高一數(shù)學(xué)教案
作為一位杰出的老師,時(shí)常會(huì)需要準(zhǔn)備好教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。來(lái)參考自己需要的教案吧!下面是小編精心整理的高一數(shù)學(xué)教案,僅供參考,大家一起來(lái)看看吧。
高一數(shù)學(xué)教案1
教學(xué)目標(biāo)
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
教學(xué)重難點(diǎn)
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
教學(xué)過(guò)程
一、知識(shí)歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱:
(1)仰角與俯角:均是指視線與水平線所成的'角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測(cè)量角度問(wèn)題
例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個(gè)雷達(dá)觀測(cè)站A.某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東。
高一數(shù)學(xué)教案2
教學(xué)目標(biāo):
(1)了解集合的表示方法;
(2)能正確選擇自然語(yǔ)言、圖形語(yǔ)言、集合語(yǔ)言(列舉法或描述法)描述不同的具體問(wèn)題,感受集合語(yǔ)言的意義和作用;
教學(xué)重點(diǎn):掌握集合的表示方法;
教學(xué)難點(diǎn):選擇恰當(dāng)?shù)谋硎痉椒?
教學(xué)過(guò)程:
一、復(fù)習(xí)回顧:
1.集合和元素的定義;元素的三個(gè)特性;元素與集合的關(guān)系;常用的數(shù)集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關(guān)系
二、新課教學(xué)
(一).集合的表示方法
我們可以用自然語(yǔ)言和圖形語(yǔ)言來(lái)描述一個(gè)集合,但這將給我們帶來(lái)很多不便,除此之外還常用列舉法和描述法來(lái)表示集合。
(1) 列舉法:把集合中的元素一一列舉出來(lái),并用花括號(hào)“ ”括起來(lái)表示集合的方法叫列舉法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
說(shuō)明:1.集合中的元素具有無(wú)序性,所以用列舉法表示集合時(shí)不必考
慮元素的順序。
2.各個(gè)元素之間要用逗號(hào)隔開(kāi);
3.元素不能重復(fù);
4.集合中的元素可以數(shù),點(diǎn),代數(shù)式等;
5.對(duì)于含有較多元素的集合,用列舉法表示時(shí),必須把元素間的規(guī)律顯示清楚后方能用省略號(hào),象自然數(shù)集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數(shù)組成的集合;
(2)方程x2=x的所有實(shí)數(shù)根組成的集合;
(3)由1到20以內(nèi)的所有質(zhì)數(shù)組成的集合;
(4)方程組 的解組成的集合。
思考2:(課本P4的思考題)得出描述法的定義:
(2)描述法:把集合中的元素的公共屬性描述出來(lái),寫在花括號(hào){ }內(nèi)。
具體方法:在花括號(hào)內(nèi)先寫上表示這個(gè)集合元素的'一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
說(shuō)明:
1.課本P5最后一段話;
2.描述法表示集合應(yīng)注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個(gè)集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實(shí)數(shù)集},{R}也是錯(cuò)誤的。
例2.(課本例2)試分別用列舉法和描述法表示下列集合:
(1)方程x2—2=0的所有實(shí)數(shù)根組成的集合;
(2)由大于10小于20的所有整數(shù)組成的集合;
(3)方程組 的解。
思考3:(課本P6思考)
說(shuō)明:列舉法與描述法各有優(yōu)點(diǎn),應(yīng)該根據(jù)具體問(wèn)題確定采用哪種表示法,要注意,一般集合中元素較多或有無(wú)限個(gè)元素時(shí),不宜采用列舉法。
(二).課堂練習(xí):
1.課本P6練習(xí)2;
2.用適當(dāng)?shù)姆椒ū硎炯希捍笥?的所有奇數(shù)
3.集合A={x| ∈Z,x∈N},則它的元素是 。
4.已知集合A={x|-3
歸納小結(jié):
本節(jié)課從實(shí)例入手,介紹了集合的常用表示方法,包括列舉法、描述法。
作業(yè)布置:
1. 習(xí)題1.1,第3.4題;
2. 課后預(yù)習(xí)集合間的基本關(guān)系.
