- 因式分解教案 推薦度:
- 數(shù)學(xué)因式分解教案 推薦度:
- 相關(guān)推薦
關(guān)于因式分解教案(通用20篇)
作為一位杰出的老師,就難以避免地要準(zhǔn)備教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整?靵韰⒖冀贪甘窃趺磳懙陌!下面是小編為大家收集的因式分解教案,希望對大家有所幫助。
因式分解教案 1
因式分解
教材分析
因式分解是進(jìn)行代數(shù)式恒等變形的重要手段之一,因式分解是在學(xué)習(xí)整式四則運算的基礎(chǔ)上進(jìn)行的,它不僅僅在多項式的除法、簡便運算中等有直接的應(yīng)用,也為以后學(xué)習(xí)分式的約分與通分、解方程(組)及三解函數(shù)式的恒等變形帶給了必要的基礎(chǔ),因此學(xué)好因式分解對于代數(shù)知識的后續(xù)學(xué)習(xí),具有相當(dāng)重要的好處。由于本節(jié)課后學(xué)習(xí)提取公因式法,運用公式法,分組分解法來進(jìn)行因式分解,務(wù)必以理解因式分解的概念為前提,所以本節(jié)資料的重點是因式分解的概念。由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對初一學(xué)生還比較生疏,理解起來有必須難度,再者本節(jié)還沒涉及因式分解的具體方法,所以理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法是教學(xué)中的難點。
教學(xué)目標(biāo)
認(rèn)知目標(biāo):(1)理解因式分解的概念和好處
。2)認(rèn)識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。
潛力目標(biāo):由學(xué)生自行探求解題途徑,培養(yǎng)學(xué)生觀察、分析、決定潛力和創(chuàng)新潛力,發(fā)展學(xué)生智能,深化學(xué)生逆向思維潛力和綜合運用潛力。
情感目標(biāo):培養(yǎng)學(xué)生理解矛盾的對立統(tǒng)一觀點,獨立思考,勇于探索的精神和實事求是的科學(xué)態(tài)度。
目標(biāo)制定的思想
1.目標(biāo)具體化、明確化,從學(xué)生實際出發(fā),具有針對性和可行性,同時便于上課操作,便于檢測和及時反饋。
2.課堂教學(xué)體現(xiàn)潛力立意。
3.寓德育教育于教學(xué)之中。
教學(xué)方法
1.采用以設(shè)疑探究的引課方式,激發(fā)學(xué)生的求知欲望,提高學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性。
2.把因式分解概念及其與整式乘法的關(guān)系作為主線,訓(xùn)練學(xué)生思維,以設(shè)疑——感知——概括——運用為教學(xué)程序,充分遵循學(xué)生的認(rèn)知規(guī)律,使學(xué)生能順利地掌握重點,突破難點,提高潛力。
3.在課堂教學(xué)中,引導(dǎo)學(xué)生體會知識的發(fā)生發(fā)展過程,堅持啟發(fā)式,鼓勵學(xué)生充分地動腦、動口、動手,用心參與到教學(xué)中來,充分體現(xiàn)了學(xué)生的主動性原則。
4.在充分尊重教材的前提下,融教材練習(xí)、想一想于教學(xué)過程中,增設(shè)了由淺入深、各不相同卻又緊密相關(guān)的訓(xùn)練題目,為學(xué)生順利掌握因式分解概念及其與整式乘法關(guān)系創(chuàng)造了有利條件。
5.改變傳統(tǒng)言傳身教的方式,利用計算機輔助教學(xué)手段進(jìn)行教學(xué),增大教學(xué)的容量和直觀性,提高教學(xué)效率和教學(xué)質(zhì)量。
教學(xué)過程安排
一、提出問題,創(chuàng)設(shè)情境
問題:看誰算得快?(計算機出示問題)
(1)若a=101,b=99,則a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
。2)若a=99,b=—1,則a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,則20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、觀察分析,探究新知
。1)請每題想得最快的同學(xué)談思路,得出最佳解題方法(同時計算機出示答案)
。2)觀察:a2—b2=(a+b)(a—b)①的.左邊是一個什么式子?右邊又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
。3)類比小學(xué)學(xué)過的因數(shù)分解概念,(例42=2×3×7④)得出因式分解概念。
板書課題:§7.1因式分解
1.因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
三、獨立練習(xí),鞏固新知
練習(xí)
1.下列由左邊到右邊的變形,哪些是因式分解?哪些不是?為什么?(計算機演示)
、伲▁+2)(x—2)=x2—4
、趚2—4=(x+2)(x—2)
、踑2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
、3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
、遦2++2=(k+)2
⑧x—2—1=(x—1+1)(x—1—1)
、18a3bc=3a2b·6ac
2.因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2—b2=========(a+b)(a—b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。
結(jié)論:因式分解與整式乘法正好相反。
問題:你能利用因式分解與整式乘法正好相反這一關(guān)系,舉出幾個因式分解的例子嗎?
