成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

二次根式教案

時間:2022-11-01 21:58:28 教案 投訴 投稿

實用的二次根式教案4篇

  在教學工作者開展教學活動前,總歸要編寫教案,借助教案可以有效提升自己的教學能力。那么什么樣的教案才是好的呢?以下是小編幫大家整理的二次根式教案4篇,歡迎閱讀,希望大家能夠喜歡。

實用的二次根式教案4篇

二次根式教案 篇1

  教學目的

  1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

  2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

  教學重點

  最簡二次根式的定義。

  教學難點

  一個二次根式化成最簡二次根式的方法。

  教學過程

  一、復習引入

  1.把下列各根式化簡,并說出化簡的根據:

  2.引導學生觀察考慮:

  化簡前后的根式,被開方數有什么不同?

  化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

  3.啟發(fā)學生回答:

  二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結學生回答的內容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數的因數是整數,因式是整式;

  (2)被開方數中不含能開得盡的因數或因式。

  最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的指數小于2;特別注意被開方數應化為因式連乘積的形式。

  2.練習:

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結

  把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

  當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

  當被開方數是分數或分式時,根據分式的基本性質和商的.算術平方根的性質化去分母。

  此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結

  本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數為多項式時要進行因式分解,被開方數為兩個分數的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

二次根式教案 篇2

  一、教學目標

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質 和 ,并能靈活應用;

  4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

  5. 通過二次根式性質 和 的介紹滲透對稱性、規(guī)律性的數學美.

  二、教學重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學方法

  啟發(fā)式、講練結合.

  四、教學過程

  (一)復習提問

  1.什么叫平方根、算術平方根?

  2.說出下列各式的意義,并計算:

  通過練習使學生進一步理解平方根、算術平方根的概念.

  觀察上面幾個式子的特點,引導學生總結它們的被平方數都大于或等于零,其中 ,

  表示的是算術平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學們討論論應注意的問題,引導學生總結:

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據二次根式定義,由學生分析、回答.

  例1 當a為實數時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數時,a+10、a2-1不能保證是非負數,即a+10、a2-1可以是負數(如當a-10時,a+10又如當0

  例2 x是怎樣的實數時,式子 在實數范圍有意義?

  解:略.

  說明:這個問題實質上是在x是什么數時,x-3是非負數,式子 有意義.

  例3 當字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數必須是非負數,把問題轉化為解不等式.

  解:(1)∵a、b為任意實數時,都有a2+b20,當a、b為任意實數時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的.字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數.

  (4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(引導學生做出本節(jié)課學習內容小結)

  1.式子 叫做二次根式,實際上是一個非負的實數a的算術平方根的表達式.

  2.式子中,被開方數(式)必須大于等于零.

  (四)練習和作業(yè)

  練習:

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數時,x、x+1不能保證是非負數,即x、x+1可以是負數(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數時,下列各式在實數范圍內有意義?

  五、作業(yè)

  教材P.172習題11.1;A組1;B組1.

  六、板書設計

二次根式教案 篇3

  一、內容和內容解析

  1.內容

  二次根式的概念.

  2.內容解析

  本節(jié)課是在學生學習了平方根、算術平方根、立方根的概念,會用根號表示數的平方根、立方根,知道開方與乘方互為逆運算的基礎上,來學習二次根式的概念. 它不僅是對前面所學知識的綜合應用,也為后面學習二次根式的性質和四則運算打基礎.

  教材先設置了三個實際問題,這些問題的結果都可以表示成二次根式的形式,它們都表示一些正數的算術平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數字母的取值范圍的問題,加深學生對二次根式的定義的理解.

  本節(jié)課的教學重點是:了解二次根式的概念;

  二、目標和目標解析

  1.教學目標

 。1)體會研究二次根式是實際的需要.

  (2)了解二次根式的概念.

  2. 教學目標解析

 。1)學生能用二次根式表示實際問題中的數量和數量關系,體會研究二次根式的必要性.

 。2)學生能根據算術平方根的意義了解二次根式的概念,知道被開方數必須是非負數的理由,知道二次根式本身是一個非負數,會求二次根式中被開方數字母的取值范圍.

  三、教學問題診斷分析

  對于二次根式的定義,應側重讓學生理解 “ 的雙重非負性,”即被開方數 ≥0是非負數, 的算術平方根 ≥0也是非負數.教學時注意引導學生回憶在實數一章所學習的有關平方根的意義和特征,幫助學生理解這一要求,從而讓學生得出二次根式成立的條件,并運用被開方數是非負數這一條件進行二次根式有意義的判斷.

  本節(jié)課的教學難點為:理解二次根式的雙重非負性.

  四、教學過程設計

  1.創(chuàng)設情境,提出問題

  問題1你能用帶有根號的的式子填空嗎?

  (1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

 。2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

 。3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

  師生活動:學生獨立完成上述問題,用算術平方根表示結果,教師進行適當引導和評價.