高一數(shù)學(xué)教案3
本文題目:高一數(shù)學(xué)教案:函數(shù)的奇偶性
課題:1.3.2函數(shù)的奇偶性
一、三維目標(biāo):
知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。
過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。
情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操. 通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學(xué)生善于探索的思維品質(zhì)。
二、學(xué)習(xí)重、難點(diǎn):
重點(diǎn):函數(shù)的奇偶性的概念。
難點(diǎn):函數(shù)奇偶性的判斷。
三、學(xué)法指導(dǎo):
學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作交流,在思考、探索和交流的過(guò)程中獲得對(duì)函數(shù)奇偶性的全面的體驗(yàn)和理解。對(duì)于奇偶性的應(yīng)用采取講練結(jié)合的`方式進(jìn)行處理,使學(xué)生邊學(xué)邊練,及時(shí)鞏固。
四、知識(shí)鏈接:
1.復(fù)習(xí)在初中學(xué)習(xí)的軸對(duì)稱圖形和中心對(duì)稱圖形的定義:
2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說(shuō)出圖象的對(duì)稱性。
五、學(xué)習(xí)過(guò)程:
函數(shù)的奇偶性:
(1)對(duì)于函數(shù) ,其定義域關(guān)于原點(diǎn)對(duì)稱:
如果______________________________________,那么函數(shù) 為奇函數(shù);
如果______________________________________,那么函數(shù) 為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對(duì)稱,偶函數(shù)的圖象關(guān)于_________對(duì)稱。
(3)奇函數(shù)在對(duì)稱區(qū)間的增減性 ;偶函數(shù)在對(duì)稱區(qū)間的增減性 。
六、達(dá)標(biāo)訓(xùn)練:
A1、判斷下列函數(shù)的奇偶性。
(1)f(x)=x4;(2)f(x)=x5;
(3)f(x)=x+ (4)f(x)=
A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .
B3、已知 ,其中 為常數(shù),若 ,則
_______ .
B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )
(A) 軸對(duì)稱 (B) 軸對(duì)稱 (C)原點(diǎn)對(duì)稱 (D)以上均不對(duì)
B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .
C6、若函數(shù) 是定義在R上的奇函數(shù),且當(dāng) 時(shí), ,那么當(dāng)
時(shí), =_______ .
D7、設(shè) 是 上的奇函數(shù), ,當(dāng) 時(shí), ,則 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .
七、學(xué)習(xí)小結(jié):
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。
八、課后反思:
高一數(shù)學(xué)教案4
教學(xué)目標(biāo):
1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見(jiàn)問(wèn)題.
2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).
2.回答下列問(wèn)題.
(1)函數(shù)y=log2x的值域是 ;
(2)函數(shù)y=log2x(x≥1)的值域是 ;
(3)函數(shù)y=log2x(0
3.情境問(wèn)題.
函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問(wèn)題.
三、數(shù)學(xué)運(yùn)用
例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.
練習(xí):
(1)已知函數(shù)y=log2x的.值域是[-2,3],則x的范圍是________________.
(2)函數(shù) ,x(0,8]的值域是 .
(3)函數(shù)y=log (x2-6x+17)的值域 .
(4)函數(shù) 的值域是_______________.
例2 判斷下列函數(shù)的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,試求實(shí)數(shù)a 取值范圍.
例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).
(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.
練習(xí):
1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域?yàn)镽的有 (請(qǐng)寫出所有正確結(jié)論的序號(hào)).
2.函數(shù)y=lg( -1)的圖象關(guān)于 對(duì)稱.
3.已知函數(shù) (a>0,a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱,那么實(shí)數(shù)m= .
4.求函數(shù) ,其中x [ ,9]的值域.
四、要點(diǎn)歸納與方法小結(jié)
(1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
五、作業(yè)
課本P70~71-4,5,10,11.
高一數(shù)學(xué)教案5
第一節(jié) 集合的含義與表示
學(xué)時(shí):1學(xué)時(shí)
[學(xué)習(xí)引導(dǎo)]
一、自主學(xué)習(xí)
1.閱讀課本 .
2.回答問(wèn)題:
、疟竟(jié)內(nèi)容有哪些概念和知識(shí)點(diǎn)?
⑵嘗試說(shuō)出相關(guān)概念的含義?
3完成 練習(xí)
4小結(jié)
二、方法指導(dǎo)
1、要結(jié)合例子理解集合的概念,能說(shuō)出常用的數(shù)集的名稱和符號(hào)。
2、理解集合元素的特性,并會(huì)判斷元素與集合的關(guān)系
3、掌握集合的表示方法,并會(huì)正確運(yùn)用它們表示一些簡(jiǎn)單集合。
4、在學(xué)習(xí)中要特別注意理解空集的意義和記法
[思考引導(dǎo)]
一、提問(wèn)題
1.集合中的元素有什么特點(diǎn)?