。ㄈ纾河桑▁+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例題教學(xué),運用新知:
例:把下列各式分解因式:(計算機演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
。4)2ab—a2—b2(5)8a3+b6
練習(xí)2:填空:(計算機演示)
。1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
。2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
。3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、強化訓(xùn)練,掌握新知:
練習(xí)3:把下列各式分解因式:(計算機演示)
。1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
。4)x2+—x(5)x2—0.01(6)a3—1
(讓學(xué)生上來板演)
六、變式訓(xùn)練,擴展新知(計算機演示)
1。若x2+mx—n能分解成(x—2)(x—5),則m=,n=
2.機動題:(填空)x2—8x+m=(x—4),且m=
七、整理知識,構(gòu)成結(jié)構(gòu)(即課堂小結(jié))
1.因式分解的概念因式分解是整式中的一種恒等變形
2.因式分解與整式乘法是兩種相反的恒等變形,也是思維方向相反的兩種思維方式,因此,因式分解的思維過程實際也是整式乘法的逆向思維的過程。
3.利用2中關(guān)系,能夠從整式乘法探求因式分解的結(jié)果。
4.教學(xué)中滲透對立統(tǒng)一,以不變應(yīng)萬變的辯證唯物主義的思想方法。
八、布置作業(yè)
1.作業(yè)本(一)中§7.1節(jié)
2.選做題:①x2+x—m=(x+3),且m=。
、趚2—3x+k=(x—5),且k=。
評價與反饋
1.透過由學(xué)生自己得出因式分解概念及其與整式乘法的關(guān)系的結(jié)論,了解學(xué)生觀察、分析問題的潛力和逆向思維潛力及創(chuàng)新潛力。發(fā)現(xiàn)問題,及時反饋。
2.透過例題及練習(xí),了解學(xué)生對概念的理解程度和實際運用潛力,最大限度地讓學(xué)生暴露問題和認(rèn)知誤差,及時發(fā)現(xiàn)和彌補教與學(xué)中的遺漏和不足,從而及時調(diào)控教與學(xué)。
3.透過機動題,了解學(xué)生對概念的熟練程度和思維的靈敏性、深刻性、廣闊性及探研創(chuàng)造潛力,及時評價,及時矯正。
4.透過課后作業(yè),了解學(xué)生對知識的掌握狀況與綜合運用知識及靈活運用知識的潛力,教師及時批閱,及時反饋講評,同時對個別學(xué)生面批作業(yè),能夠更及時、更準(zhǔn)確地了解學(xué)生思維發(fā)展的狀況,矯正的針對性更強。
5.透過課堂小結(jié),了解學(xué)生對概念的熟悉程度和歸納概括潛力、語言表達(dá)潛力、知識運用潛力,教師恰當(dāng)?shù)亟o予引導(dǎo)和啟迪。
6.課堂上反饋信息除了語言和練習(xí)外,學(xué)生神情也是信息來源,而且這些信息更真實。學(xué)生神態(tài)、表情、坐姿都反映出學(xué)生對教師教學(xué)資料的理解和理解程度。教師應(yīng)用心捕捉學(xué)生在知識掌握、思維發(fā)展、潛力培養(yǎng)等各方面全方位的反饋信息,隨時評價,及時矯正,隨時調(diào)節(jié)教學(xué)。
因式分解教案 2
學(xué)習(xí)目標(biāo)
1、 學(xué)會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學(xué)習(xí)重難點 重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學(xué)過程設(shè)計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的'是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________ 預(yù)習(xí)展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應(yīng)用探究:
1、用簡便方法計算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關(guān)系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實際中去的例子,對學(xué)生來說會難一些。
因式分解教案 3
【教學(xué)目標(biāo)】
1、了解因式分解的概念和意義;
2、認(rèn)識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)過程】
、濉⑶榫硨(dǎo)入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
㈡、探究新知
1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)
3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補充。)
板書課題:§6.1 因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進(jìn)一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2 (a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的`形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。
、、鞏固新知
1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。
、椤(yīng)用解釋
例 檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習(xí) 計算下列各題,并說明你的算法:(請學(xué)生板演)
(1)872+87×13
(2)1012-992
、、思維拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機動題:(填空)x2-8x+m=(x-4)( ),且m=
、、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。
、、布置作業(yè)
作業(yè)本(1) ,一課一練
。ň牛┙虒W(xué)反思:
因式分解教案 4
第十五章 整式的乘除與因式分解
根據(jù)定義,我們不難得出a+b+c、t-5、3x+5+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).
15.1.2 整式的加減
。3)x-(1-2x+x2)+(-1-x2) (4)(8x-3x2)-5x-2(3x-2x2)
四、提高練習(xí):
1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的'多項式?
