成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

因式分解教案

時間:2023-04-21 13:17:08 教案 投訴 投稿

因式分解教案范文集錦六篇

  作為一名老師,通常會被要求編寫教案,教案是實施教學的主要依據(jù),有著至關重要的作用。寫教案需要注意哪些格式呢?下面是小編幫大家整理的因式分解教案6篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

因式分解教案范文集錦六篇

因式分解教案 篇1

  一、運用平方差公式分解因式

  教學目標1、使學生了解運用公式來分解因式的意義。

  2、使學生理解平方差公式的意義,弄清平方差公式的形式和特點;使學生知道把乘法公式反過來就可以得到相應的因式分解。

  3、掌握運用平方差公式分解因式的方法,能正確運用平方差公式把多項式分解因式(直接用公式不超過兩次)

  重點運用平方差公式分解因式

  難點靈活運用平方差公式分解因式

  教學方法對比發(fā)現(xiàn)法課型新授課教具投影儀

  教師活動學生活動

  情景設置:

  同學們,你能很快知道992-1是100的倍數(shù)嗎?你是怎么想出來的?

  (學生或許還有其他不同的解決方法,教師要給予充分的肯定)

  新課講解:

  從上面992-1=(99+1)(99-1),我們容易看出,這種方法利用了我們剛學過的哪一個乘法公式?

  首先我們來做下面兩題:(投影)

  1.計算下列各式:

  (1)(a+2)(a-2)=;

  (2)(a+b)(a-b)=;

  (3)(3a+2b)(3a-2b)=.

  2.下面請你根據(jù)上面的'算式填空:

  (1)a2-4=;

  (2)a2-b2=;

  (3)9a2-4b2=;

  請同學們對比以上兩題,你發(fā)現(xiàn)什么呢?

  事實上,像上面第2題那樣,把一個多項式寫成幾個整式積的形式叫做多項式的因式分解。(投影)

  比如:a2–16=a2–42=(a+4)(a–4)

  例題1:把下列各式分解因式;(投影)

  (1)36–25x2;(2)16a2–9b2;

  (3)9(a+b)2–4(a–b)2.

  (讓學生弄清平方差公式的形式和特點并會運用)

  例題2:如圖,求圓環(huán)形綠化區(qū)的面積

  練習:第87頁練一練第1、2、3題

  小結:

  這節(jié)課你學到了什么知識,掌握什么方法?

  教學素材:

  A組題:

  1.填空:81x2-=(9x+y)(9x-y);=

  利用因式分解計算:=。

  2、下列多項式中能用平方差公式分解因式的是()(A)(B)(C)(D)3.把下列各式分解因式

  (1)1-16a2(2)9a2x2-b2y2

  (3).49(a-b)2-16(a+b)2

  B組題:

  1分解因式81a4-b4=

  2若a+b=1,a2+b2=1,則ab=;

  3若26+28+2n是一個完全平方數(shù),則n=.

  由學生自己先做(或互相討論),然后回答,若有答不全的,教師(或其他學生)補充.

  學生回答1:

  992-1=99×99-1=9801-1

  =9800

  學生回答2:992-1就是(99+1)(99-1)即100×98

  學生回答:平方差公式

  學生回答:

  (1):a2-4

  (2):a2-b2

  (3):9a2-4b2

  學生輕松口答

  (a+2)(a-2)

  (a+b)(a-b)

  (3a+2b)(3a-2b)

  學生回答:

  把乘法公式

  (a+b)(a-b)=a2-b2

  反過來就得到

  a2-b2=(a+b)(a-b)

  學生上臺板演:

  36–25x2=62–(5x)2

  =(6+5x)(6–5x)

  16a2–9b2=(4a)2–(3b)2

  =(4a+3b)(4a–3b)

  9(a+b)2–4(a–b)2

  =[3(a+b)]2–[2(a–b)]2

  =[3(a+b)+2(a–b)]

  [3(a+b)–2(a–b)]