2、集合的常用表示法有哪些?
3、集合如何分類?
4.元素與集合具有什么關(guān)系?如何用數(shù)學(xué)語(yǔ)言表述?
5集合 和 是否相同?
二、變題目
1.下列各組對(duì)象不能構(gòu)成集合的是( )
A.北京大學(xué)2008級(jí)新生
B.26個(gè)英文字母
C.著名的藝術(shù)家
D.2008年北京奧運(yùn)會(huì)中所設(shè)定的比賽項(xiàng)目
2.下列語(yǔ)句:①0與 表示同一個(gè)集合;
、谟1,2,3組成的.集合可表示為 或 ;
、鄯匠 的解集可表示為 ;
、芗 可以用列舉法表示。
其中正確的是( )
A.①和④ B.②和③
C.② D.以上語(yǔ)句都不對(duì)
[總結(jié)引導(dǎo)]
1.集合中元素的三特性:
2.集合、元素、及其相互關(guān)系的數(shù)學(xué)符號(hào)語(yǔ)言的表示和理解:
3.空集的含義:
[拓展引導(dǎo)]
1.課外作業(yè): 習(xí)題11第 題;
2.若集合 ,求實(shí)數(shù) 的值;
3.若集合 只有一個(gè)元素,則實(shí)數(shù) 的值為 ;若 為空集,則 的取值范圍是 .
撰稿:程曉杰 審稿:宋慶
高一數(shù)學(xué)教案6
【學(xué)習(xí)目標(biāo)】
1、感受數(shù)學(xué)探索的成功感,提高學(xué)習(xí)數(shù)學(xué)的興趣;
2、經(jīng)歷誘導(dǎo)公式的探索過(guò)程,感悟由未知到已知、復(fù)雜到簡(jiǎn)單的數(shù)學(xué)轉(zhuǎn)化思想。
3、能借助單位圓的對(duì)稱性理解記憶誘導(dǎo)公式,能用誘導(dǎo)公式進(jìn)行簡(jiǎn)單應(yīng)用。
【學(xué)習(xí)重點(diǎn)】三角函數(shù)的誘導(dǎo)公式的理解與應(yīng)用
【學(xué)習(xí)難點(diǎn)】誘導(dǎo)公式的推導(dǎo)及靈活運(yùn)用
【知識(shí)鏈接】(1)單位圓中任意角α的正弦、余弦的定義
。2)對(duì)稱性:已知點(diǎn)P(x,),那么,點(diǎn)P關(guān)于x軸、軸、原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)
【學(xué)習(xí)過(guò)程】
一、預(yù)習(xí)自學(xué)
閱讀書第19頁(yè)——20頁(yè)內(nèi)容,通過(guò)對(duì)-α、π-α、π+α、2π-α、α的終邊與單位圓的交點(diǎn)的對(duì)稱性規(guī)律的探究,結(jié)合單位圓中任意角的正弦、余弦的定義,從中自我發(fā)現(xiàn)歸納出三角函數(shù)的誘導(dǎo)公式,并寫出下列關(guān)系:
(1)- 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式與 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(2)角407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(3)角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
(4)角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式與角 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 的正弦函數(shù)、余弦函數(shù)關(guān)系
二、合作探究
探究1、求下列函數(shù)值,思考你用到了哪些三角函數(shù)誘導(dǎo)公式?試總結(jié)一下求任意角的三角函數(shù)值的`過(guò)程與方法。
。1) 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 (2) 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 (3)sin(-1650°);
探究2: 化簡(jiǎn): 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式(先逐個(gè)化簡(jiǎn))
探究3、利用單位圓求滿足 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 的角的集合。
三、學(xué)習(xí)小結(jié)
。1)你能說(shuō)說(shuō)化任意角的正(余)弦函數(shù)為銳角正(余)弦函數(shù)的一般思路嗎?
。2)本節(jié)學(xué)習(xí)涉及到什么數(shù)學(xué)思想方法?
(3)我的疑惑有
【達(dá)標(biāo)檢測(cè)】
1、在單位圓中,角α的終邊與單位圓交于點(diǎn)P(- 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 , 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 ),
則sin(-α)= ;cs(α±π)= ;cs(π-α)=
2.求下列函數(shù)值:
(1)sin( 407[導(dǎo)學(xué)案]4.4單位圓的對(duì)稱性與誘導(dǎo)公式 )= ; (2) cs210&rd;=
3、若csα=-1/2,則α的集合S=
高一數(shù)學(xué)教案7
一、教學(xué)目標(biāo)
。1)了解含有“或”、“且”、“非”復(fù)合命題的概念及其構(gòu)成形式;
(2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結(jié)詞和簡(jiǎn)單命題構(gòu)成不同形式的復(fù)合命題;
。4)能識(shí)別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡(jiǎn)單命題;
。5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;
。6)在知識(shí)學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡(jiǎn)單推理的技能.
