本課前,學生已經知道:25×4=100 、125×8=1000以及整十整百整千數(shù)乘法計算比較簡便。
【學習目標】
知識與技能:通過探索活動,發(fā)現(xiàn)乘法交換律、結合律,并用字母進行表示。在理解乘法結合律的基礎上,會對一些算式進行簡便計算。
過程與方法:經歷數(shù)學探索過程,進一步體會探索的過程和方法。
情感、態(tài)度、價值觀:感受數(shù)學探索的樂趣,培養(yǎng)自主探究問題的能力。
【學習重難點】
探索、發(fā)現(xiàn)、理解、應用乘法結合律。
【教學策略】
創(chuàng)設情境,組織探索,引導自主學習。
【教學過程】
一、創(chuàng)設情境,發(fā)現(xiàn)問題
師:同學們喜歡搭積木嗎?
生:喜歡
師:我們的淘氣也很喜歡搭積木,而且聰明的他還從其中發(fā)現(xiàn)了一些數(shù)學的奧秘呢,你們想知道是什么嗎?
生:想
師:那好,就讓我們一起去探索與發(fā)現(xiàn)。
二、探索乘法交換律
播放課件1,出示情境圖。(用小正方體搭成的一個長方體的一面)
師:你知道圖中有多少個小正方體嗎?說說自己是怎樣想的。
生:我是橫著數(shù)一行有5個小正方體,一共有4行,5×4=20個。
生:豎著數(shù)一排有4個小正方體,一共有5排,4×5=20個。
師(板書5×4=4×5)可以這樣寫嗎?為什么?
生:可以因為積相等,(求的就是一個整體)
師:認真觀察這個等式,你能發(fā)現(xiàn)什么奧妙嗎?
生思考,匯報(數(shù)字相同,交換了位置,積不變)
師:你們的發(fā)現(xiàn)淘氣也找到了,不過喜歡思考的他還想到了一個問題,是不是所有的兩個數(shù)相乘交換乘數(shù)的位置積都不變呢?
生:……
師:請你幫淘氣舉一些這樣的例子來驗證一下行嗎?
生舉例驗證
師:大家找到了這么多例子,也就是說兩個數(shù)相乘交換乘數(shù)的位置,積不變是普遍存在的一種規(guī)律,如果用a、b表示兩個數(shù),你能寫出發(fā)現(xiàn)的規(guī)律嗎?
生說師板書:
a×b﹦b×a叫做乘法交換律
師:a。b指的是什么?
。ㄔO計意圖:乘法的結合律探索中往往包含著交換律,因此先經歷交換律的探索過程既把分散的情景整合為一個整體,又為乘法結合律的學習作了鋪墊。)
三、探索乘法結合律
1、課件2出示情景圖(書54頁)
師:請大家認真觀察,估一估搭這個長方體用了多少個小正方體?
學生獨立觀察、思考后集體交流。(說說估計的方法)
師:誰估計的'準確呢?請同學們在本子上算一算。
。▽W生獨立思考,計算,教師巡視)
師:誰愿意把你的想法介紹給大家?
生舉手匯報,師追問:怎樣想的?
師引導從上面、正面觀察
上面:(3×5)×4
師:這個算式可以寫成 (5×3)×4 嗎?
生:可以,都是求同一個物體,
生:可以,雖然3和5的位置交換了,但根據(jù)乘法的交換律它們的積不變。
師:出示4×(5×3) 可以這樣寫嗎?
生交流,師引導可以把(5×3)看成一個數(shù),這里也運用了乘法的交換律。
正面:(4×5)×3
師:你還可以怎樣寫?根據(jù)是什么?
生:(5×4)×3 3×(5×4)
(設計意圖:通過對算式的變換,鞏固乘法交換律)
師:細心的淘氣在這些算式中發(fā)現(xiàn)了兩組特別的算式,(師擦掉其它算式,留下(3×5)×4 3×(5×4)請同學們比較這兩個算式你發(fā)現(xiàn)了什么?把你的發(fā)現(xiàn)告訴大家。
生;乘數(shù)相同,三個數(shù)的位置不相同,運算順序不同,積相同。
師:可以寫成(3×5)×4 = 3×(5×4)嗎?