  =(5a+b)(a+5b)

  解:352π–152π

  =π(352–152)

  =(35+15)(35–15)π

  =50×20π

  =1000π(m2)

  這個綠化區(qū)的面積是

  1000πm2

  學生歸納總結

因式分解教案 篇2

  教學目標:

  1、進一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法

  3、選擇恰當?shù)姆椒ㄟM行因式分解 4、應用因式分解來解決一些實際問題

  5、體驗應用知識解決問題的樂趣

  教學重點:靈活運用因式分解解決問題

  教學難點:靈活運用恰當?shù)囊蚴椒纸獾姆椒ǎ卣咕毩?、3

  教學過程:

  一、創(chuàng)設情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識回顧

  1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

  判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)

  (1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法

  (3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解

  (5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解

  (7).2πR+2πr=2π(R+r) 因式分解

  2、.規(guī)律總結(教師講解): 分解因式與整式乘法是互逆過程.

  分解因式要注意以下幾點: (1).分解的對象必須是多項式.

  (2).分解的結果一定是幾個整式的`乘積的形式. (3).要分解到不能分解為止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法

  公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2

  4、強化訓練

  試一試把下列各式因式分解:

  (1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)

  三、例題講解

  例1、分解因式

  (1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)

  (3) (4)y2+y+例2、分解因式

  1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=

  4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3

  三、知識應用

  1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

  四、拓展應用

  1.計算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

  五、課堂小結:今天你對因式分解又有哪些新的認識?

因式分解教案 篇3

  學習目標

  1、 學會用公式法因式法分解

  2、綜合運用提取公式法、公式法分解因式

  學習重難點 重點:

  完全平方公式分解因式.

  難點:綜合運用兩種公式法因式分解

  自學過程設計

  完全平方公式:

  完全平方公式的逆運用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的值是_________________.

  想一想

  你還有哪些地方不是很懂?請寫出來。

  ____________________________________________________________________________________ 預習展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應用探究:

  1、用簡便方法計算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的'形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學生來說會難一些。

因式分解教案 篇4

  第1課時

  1.使學生了解因式分解的意義,了解因式分解和整式乘法是整式的兩種相反方向的變形.

  2.讓學生會確定多項式中各項的公因式,會用提公因式法進行因式分解.

  自主探索,合作交流.

  1.通過與因數(shù)分解的類比,讓學生感悟數(shù)學中數(shù)與式的共同點,體驗數(shù)學的類比思想.

  2.通過對因式分解的教學,培養(yǎng)學生“換元”的意識.

  【重點】 因式分解的概念及提公因式法的應用.

  【難點】 正確找出多項式中各項的公因式.

  【教師準備】 多媒體.

  【學生準備】 復習有關乘法分配律的知識.

  導入一:

  【問題】 一塊場地由三個長方形組成,這些長方形的長分別為,,,寬都是,求這塊場地的面積.

  解法1:這塊場地的面積=×+×+×=++==2.

  解法2:這塊場地的面積=×+×+×=×=×4=2.

  從上面的解答過程看,解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是將多項式化為幾個整式的積的形式的一種方法.

  [設計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.

  導入二:

  【問題】 計算×15-×9+×2采用什么方法?依據(jù)是什么?

  解法1:原式=-+==5.

  解法2:原式=×(15-9+2)=×8=5.

  解法1是按運算順序:先算乘法,再算加減法進行計算的,解法2是先逆用乘法分配律,再進行計算的,由此可知解法2要簡單一些.這個事實說明,有時我們需要將多項式化為幾個整式的積的形式,而提公因式法就是把多項式化為幾個整式的積的形式的一種方法.

  [設計意圖] 讓學生通過利用乘法分配律的逆運算這一特殊算法,運用類比思想自然地過渡到提公因式法的概念上,從而為提公因式法的掌握打下基礎.