二、教學(xué)重點(diǎn)難點(diǎn):
重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對(duì)“或”的含義的理解.
三、教學(xué)過(guò)程
1.新課導(dǎo)入
在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開(kāi)邏輯.具有一定邏輯知識(shí)是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.?dāng)?shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識(shí),將會(huì)在我們學(xué)習(xí)的過(guò)程中不知不覺(jué)地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們?cè)诔踔幸呀?jīng)開(kāi)始接觸一些簡(jiǎn)易邏輯的知識(shí).
初一平面幾何中曾學(xué)過(guò)命題,請(qǐng)同學(xué)們舉一個(gè)命題的例子.(板書:命題.)
。◤某踔薪佑|過(guò)的“命題”入手,提出問(wèn)題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識(shí).)
學(xué)生舉例:平行四邊形的對(duì)角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問(wèn):“……相等的角是對(duì)頂角”是不是命題?……(3)
。ㄍ瑢W(xué)議論結(jié)果,答案是肯定的.)
教師提問(wèn):什么是命題?
。▽W(xué)生進(jìn)行回憶、思考.)
概念總結(jié):對(duì)一件事情作出了判斷的語(yǔ)句叫做命題.
。ń處熆隙送瑢W(xué)的回答,并作板書.)
由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學(xué)生討論以下問(wèn)題.)
例1 判斷以下各語(yǔ)句是不是命題,若是,判斷其真假:
命題一定要對(duì)一件事情作出判斷,(3)、(4)沒(méi)有對(duì)一件事情作出判斷,所以它們不是命題.
初中所學(xué)的命題概念涉及邏輯知識(shí),我們今天開(kāi)始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡(jiǎn)易邏輯的知識(shí).
2.講授新課
大家看課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))從第25頁(yè)至26頁(yè)例1前,并歸納一下這段內(nèi)容主要講了哪些問(wèn)題?
(片刻后請(qǐng)同學(xué)舉手回答,一共講了四個(gè)問(wèn)題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的`語(yǔ)句叫做命題.
判斷一個(gè)語(yǔ)句是不是命題,關(guān)鍵看這語(yǔ)句有沒(méi)有對(duì)一件事情作出了判斷,疑問(wèn)句、祈使句都不是命題.有些語(yǔ)句中含有變量,如 x2-5x+6=0
中含有變量 ,在不給定變量的值之前,我們無(wú)法確定這語(yǔ)句的真假(這種含有變量的語(yǔ)句叫做“開(kāi)語(yǔ)句”).
。2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
命題可分為簡(jiǎn)單命題和復(fù)合命題.
不含邏輯聯(lián)結(jié)詞的命題叫做簡(jiǎn)單命題.簡(jiǎn)單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
由簡(jiǎn)單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡(jiǎn)單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
(4)命題的表示:用p ,q ,r ,s ,……來(lái)表示.
。ń處煾鶕(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對(duì)復(fù)合命題的概念作出分析和展開(kāi).)
我們接觸的復(fù)合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.
給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說(shuō)出構(gòu)成它的簡(jiǎn)單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡(jiǎn)單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
對(duì)于給出“若p 則q ”形式的復(fù)合命題,應(yīng)能找到條件p 和結(jié)論q .
在判斷一個(gè)命題是簡(jiǎn)單命題還是復(fù)合命題時(shí),不能只從字面上來(lái)看有沒(méi)有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無(wú)“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無(wú)“或”,但它們都是復(fù)合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡(jiǎn)單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡(jiǎn)單命題.
。1)5 ;
(2)0.5非整數(shù);
。3)內(nèi)錯(cuò)角相等,兩直線平行;
(4)菱形的對(duì)角線互相垂直且平分;
。5)平行線不相交;
。6)若ab=0 ,則a=0 .
(讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對(duì)“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)
高一數(shù)學(xué)教案8
教學(xué)目標(biāo)
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.
2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點(diǎn)難點(diǎn)分析
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
三、教法建議
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).