2、設(shè)A=2x2-3x+2-x+2,B=4x2-6x+22-3x-,若│x-2a│+(+3)2=0,且B-2A=a,求A的值。
3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應(yīng)點如圖:
試化簡:│a│-│a+b│+│c-a│+│b+c│
小 結(jié):要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進(jìn)行運算。
作 業(yè):課本P14習(xí)題1.3:1(2)、(3)、(6),2。
《課堂感悟與探究》
因式分解教案 5
學(xué)習(xí)目標(biāo):經(jīng)歷探索同底數(shù)冪的乘法運算性質(zhì)的過程,能用代數(shù)式和文字正確地表述,并會熟練地進(jìn)行計算。通過由特殊到一般的猜想與說理、驗證,發(fā)展推理能力和有條理的表達(dá)能力.
學(xué)習(xí)重點:同底數(shù)冪乘法運算性質(zhì)的推導(dǎo)和應(yīng)用.
學(xué)習(xí)過程:
一、創(chuàng)設(shè)情境引入新課
復(fù)習(xí)乘方an的意義:an表示個相乘,即an=.
乘方的結(jié)果叫a叫做,n是
問題:一種電子計算機每秒可進(jìn)行1012次運算,它工作103秒可進(jìn)行多少次運算?
列式為,你能利用乘方的意義進(jìn)行計算嗎?
二、探究新知:
探一探:
1根據(jù)乘方的意義填空
(1)23×24=(2×2×2)×(2×2×2×2)=2();
(2)55×54=_________=5();
(3)(-3)3×(-3)2=_________________=(-3)();
(4)a6a7=________________=a().
(5)5m5n
猜一猜:aman=(m、n都是正整數(shù))你能證明你的猜想嗎?
說一說:你能用語言敘述同底數(shù)冪的乘法法則嗎?
同理可得:amanap=(m、n、p都是正整數(shù))
三、范例學(xué)習(xí):
【例1】計算:(1)103×104;(2)aa3;(3)mm3m5;(4)xmx3m+1(5)xx2+x2x
1.填空:⑴10×109=;⑵b2×b5=;⑶x4x=;⑷x3x3=.
2.計算:
(1)a2a6;(2)(-x)(-x)3;(3)8m(-8)38n;(4)b3(-b2)(-b)4.
【例2】:把下列各式化成(x+y)n或(x-y)n的.形式.
(1)(x+y)4(x+y)3(2)(x-y)3(x-y)(y-x)
(3)-8(x-y)2(x-y)(4)(x+y)2m(x+y)m+1
四、學(xué)以致用:
1.計算:⑴10n10m+1=⑵x7x5=⑶mm7m9=
⑷-4444=⑸22n22n+1=⑹y5y2y4y=
2.判斷題:判斷下列計算是否正確?并說明理由
、臿2a3=a6();⑵a2a3=a5();⑶a2+a3=a5();
、萢a7=a0+7=a7();⑸a5a5=2a10();⑹25×32=67()。
3.計算:
(1)xx2+x2x(2)x2xn+1+xn-2x4-xn-1x4
(3)-(-a)3(-a)2a5;(4)(a-b)3(b-a)2
(5)(x+y)(x+y)(x+y)2+(x+y)2(x+y)2
4.解答題:
(1)已知xm+nxm-n=x9,求m的值.
(2)據(jù)不完全統(tǒng)計,每個人每年最少要用去106立方米的水,1立方米的水中約含有3.34×1019個水分子,那么,每個人每年要用去多少個水分子?
因式分解教案 6
課型 復(fù)習(xí)課 教法 講練結(jié)合
教學(xué)目標(biāo)(知識、能力、教育)
1.了解分解因式的意義,會用提公因式法、 平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數(shù)是正整數(shù)).
2.通過乘法公式 , 的逆向變形,進(jìn)一步發(fā)展學(xué)生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達(dá)能力
教學(xué)重點 掌握用提取公因式法、公式法分解因式
教學(xué)難點 根據(jù)題目的形式和特征 恰當(dāng)選擇方法進(jìn)行分解,以提高綜合解題能力。
教學(xué)媒體 學(xué)案
教學(xué)過程
一:【 課前預(yù)習(xí)】
(一):【知識梳理】
1.分解因式:把一個多項式化成 的形式,這種變形叫做把這個多項式分解因式.
2.分解困式的方法:
⑴提公團(tuán)式法:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.
⑵運用公式法:平方差公式: ;
完全平方公式: ;
3.分解因式的步驟:
(1)分解 因式時,首先考慮是否有公因式,如果有公因式,一定先提取公團(tuán)式,然后再考慮是否能用公式法 分解.