  一、提公因式法分解因式的概念

  思路一

  [過渡語] 上一節(jié)我們學習了什么是因式分解,那么怎樣進行因式分解呢?我們來看下面的問題.

  如果一塊場地由三個長方形組成,這三個長方形的長分別為a,b,c,寬都是,那么這塊場地的面積為a+b+c或(a+b+c),可以用等號來連接,即:a+b+c=(a+b+c).

  大家注意觀察這個等式,等式左邊的每一項有什么特點?各項之間有什么聯(lián)系?等式右邊的項有什么特點?

  分析:等式左邊的每一項都含有因式,等式右邊是與多項式a+b+c的乘積,從左邊到右邊的過程是因式分解.

  由于是左邊多項式a+b+c中的各項a,b,c都含有的一個相同因式,因此叫做這個多項式各項的公因式.

  由上式可知,把多項式a+b+c寫成與多項式a+b+c的乘積的形式,相當于把公因式從各項中提出來,作為多項式a+b+c的一個因式,把從多項式a+b+c的各項中提出后形成的多項式a+b+c,作為多項式a+b+c的另一個因式.

  總結:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

  [設計意圖] 通過實例的教學,使學生明白什么是公因式和用提公因式法分解因式.

  思路二

  [過渡語] 同學們,我們來看下面的問題,看看同學們誰先做出來.

  多項式 ab+ac中,各項都含有相同的因式嗎?多項式 3x2+x呢?多項式b2+nb-b呢?

  結論:多項式中各項都含有的相同因式,叫做這個多項式各項的公因式.

  多項式2x2+6x3中各項的公因式是什么?你能嘗試將多項式2x2+6x3因式分解嗎?

  結論:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種因式分解的方法叫做提公因式法.

  [設計意圖] 從讓學生找出幾個簡單多項式的公因式,再到讓學生嘗試將多項式分解因式,使學生理解公因式以及提公因式法分解因式的概念.

  二、例題講解

  [過渡語] 剛剛我們學習了因式分解的一種方法,現(xiàn)在我們嘗試下利用這種方法進行因式分解吧.

  (教材例1)把下列各式因式分解:

  (1)3x+x3;

  (2)7x3-21x2;

  (3)8a3b2-12ab3c+ab;

  (4)-24x3+12x2-28x.

  〔解析〕 首先要找出各項的公因式,然后再提取出來.要避免提取公因式后,各項中還有公因式,即“沒提徹底”的現(xiàn)象.

  解:(1)3x+x3=x3+xx2=x(3+x2).

  (2)7x3-21x2=7x2x-7x23=7x2(x-3).

  (3)8a3b2-12ab3c+ab

  =ab8a2b-ab12b2c+ab1

  =ab(8a2b-12b2c+1).

  (4)-24x3+12x2-28x

  =-(24x3-12x2+28x)

  =-(4x6x2-4x3x+4x7)

  =-4x(6x2-3x+7).

  【學生活動】 通過剛才的練習,大家互相交流,總結出提取公因式的一般步驟和容易出現(xiàn)的問題.

  總結:提取公因式的步驟:(1)找公因式;(2)提公因式.

  容易出現(xiàn)的問題(以本題為例):(1)第(2)題中只提出7x作為公因式;(2)第(3)題中最后一項提出ab后,漏掉了“+1”;(3)第(4)題提出“-”號時,沒有把后面的因式中的每一項都變號.

  教師提醒:

  (1)各項都含有的字母的最低次冪的積是公因式的字母部分;

  (2)因式分解后括號內的多項式的項數(shù)與原多項式的項數(shù)相同;

  (3)若多項式的首項為“-”,則先提取“-”號,然后再提取其他公因式;

  (4)將分解因式后的式子再進行整式的乘法運算,其積應與原式相等.

  [設計意圖] 經歷用提公因式法進行因式分解的過程,在教師的啟發(fā)與指導下,學生自己歸納出提公因式的步驟及提取公因式時容易出現(xiàn)的類似問題,為提取公因式積累經驗.