(2)函數(shù)單調(diào)性證明的`步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高一數(shù)學(xué)教案9
[三維目標(biāo)]
一、知識(shí)與技能:
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想
3、了解集合元素個(gè)數(shù)問(wèn)題的討論說(shuō)明
二、過(guò)程與方法
通過(guò)提問(wèn)匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題 [教 具]:多媒體、實(shí)物投影儀
[教學(xué)方法]:講練結(jié)合法
[授課類型]:復(fù)習(xí)課
[課時(shí)安排]:1課時(shí)
[教學(xué)過(guò)程]:集合部分匯總
本單元主要介紹了以下三個(gè)問(wèn)題:
1,集合的.含義與特征
2,集合的表示與轉(zhuǎn)化
3,集合的基本運(yùn)算
一,集合的含義與表示(含分類)
1,具有共同特征的對(duì)象的全體,稱一個(gè)集合
2,集合按元素的個(gè)數(shù)分為:有限集和無(wú)窮集兩類
高一數(shù)學(xué)教案10
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開(kāi),《課程方案》提出了教育要面向世界,面向未來(lái),面向現(xiàn)代化和教育必須為社會(huì)主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會(huì)主義事業(yè)的建設(shè)者和接班人的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會(huì)主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識(shí)和基本技能。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力。使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺(jué)心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會(huì)通過(guò)收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來(lái)解決實(shí)際問(wèn)題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
二、學(xué)生狀況分析
本學(xué)期擔(dān)任高一(1)班和(5)班的數(shù)學(xué)教學(xué)工作,學(xué)生共有111人,其中(1)班學(xué)生是名校直通班,學(xué)生思維活躍,(5)班是火箭班,學(xué)生基本素質(zhì)不錯(cuò),一些基本知識(shí)掌握不是很好,學(xué)習(xí)積極性需要教師提高,成績(jī)以中等為主,中上不多。兩個(gè)班中,從軍訓(xùn)一周來(lái)看,學(xué)生的學(xué)習(xí)積極性還是比較高,愛(ài)問(wèn)問(wèn)題的同學(xué)比較多,但由于基礎(chǔ)知識(shí)不太牢固,上課效率不是很高。
教材簡(jiǎn)析
使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(A版)》,教材在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問(wèn)題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修4有三章(三角函數(shù);平面向量;三角恒等變換)。
必修1,主要涉及兩章內(nèi)容:
第一章 集合
通過(guò)本章學(xué)習(xí),使學(xué)生感受到用集合表示數(shù)學(xué)內(nèi)容時(shí)的簡(jiǎn)潔性、準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合語(yǔ)言表示數(shù)學(xué)對(duì)象,為以后的學(xué)習(xí)奠定基礎(chǔ)。
1.了解集合的含義,體會(huì)元素與集合的屬于關(guān)系,并初步掌握集合的表示方法;新-課-標(biāo)-第-一-網(wǎng)
2.理解集合間的包含與相等關(guān)系,能識(shí)別給定集合的子集,了解全集與空集的含義;
3.理解補(bǔ)集的含義,會(huì)求在給定集合中某個(gè)集合的補(bǔ)集;
4.理解兩個(gè)集合的并集和交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集和交集;
5.滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法;
6.在引導(dǎo)學(xué)生觀察、分析、抽象、類比得到集合與集合間的關(guān)系等數(shù)學(xué)知識(shí)的過(guò)程中,培養(yǎng)學(xué)生的思維能力。
第二章 函數(shù)的概念與基本初等函數(shù)Ⅰ
教學(xué)本章時(shí)應(yīng)立足于現(xiàn)實(shí)生活從具體問(wèn)題入手,以問(wèn)題為背景,按照問(wèn)題情境數(shù)學(xué)活動(dòng)意義建構(gòu)數(shù)學(xué)理論數(shù)學(xué)應(yīng)用回顧反思的順序結(jié)構(gòu),引導(dǎo)學(xué)生通過(guò)實(shí)驗(yàn)、觀察、歸納、抽象、概括,數(shù)學(xué)地提出、分析和解決問(wèn)題。通過(guò)本章學(xué)習(xí),使學(xué)生進(jìn)一步感受函數(shù)是探索自然現(xiàn)象、社會(huì)現(xiàn)象基本規(guī)律的工具和語(yǔ)言,學(xué)會(huì)用函數(shù)的思想、變化的觀點(diǎn)分析和解決問(wèn)題,達(dá)到培養(yǎng)學(xué)生的創(chuàng)新思維的目的。
1.了解函數(shù)概念產(chǎn)生的背景,學(xué)習(xí)和掌握函數(shù)的概念和性質(zhì),能借助函數(shù)的知識(shí)表述、刻畫事物的變化規(guī)律;X|k |b| 1 . c|o |m
2.理解有理指數(shù)冪的意義,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì);理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);了解冪函數(shù)的概念和性質(zhì),知道指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)時(shí)描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型;
3.了解函數(shù)與方程之間的關(guān)系;會(huì)用二分法求簡(jiǎn)單方程的.近似解;了解函數(shù)模型及其意義;
4.培養(yǎng)學(xué)生的理性思維能力、辯證思維能力、分析問(wèn)題和解決問(wèn)題的能力、創(chuàng)新意識(shí)與探究能力、數(shù)學(xué)建模能力以及數(shù)學(xué)交流的能力。
必修4,主要涉及三章內(nèi)容:
第一章 三角函數(shù)