  【設計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯系,體會研究二次根式的必要性.

  問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

  師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(包括字母或式子表示的非負數)的算術平方根.

  【設計意圖】為概括二次根式的概念作鋪墊.

  2.抽象概括,形成概念

  問題3 你能用一個式子表示一個非負數的.算術平方根嗎?

  師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

  【設計意圖】讓學生體會由特殊到一般的過程,培養(yǎng)學生的概括能力.

  追問:在二次根式的概念中,為什么要強調“a≥0”?

  師生活動:教師引導學生討論,知道二次根式被開方數必須是非負數的理由.

  【設計意圖】進一步加深學生對二次根式被開方數必須是非負數的理解.

  3.辨析概念,應用鞏固

  例1 當 時怎樣的實數時, 在實數范圍內有意義?

  師生活動:引導學生從概念出發(fā)進行思考,鞏固學生對二次根式的被開方數為非負數的理解.

  例2 當 是怎樣的實數時, 在實數范圍內有意義? 呢?

  師生活動:先讓學生獨立思考,再追問.

  【設計意圖】在辨析中,加深學生對二次根式被開方數為非負數的理解.

  問題4 你能比較 與0的大小嗎?

  師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導學生得出 ≥0的結論,強化學生對二次根式本身為非負數的理解,

  【設計意圖】通過這一活動的設計,提高學生對所學知識的遷移能力和應用意識;培養(yǎng)學生分類討論和歸納概括的能力.

  4.綜合運用,鞏固提高

  練習1 完成教科書第3頁的練習.

  練習2 當x 是什么實數時,下列各式有意義.

 。1) ;(2) ;(3) ;(4) .

  【設計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

  【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,開闊學生的視野,訓練學生的思維.

  5.總結反思

  教師和學生一起回顧本節(jié)課所學主要內容,并請學生回答以下問題.

  (1)本節(jié)課你學到了哪一類新的式子?

  (2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

  (3)二次根式與算術平方根有什么關系?

  師生活動:教師引導,學生小結.

  【設計意圖】:學生共同總結,互相取長補短,再一次突出本節(jié)課的學習重點,掌握解題方法.

  6.布置作業(yè):

  教科書習題16.1第1,3,5, 7,10題.

  五、目標檢測設計

  1. 下列各式中,一定是二次根式的是( )

  A. B. C. D.

  【設計意圖】考查對二次根式概念的了解,要特別注意被開方數為非負數.

  2. 當 時,二次根式 無意義.

  【設計意圖】考查二次根式無意義的條件,即被開方數小于0,要注意審題.

  3.當 時,二次根式 有最小值,其最小值是 .

  【設計意圖】本題主要考查二次根式被開方數是非負數的靈活運用.

  4.對于 ,小紅根據被開方數是非負數,得 出的取值范圍是 ≥ .小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出 的取值范圍.

  【設計意圖】考查二次根式的被開方數為非負數和一個式子的分母不能為0,解題時需要綜合考慮.

二次根式教案 篇4

  一、教學目標

  1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

  2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

  3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應用。

  二、教學重點和難點

  1。重點:能夠把所給的二次根式,化成最簡二次根式。

  2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

  三、教學方法

  通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結歸納化簡二次根式的方法。

  四、教學手段

  利用投影儀。

  五、教學過程

  (一)引入新課

  提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會給解決實際問題帶來方便。

 。ǘ┬抡n

  由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

  這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數的因數化簡后是否是整數了,另一方面被開方數中還有沒有開得盡方的因數。

  總結滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

  1。被開方數的因數是整數,因式是整式。

  2。被開方數中不含能開得盡方的.因數或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向學生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導學生觀察例2題中二次根式的特點,即被開方數是整式或整數,再啟發(fā)學生總結這類題化簡的方法,先將被開方數或被開方式分解因數或分解因式,然后把開得盡方的因數或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導學生觀察例題3中二次根式的特點,即被開方數是分數或分式,再啟發(fā)學生總結這類題化簡的方法,先利用商的算術平方根的性質把它寫成分式的形式,然后利用分母有理化化簡。

  2。要提問學生

  問題,通過這個小題使學生明確如何使用化簡中的條件。

  通過例2、例3總結把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結應該注意的問題。

  注意:

 、倩啎r,一般需要把被開方數分解因數或分解因式。

  ②當一個式子的分母中含有二次根式時,一般應該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

 。ㄈ┬〗Y

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習題11。4;A組1;B組1。

  七、板書設計

【二次根式教案】相關文章:

二次根式教案02-15

《二次根式的運算》的教案08-25

二次根式的加減教案01-19

二次根式教案4篇02-05

精選二次根式教案三篇08-18

二次根式教案7篇01-24

二次根式數學教案11-26

二次根式教案(15篇)02-27

二次根式教案15篇02-16

二次根式教案匯總五篇04-03