  1.提公因式法分解因式的一般形式,如:

  a+b+c=(a+b+c).

  這里的字母a,b,c,可以是一個系數(shù)不為1的、多字母的、冪指數(shù)大于1的單項式.

  2.提公因式法分解因式的關鍵在于發(fā)現(xiàn)多項式的公因式.

  3.找公因式的一般步驟:

  (1)若各項系數(shù)是整系數(shù),則取系數(shù)的最大公約數(shù);

  (2)取各項中相同的字母,字母的指數(shù)取最低的;

  (3)所有這些因式的.乘積即為公因式.

  1.多項式-6ab2+18a2b2-12a3b2c的公因式是( )

  A.-6ab2cB.-ab2

  C.-6ab2D.-6a3b2c

  解析:根據(jù)確定多項式各項的公因式的方法,可知公因式為-6ab2.故選C.

  2.下列用提公因式法分解因式正確的是( )

  A.12abc-9a2b2=3abc(4-3ab)

  B.3x2-3x+6=3(x2-x+2)

  C.-a2+ab-ac=-a(a-b+c)

  D.x2+5x-=(x2+5x)

  解析:A.12abc-9a2b2=3ab(4c-3ab),錯誤;B.3x2-3x+6=3(x2-x+2),錯誤;D.x2+5x-=(x2+5x-1),錯誤.故選C.

  3.下列多項式中應提取的公因式為5a2b的是( )

  A.15a2b-20a2b2

  B.30a2b3-15ab4-10a3b2

  C.10a2b-20a2b3+50a4b

  D.5a2b4-10a3b3+15a4b2

  解析:B.應提取公因式5ab2,錯誤;C.應提取公因式10a2b,錯誤;D.應提取公因式5a2b2,錯誤.故選A.

  4.填空.

  (1)5a3+4a2b-12abc=a( );

  (2)多項式32p2q3-8pq4的公因式是 ;

  (3)3a2-6ab+a= (3a-6b+1);

  (4)因式分解:+n= ;

  (5)-15a2+5a= (3a-1);

  (6)計算:21×3.14-31×3.14= .

  答案:(1)5a2+4ab-12bc (2)8pq3 (3)a (4)(+n) (5)-5a (6)-31.4

  5.用提公因式法分解因式.

  (1)8ab2-16a3b3;

  (2)-15x-5x2;

  (3)a3b3+a2b2-ab;

  (4)-3a3-6a2+12a.

  解:(1)8ab2(1-2a2b).

  (2)-5x(3+x).

  (3)ab(a2b2+ab-1).

  (4)-3a(a2+2a-4).

  第1課時

  一、教材作業(yè)

  【必做題】

  教材第96頁隨堂練習.

  【選做題】

  教材第96頁習題4.2.

  二、課后作業(yè)

  【基礎鞏固】

  1.把多項式4a2b+10ab2分解因式時,應提取的公因式是 .

  2.(20xx淮安中考)因式分解:x2-3x= .

  3.分解因式:12x3-18x22+24x3=6x .

  【能力提升】

  4.把下列各式因式分解.

  (1)3x2-6x;

  (2)5x23-25x32;

  (3)-43+162-26;

  (4)15x32+5x2-20x23.

  【拓展探究】

  5.分解因式:an+an+2+a2n.

  6.觀察下列各式:12+1=1×2;22+2=2×3;32+3=3×4;….這列式子有什么規(guī)律?請你將猜想到的規(guī)律用含有字母n(n為自然數(shù))的式子表示出來.

  【答案與解析】

  1.2ab

  2.x(x-3)

  3.(2x2-3x+42)

  4.解:(1)3x(x-2). (2)5x22(-5x). (3)-2(22-8+13). (4)5x2(3x+1-42).

  5.解:原式=an1+ana2+anan=an(1+a2+an).

  6.解:由題中給出的幾個式子可得出規(guī)律:n2+n=n(n+1).