通過(guò)本章學(xué)習(xí),有助于學(xué)生認(rèn)識(shí)三角函數(shù)與實(shí)際生活的緊密聯(lián)系,以及三角函數(shù)在解決實(shí)際問(wèn)題中的廣泛應(yīng)用,從中感受數(shù)學(xué)的價(jià)值,學(xué)會(huì)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)世界、解決日常生活和其他學(xué)科學(xué)習(xí)中的問(wèn)題,發(fā)展數(shù)學(xué)應(yīng)用意識(shí)。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數(shù)的定義,理解同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式;
3.了解三角函數(shù)的周期性;
4.掌握三角函數(shù)的圖像與性質(zhì)。
第二章 平面向量
在本章中讓學(xué)生了解平面向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,能用向量的語(yǔ)言和方法表述和解決數(shù)學(xué)和物理中的一些問(wèn)題,發(fā)展運(yùn)算能力和解決實(shí)際問(wèn)題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數(shù)乘的運(yùn)算;
3.理解平面向量的正交分解及其坐標(biāo)表示,掌握平面向量的坐標(biāo)運(yùn)算;
4.理解平面向量數(shù)量積的含義,會(huì)用平面向量的數(shù)量積解決有關(guān)角度和垂直的問(wèn)題。
第三章 三角恒等變換
通過(guò)推導(dǎo)兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過(guò)程,讓學(xué)生在經(jīng)歷和參與數(shù)學(xué)發(fā)現(xiàn)活動(dòng)的基礎(chǔ)上,體會(huì)向量與三角函數(shù)的聯(lián)系、向量與三角恒等變換公式的聯(lián)系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正確運(yùn)用三角公式進(jìn)行簡(jiǎn)單的三角函數(shù)式的化簡(jiǎn)、求值和恒等式證明。
三、教學(xué)任務(wù)
本期授課內(nèi)容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
四、教學(xué)質(zhì)量目標(biāo)新 課 標(biāo)
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會(huì)數(shù)學(xué)思想和方法。
2.提高空間想象、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高學(xué)生提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀。
五、促進(jìn)目標(biāo)達(dá)成的重點(diǎn)工作及措施
重點(diǎn)工作:
認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹(shù)立新的教學(xué)理念,以雙基教學(xué)為主要內(nèi)容,堅(jiān)持抓兩頭、帶中間、整體推進(jìn),使每個(gè)學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。
分層推進(jìn)措施
1、重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹(shù)立勇于克服困難與戰(zhàn)勝困難的信心。
2、合理引入課題,由數(shù)學(xué)活動(dòng)、故事、提問(wèn)、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、培養(yǎng)能力是數(shù)學(xué)教學(xué)的落腳點(diǎn)。能力是在獲得和運(yùn)用知識(shí)的過(guò)程中逐步培養(yǎng)起來(lái)的。在銜接教學(xué)中,首先要加強(qiáng)基本概念和基本規(guī)律的教學(xué)。
加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、講清講透數(shù)學(xué)概念和規(guī)律,使學(xué)生掌握完整的基礎(chǔ)知識(shí),培養(yǎng)學(xué)生數(shù)學(xué)思維能力 ,抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對(duì)不同的教材內(nèi)容選擇不同教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動(dòng)接受知識(shí)轉(zhuǎn)化主動(dòng)學(xué)習(xí)知識(shí)。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
7、加強(qiáng)學(xué)生良好學(xué)習(xí)習(xí)慣的培養(yǎng)
六、教學(xué)時(shí)間大致安排
集合與函數(shù)概念 13 課時(shí)
基本初等函數(shù) 15
課時(shí)
函數(shù)的應(yīng)用 8
課時(shí)
三角函數(shù) 24
課時(shí)
平面向量 14
課時(shí)
三角恒等變換 9
課時(shí)
高一數(shù)學(xué)教案11
1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
。2) 能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的.性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。
2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹(shù)立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案:教材分析
。1) 對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
。2) 本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
(3) 本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開(kāi)。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。
高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案:教法建議
。1) 對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù) 的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
。2) 在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。
高一數(shù)學(xué)教案12
教學(xué)目標(biāo):
1、掌握對(duì)數(shù)的運(yùn)算性質(zhì),并能理解推導(dǎo)這些法則的依據(jù)和過(guò)程;
2、能較熟練地運(yùn)用法則解決問(wèn)題;
教學(xué)重點(diǎn):
對(duì)數(shù)的運(yùn)算性質(zhì)
教學(xué)過(guò)程:
一、問(wèn)題情境:
1、指數(shù)冪的運(yùn)算性質(zhì);
2、問(wèn)題:對(duì)數(shù)運(yùn)算也有相應(yīng)的運(yùn)算性質(zhì)嗎?