生思考回答。
。ㄔO計意圖:通過對算式異同的比較,讓學生自己發(fā)現(xiàn)規(guī)律,)
2、提出假設,舉例驗證
師:你們的發(fā)言很精彩,那么象這樣的三個乘數(shù)的位置不變,改變運算順序,積不變是不是在其他算式中也存在呢?你還能舉出例子來嗎?可以是兩位數(shù)或三位數(shù)相乘的,為了節(jié)省大家計算的時間,在運算時可以使用計算器
。▽W生在小組內舉例交流討論,教師巡視指導。)
師:誰愿意介紹一下你們舉例的情況。
生:……
3、概括規(guī)律
師:從剛才大家所舉的例子來看,每一組的結果都是相同的。這樣的例子多不多?(生:多)能不能舉完呢?(生:不能)那么從中你又能發(fā)現(xiàn)乘法運算中的什么規(guī)律嗎?
生思考概括
師:你們概括得真好,你能用三個不同的字母分別表示乘法算式中的任意三個數(shù)字,寫出我們發(fā)現(xiàn)的規(guī)律嗎?
生說師板書:
。╝×b)×c﹦a×(b×c)叫做乘法結合律
三、運用模型,完成練習
1、學生獨立完成“練一練”1題。最后運用課件集體訂正。
2、運用乘法結合律很快算出38×25×4 42×125×8
生獨立完成,小組交流后匯報
3、完成“練一練”。先要求學生獨立計算,教師巡視,發(fā)現(xiàn)有錯的讓該生上去視屏展示,集體交流,并說明運用了什么規(guī)律。
。ㄔO計意圖:通過練習讓學生能夠獨立運用乘法結合律進行簡便運算。對所學的
知識通過練習加以鞏固運用。)
五、小結:
1、 這節(jié)課你學到了什么?
2、 我們是怎樣認識這個好朋友的?
板書:
探索與發(fā)現(xiàn)
乘法交換律 乘法結合律
a×b﹦b×a (a×b)×c﹦a×(b×c)
5×4﹦4×5 (3×5)×4 =3×(5×4)
生舉例略 生舉例略
乘法結合律和乘法交換律教學設計2
第五課時:
教學內容:乘法交換律和乘法結合律練習課
教學目標:
1.能運用運算定律進行一些簡便運算。
2.培養(yǎng)學生根據(jù)具體情況,選擇算法的意識與能力,發(fā)展思維的.靈活性。
3.使學生感受數(shù)學與現(xiàn)實生活的聯(lián)系,能用所學知識解決簡單的實際問題。
教學過程:
一、基本練習
(1)口算:
50×2=100 50×20=1000
25×4=10025×8=200 25×12=300 25×40=1000
125×8=1000 125×16=200
125×24=3000125×80=10000
通過剛才的口算,你們很快就算出結果,你們知道在乘法運算中有三對好朋友,它們分別是誰?
板書:5×225×4125×8
。2)在□里填上合適的數(shù)。
30×6×7=30×(□×□)
125×8×40=(□×□)×□
。3)計算:
43×25×4 25×43×4
比較兩道題,在運用乘法運算定律時有什么不同?
在討論的基礎上,啟發(fā)學生總結出:第1題只應用乘法結合律把后兩個數(shù)相乘,就可以使計算簡便;第2題要先用乘法交換律把4放在前面,使25與4相乘,或把25放在43的后面,使25與4相乘,然后再用乘法結合律,使計算簡便。
小結:用乘法結合律進行簡便計算有兩種情況:一種是單獨運用乘法結合律使計算簡便,一種是兩個運算定律結合使用,使計算簡便。關鍵要掌握運算定律的內容,根據(jù)題目的特點,靈活運用運算定律。
引導學生在對比中加以區(qū)分。
(4)師生比賽,看誰直接說出結果速度快。
25×42×4 68×125×8
4×39×25
。5)對比練習:
4×25+16×25
4×25×16×25
(25+15) ×4
。25×15)×4
46×25
。40+6)×25
49×49+49×51
49×99+49
。68+32)×5
68+32×5
學生小組分工后獨立完成,再進行小組內交流。
匯報。
二、小結
學生談收獲。
【乘法結合律和乘法交換律教學設計】相關文章:
《乘法結合律和交換律》教學設計06-07
《乘法交換律和結合律》教學反思06-01
乘法結合律教學設計03-29
乘法結合律教學設計15篇06-11
乘法結合律教學設計(15篇)06-11
《乘法結合律》教學反思04-20
乘法結合律教案07-05
《乘法結合律》的教學反思(精選6篇)10-07
《乘法結合律》的聽課反思10-06
《小數(shù)乘法》教學設計10-11