  本節(jié)運用類比的思想方法,在新概念的提出、新知識點的講授過程中,使學生易于理解和掌握.如學生在接受提公因式法時,由提公因數(shù)到提公因式,由整式乘法的逆運算到提公因式法的概念,都是利用了類比的數(shù)學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解.

  在小組討論之前,應該留給學生充分的獨立思考的時間,不要讓一些思維活躍的學生的回答代替了其他學生的思考,掩蓋了其他學生的疑問.

  由于因式分解的主要目的是對多項式進行恒等變形,它的作用更多的是應用于多項式的計算和化簡,比如在以后將要學習的分式運算、解分式方程等中都要用到因式分解的知識,因此應該注重因式分解的概念和方法的教學.

  隨堂練習(教材第96頁)

  解:(1)(a+b). (2)52(+4). (3)3x(2-3). (4)ab(a-5). (5)22(2-3). (6)b(a2-5a+9). (7)-a(a-b+c). (8)-2x(x2-2x+3).

  習題4.2(教材第96頁)

  1.解:(1)2x2-4x=2x(x-2). (2)82n+2n=2n4+2n1=2n(4+1). (3)a2x2-ax2=axax-ax=ax(ax-). (4)3x3-3x2+9x=3x(x2-x+3). (5)-24x2-12x2-283=-(24x2+12x2+283)=-4(6x2+3x+72). (6)-4a3b3+6a2b-2ab=-(4a3b3-6a2b+2ab)=-2ab(2a2b2-3a+1). (7)-2x2-12x2+8x3=-(2x2+12x2-8x3)=-2x(x+62-43). (8)-3a3+6a2-12a=-(3a3-6a2+12a)=-3a(a2-2a+4).

  2.解:(1)++=(++)=3.14×(202+162+122)=2512. (2)∵xz-z=z(x-),∴原式=×(17.8-28.8)=×(-11)=-7. (3)∵ab=7,a+b=6,∴a2b+ab2=ab(a+b)=7×6=42.

  3.解:(1)不正確,因為提取的公因式不對,應為n(2n--1). (2)不正確,因為提取公因式-b后,第三項沒有變號,應為-b(ab-2a+3). (3)正確. (4)不正確,因為最后的結果不是乘積的形式,應為(a-2)(a+1).

  提公因式法是本章的第2小節(jié),占兩個課時,這是第一課時,它主要讓學生經歷從乘法分配律的逆運算到提公因式的過程,讓學生體會數(shù)學中的一種主要思想——類比思想.運用類比的思想方法,在新概念的提出、新知識點的講授過程中,可以使學生易于理解和掌握.如學生在接受提公因式法時,由整式乘法的逆運算到提公因式法的概念,就利用了類比的數(shù)學思想,從而使得學生接受新的概念時顯得輕松自然,容易理解,進而使學生進一步理解因式分解與整式乘法運算之間的互逆關系.

  已知方程組求7(x-3)2-2(3-x)3的值.

  〔解析〕 將代數(shù)式分解因式,產生x-3與2x+兩個因式,再根據(jù)方程組整體代入,使計算簡便.

  解:7(x-3)2-2(3-x)3

  =(x-3)2[7+2(x-3)]

  =(x-3)2(7+2x-6)

  =(x-3)2(2x+).

  由方程組可得原式=12×6=6.

因式分解教案 篇5

  學習目標

  1、學會用平方差公式進行因式法分解

  2、學會因式分解的而基本步驟.

  學習重難點重點

  用平方差公式進行因式法分解.

  難點

  因式分解化簡的過程

  自學過程設計教學過程設計

 看一看

 平方差公式:

  平方差公式的逆運用:

  做一做:

 1.填空題.

  (1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).

  (3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).

  2.把下列各式分解因式結果為-(x-2y)(x+2y)的多項式是()

  A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2

  3.多項式-1+0.04a2分解因式的結果是()

  A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)

  C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)

  4.把下列各式分解因式:

  (1)4x2-25y2;(2)0.81m2-n2;

  (3)a3-9a;(4)8x3y3-2xy.