二、學(xué)生活動(dòng):
1、觀察教材P59的表2—3—1,驗(yàn)證對(duì)數(shù)運(yùn)算性質(zhì)、
2、理解對(duì)數(shù)的運(yùn)算性質(zhì)、
3、證明對(duì)數(shù)性質(zhì)、
三、建構(gòu)數(shù)學(xué):
1)引導(dǎo)學(xué)生驗(yàn)證對(duì)數(shù)的運(yùn)算性質(zhì)、
2)推導(dǎo)和證明對(duì)數(shù)運(yùn)算性質(zhì)、
3)運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)解題、
探究:
①簡(jiǎn)易語(yǔ)言表達(dá):“積的對(duì)數(shù)=對(duì)數(shù)的和”……
、谟袝r(shí)逆向運(yùn)用公式運(yùn)算:如
、壅鏀(shù)的取值范圍必須是:不成立;不成立、
、茏⒁猓海
四、數(shù)學(xué)運(yùn)用:
1、例題:
例1、(教材P60例4)求下列各式的值:
。1);(2)125;(3)(補(bǔ)充)lg、
例2、(教材P60例4)已知,,求下列各式的.值(結(jié)果保留4位小數(shù))
。1);(2)、
例3、用,,表示下列各式:
例4、計(jì)算:
。1);(2);(3)
2、練習(xí):
P60(練習(xí))1,2,4,5、
五、回顧小結(jié):
本節(jié)課學(xué)習(xí)了以下內(nèi)容:對(duì)數(shù)的運(yùn)算法則,公式的逆向使用、
六、課外作業(yè):
P63習(xí)題5
補(bǔ)充:
1、求下列各式的值:
。1)6—3;(2)lg5+lg2;(3)3+、
2、用lgx,lgy,lgz表示下列各式:
。1)lg(xyz);(2)lg;(3);(4)、
3、已知lg2=0、3010,lg3=0、4771,求下列各對(duì)數(shù)的值(精確到小數(shù)點(diǎn)后第四位)
(1)lg6;(2)lg;(3)lg;(4)lg32、
高一數(shù)學(xué)教案13
學(xué)習(xí)目標(biāo)
1.能根據(jù)拋物線的定義建立拋物線的標(biāo)準(zhǔn)方程;
2.會(huì)根據(jù)拋物線的標(biāo)準(zhǔn)方程寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程;
3.會(huì)求拋物線的標(biāo)準(zhǔn)方程。
一、預(yù)習(xí)檢查
1.完成下表:
標(biāo)準(zhǔn)方程
圖形
焦點(diǎn)坐標(biāo)
準(zhǔn)線方程
開(kāi)口方向
2.求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程.
3.求經(jīng)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.
二、問(wèn)題探究
探究1:回顧拋物線的定義,依據(jù)定義,如何建立拋物線的標(biāo)準(zhǔn)方程?
探究2:方程是拋物線的標(biāo)準(zhǔn)方程嗎?試將其與拋物線的標(biāo)準(zhǔn)方程辨析比較.
例1.已知拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在直線上,求拋物線的方程.
例2.已知拋物線的焦點(diǎn)在軸上,點(diǎn)是拋物線上的一點(diǎn),到焦點(diǎn)的距離是5,求的值及拋物線的標(biāo)準(zhǔn)方程,準(zhǔn)線方程.