  5.把下列各式分解因式:

  (1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.

  6.用簡便方法計算:3492-2512.

  想一想

 你還有哪些地方不是很懂?請寫出來。

  ____________________________________________________________________________________

  Xkb1.com預習展示一:

  1、下列多項式能否用平方差公式分解因式?

  說說你的理由。

  4x2+y2

  4x2-(-y)2

  -4x2-y2-4x2+y2

  a2-4a2+3

  2.把下列各式分解因式:

  (1)16-a2

  (2)0.01s2-t2

  (4)-1+9x2

  (5)(a-b)2-(c-b)2

  (6)-(x+y)2+(x-2y)2

  應用探究:

 1、分解因式

  4x3y-9xy3

  變式:把下列各式分解因式

 、賦4-81y4

 、2a-8a

  2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的長方形土地。同學們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w

  3、在日常生活中如上網等都需要密碼.有一種因式分解法產生的密碼方便記憶又不易破譯.

  例如用多項式x4-y4因式分解的結果來設置密碼,當取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的`嗎?

  小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產生的密碼是什么?(寫出一個即可)

  拓展提高:

若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.

  教后反思考察利用公式法因式分解的題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的。

因式分解教案 篇6

  因式分解

  教材分析

  因式分解是進行代數(shù)式恒等變形的重要手段之一,因式分解是在學習整式四則運算的基礎上進行的,它不僅僅在多項式的除法、簡便運算中等有直接的應用,也為以后學習分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎,因此學好因式分解對于代數(shù)知識的后續(xù)學習,具有相當重要的好處。由于本節(jié)課后學習提取公因式法,運用公式法,分組分解法來進行因式分解,務必以理解因式分解的概念為前提,所以本節(jié)資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法是教學中的難點。

  教學目標

  認知目標:(1)理解因式分解的概念和好處

  (2)認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。

  潛力目標:由學生自行探求解題途徑,培養(yǎng)學生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學生智能,深化學生逆向思維潛力和綜合運用潛力。

  情感目標:培養(yǎng)學生理解矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學態(tài)度。

  目標制定的思想

  1.目標具體化、明確化,從學生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。

  2.課堂教學體現(xiàn)潛力立意。

  3.寓德育教育于教學之中。

  教學方法

  1.采用以設疑探究的引課方式,激發(fā)學生的求知欲望,提高學生的學習興趣和學習用心性。

  2.把因式分解概念及其與整式乘法的關系作為主線,訓練學生思維,以設疑——感知——概括——運用為教學程序,充分遵循學生的認知規(guī)律,使學生能順利地掌握重點,突破難點,提高潛力。

  3.在課堂教學中,引導學生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學生充分地動腦、動口、動手,用心參與到教學中來,充分體現(xiàn)了學生的主動性原則。

  4.在充分尊重教材的前提下,融教材練習、想一想于教學過程中,增設了由淺入深、各不相同卻又緊密相關的'訓練題目,為學生順利掌握因式分解概念及其與整式乘法關系創(chuàng)造了有利條件。

  5.改變傳統(tǒng)言傳身教的方式,利用計算機輔助教學手段進行教學,增大教學的容量和直觀性,提高教學效率和教學質量。

  教學過程安排

  一、提出問題,創(chuàng)設情境

  問題:看誰算得快?(計算機出示問題)

 。1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400

  (2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000

 。3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0

  二、觀察分析,探究新知

  (1)請每題想得最快的同學談思路,得出最佳解題方法(同時計算機出示答案)

 。2)觀察:a2—b2=(a+b)(a—b)①的左邊是一個什么式子?右邊又是什么形式?

  a2—2ab+b2=(a—b)2②

  20x2+60x=20x(x+3)③

  (3)類比小學學過的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。

  板書課題:§7。1因式分解

  1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

  三、獨立練習,鞏固新知

  練習

  1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)

 、伲▁+2)(x—2)=x2—4

 、趚2—4=(x+2)(x—2)

  ③a2—2ab+b2=(a—b)2

 、3a(a+2)=3a2+6a

  ⑤3a2+6a=3a(a+2)

 、辺2—4+3x=(x—2)(x+2)+3x

 、遦2++2=(k+)2

  ⑧x—2—1=(x—1+1)(x—1—1)

 、18a3bc=3a2b·6ac

  2.因式分解與整式乘法的關系:

  因式分解

  結合:a2—b2=========(a+b)(a—b)

  整式乘法

  說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。

  結論:因式分解與整式乘法正好相反。

  問題:你能利用因式分解與整式乘法正好相反這一關系,舉出幾個因式分解的例子嗎?

 。ㄈ纾河桑▁+1)(x—1)=x2—1得x2—1=(x+1)(x—1)

  由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)

  四、例題教學,運用新知:

  例:把下列各式分解因式:(計算機演示)

 。1)am+bm(2)a2—9(3)a2+2ab+b2

 。4)2ab—a2—b2(5)8a3+b6

  練習2:填空:(計算機演示)

 。1)∵2xy=2x2y—6xy2

  ∴2x2y—6xy2=2xy

  (2)∵xy=2x2y—6xy2

  ∴2x2y—6xy2=xy

 。3)∵2x=2x2y—6xy2

  ∴2x2y—6xy2=2x

  五、強化訓練,掌握新知:

  練習3:把下列各式分解因式:(計算機演示)

 。1)2ax+2ay(2)3mx—6nx(3)x2y+xy2

  (4)x2+—x(5)x2—0。01(6)a3—1

  (讓學生上來板演)

  六、變式訓練,擴展新知(計算機演示)

  1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=

  2.機動題:(填空)x2—8x+m=(x—4),且m=

  七、整理知識,構成結構(即課堂小結)

  1.因式分解的概念因式分解是整式中的一種恒等變形

  2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。

  3.利用2中關系,能夠從整式乘法探求因式分解的結果。

  4.教學中滲透對立統(tǒng)一,以不變應萬變的辯證唯物主義的思想方法。

  八、布置作業(yè)

  1.作業(yè)本(一)中§7。1節(jié)

  2.選做題:①x2+x—m=(x+3),且m=。

  ②x2—3x+k=(x—5),且k=。

  評價與反饋

  1.透過由學生自己得出因式分解概念及其與整式乘法的關系的結論,了解學生觀察、分析問題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問題,及時反饋。

  2.透過例題及練習,了解學生對概念的理解程度和實際運用潛力,最大限度地讓學生暴露問題和認知誤差,及時發(fā)現(xiàn)和彌補教與學中的遺漏和不足,從而及時調控教與學。

  3.透過機動題,了解學生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時評價,及時矯正。

  4.透過課后作業(yè),了解學生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學生面批作業(yè),能夠更及時、更準確地了解學生思維發(fā)展的狀況,矯正的針對性更強。

  5.透過課堂小結,了解學生對概念的熟悉程度和歸納概括潛力、語言表達潛力、知識運用潛力,教師恰當?shù)亟o予引導和啟迪。

  6.課堂上反饋信息除了語言和練習外,學生神情也是信息來源,而且這些信息更真實。學生神態(tài)、表情、坐姿都反映出學生對教師教學資料的理解和理解程度。教師應用心捕捉學生在知識掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調節(jié)教學。

【因式分解教案】相關文章:

因式分解教案04-02

因式分解復習教案08-25

人教版因式分解教案01-04

精選因式分解教案3篇03-13

因式分解教案設計04-18

【熱門】因式分解教案3篇03-03

因式分解教案模板7篇03-08

【精華】因式分解教案三篇01-26

實用的因式分解教案四篇08-02

因式分解教案模板8篇01-31