例3.拋物線的頂點(diǎn)在原點(diǎn),對(duì)稱軸為軸,它與圓相交,公共弦的長(zhǎng)為.求該拋物線的方程,并寫出其焦點(diǎn)坐標(biāo)與準(zhǔn)線方程.
三、思維訓(xùn)練
1.在平面直角坐標(biāo)系中,若拋物線上的.點(diǎn)到該拋物線的焦點(diǎn)的距離為6,則點(diǎn)的橫坐標(biāo)為.
2.拋物線的焦點(diǎn)到其準(zhǔn)線的距離是.
3.設(shè)為拋物線的焦點(diǎn),為該拋物線上三點(diǎn),若,則=.
4.若拋物線上兩點(diǎn)到焦點(diǎn)的距離和為5,則線段的中點(diǎn)到軸的距離是.
5.(理)已知拋物線,有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),斜邊長(zhǎng)為,一直角邊所在直線方程是,求此拋物線的方程。
四、課后鞏固
1.拋物線的準(zhǔn)線方程是.
2.拋物線上一點(diǎn)到焦點(diǎn)的距離為,則點(diǎn)到軸的距離為.
3.已知拋物線,焦點(diǎn)到準(zhǔn)線的距離為,則.
4.經(jīng)過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為.
5.頂點(diǎn)在原點(diǎn),以雙曲線的焦點(diǎn)為焦點(diǎn)的拋物線方程是.
6.拋物線的頂點(diǎn)在原點(diǎn),以軸為對(duì)稱軸,過(guò)焦點(diǎn)且傾斜角為的直線被拋物線所截得的弦長(zhǎng)為8,求拋物線的方程.
7.若拋物線上有一點(diǎn),其橫坐標(biāo)為,它到焦點(diǎn)的距離為10,求拋物線方程和點(diǎn)的坐標(biāo)。
高一數(shù)學(xué)教案14
教材:邏輯聯(lián)結(jié)詞
目的:要求學(xué)生了解復(fù)合命題的意義,并能指出一個(gè)復(fù)合命題是有哪些簡(jiǎn)單命題與邏輯聯(lián)結(jié)詞,并能由簡(jiǎn)單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。
過(guò)程:
一、提出課題:簡(jiǎn)單邏輯、邏輯聯(lián)結(jié)詞
二、命題的概念:
例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③
定義:可以判斷真假的語(yǔ)句叫命題。正確的叫真命題,錯(cuò)誤的叫假命題。
如:①②是真命題,③是假命題
反例:3是12的約數(shù)嗎? x5 都不是命題
不涉及真假(問(wèn)題) 無(wú)法判斷真假
上述①②③是簡(jiǎn)單命題。 這種含有變量的語(yǔ)句叫開(kāi)語(yǔ)句(條件命題)。
三、復(fù)合命題:
1.定義:由簡(jiǎn)單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。
2.例:
(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除
(2)菱形的對(duì)角線互相 菱形的對(duì)角線互相垂直且菱形的
垂直且平分⑤ 對(duì)角線互相平分
(3)0.5非整數(shù)⑥ 非0.5是整數(shù)
觀察:形成概念:簡(jiǎn)單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。
3.其實(shí),有些概念前面已遇到過(guò)
如:或:不等式 x2x60的.解集 { x | x2或x3 }
且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }
四、復(fù)合命題的構(gòu)成形式
如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過(guò)的有以下三種:
即: p或q (如 ④) 記作 pq
p且q (如 ⑤) 記作 pq
非p (命題的否定) (如 ⑥) 記作 p
小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式
高一數(shù)學(xué)教案15
教學(xué)目標(biāo):
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;
3、了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問(wèn)題;
4、掌握向量垂直的條件、
教學(xué)重難點(diǎn):
教學(xué)重點(diǎn):平面向量的數(shù)量積定義
教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)工具:
投影儀
教學(xué)過(guò)程:
一、復(fù)習(xí)引入:
1、向量共線定理向量與非零向量共線的.充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ
五,課堂小結(jié)
(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
六、課后作業(yè)
P107習(xí)題2、4A組2、7題
課后小結(jié)
(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?
課后習(xí)題
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案根式10-20
高一數(shù)學(xué)教案15篇12-21
高一數(shù)學(xué)教案函數(shù)范文10-12
高一數(shù)學(xué)教案解三角形10-20
數(shù)學(xué)教案12-30
小班數(shù)學(xué)教案:種花_小班數(shù)學(xué)教案07-06
趣味的數(shù)學(xué)教案02-25