(2)在用公式時,若是兩項,可考慮用平方差公式;若是三項,可考慮用完全平方公式;若是三項以上,可先進(jìn)行適當(dāng)?shù)姆纸M,然后分解因式。
4.分解因式時常見的思維誤區(qū):
提公因式時,其公因式應(yīng)找字母指數(shù)最低的,而不是以首項為準(zhǔn).若有一項被全部提出,括號內(nèi)的項 1易漏掉.分解不徹底,如保留中括號形式,還能繼續(xù)分解等
(二):【課前練習(xí)】
1.下列各組多項式中沒有公因式的是( )
A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3
C.mxmy與 nynx D.aba c與 abbc
2. 下列各題中,分解因式錯誤的是( )
3. 列多項式能用平方差公式分解因式的是()
4. 分解因式:x2+2xy+y2-4 =_____
5. 分解因式:(1) ;
(2) ;(3) ;
(4) ;(5)以上三題用了 公式
二:【經(jīng)典考題剖析】
1. 分解因式:
(1) ;(2) ;(3) ;(4)
分析:①因式分解時,無論有幾項,首先考慮提取公因式。提公因式時,不僅注意數(shù),也要 注意字母,字母可能是單項式也可能是多項式,一次提盡。
、诋(dāng)某項完全提出后,該項應(yīng)為1
、圩⒁ ,
、芊纸饨Y(jié)果(1)不帶中括號;(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項式在前,多項式在后;(3)相同因式寫成冪的形式;(4 )分解結(jié)果應(yīng)在指定范圍內(nèi)不能再分解為止;若無指定范圍,一般在有理數(shù)范圍內(nèi)分解。
2. 分解因式:(1) ;(2) ;(3)
分析:對于二次三項齊次式,將其中一個字母看作末知數(shù),另一個字母視為常數(shù)。首先考慮提公因式后,由余下因式的項數(shù)為3項,可考慮完全平方式或十字相乘法繼續(xù)分解;如果項數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項數(shù)為2項,可考慮平方差公式先分解開,再由項數(shù)考慮選擇方法繼續(xù)分解。
3. 計算:(1)
(2)
分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。
(2)分解后,便有規(guī)可循,再求1到20xx的和。
4. 分解因式:(1) ;(2)
分析:對于四項或四項以上的多項式的`因式分解,一般采用分組分解法,
5. (1)在實數(shù)范圍內(nèi)分解因式: ;
(2)已知 、 、 是△ABC的三邊,且滿足 ,
求證:△ABC為等邊三角形。
分析:此題給出的是三邊之間的關(guān)系,而要證等邊三角形,則須考慮證 ,
從已知給出的等式結(jié)構(gòu)看出,應(yīng)構(gòu)造出三個完全平方式 ,
即可得證,將原式兩邊同乘以2即可。略證:
即△ABC為等邊三角形。
三:【課后訓(xùn)練】
1. 若 是一個完全平方式,那么 的值是( )
A.24 B.12 C.12 D.24
2. 把多項式 因式分解的結(jié)果是( )
A. B. C. D.
3. 如果二次三項式 可分解為 ,則 的 值為( )
A .-1 B.1 C. -2 D.2
4. 已知 可以被在60~70之間的兩個整數(shù)整除,則這兩個數(shù)是( )
A.61、63 B.61、65 C.61、67 D.63、65
5. 計算:19982002= , = 。
6. 若 ,那么 = 。
7. 、 滿足 ,分解因式 = 。
8. 因式分解:
(1) ;(2)
(3) ;(4)
9. 觀察下列等式:
想一想,等式左邊各項冪的底數(shù)與右邊冪的底數(shù)有何關(guān) 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來: 。
10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過程:
解:由 得:
①
、
即 ③
△ABC為Rt△。 ④
試問:以上解題過程是否正確: ;若不正確,請指出錯在哪一步?(填代號) ;錯誤原因是 ;本題結(jié)論應(yīng)為 。
四:【課后小結(jié)】
布置作業(yè) 地綱
因式分解教案 7
教學(xué)目標(biāo):
1、進(jìn)一步鞏固因式分解的概念;
2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行因式分解
4、應(yīng)用因式分解來解決一些實際問題
5、體驗應(yīng)用知識解決問題的樂趣
教學(xué)重點:
靈活運用因式分解解決問題
教學(xué)難點:
靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過程:
一、創(chuàng)設(shè)情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法
(3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解
(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解
(7).2πR+2πr=2π(R+r)因式分解
2、.規(guī)律總結(jié)(教師講解):分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點:(1).分解的對象必須是多項式.
(2).分解的結(jié)果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法
公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓(xùn)練
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進(jìn)行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。
[學(xué)生活動:各自測量。]
鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點。
講授新課
找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動:尋找矩形性質(zhì)。]
動畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動;尋找菱形性質(zhì)。]
動畫演示:
場景四:菱形的'性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時提出問題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?
[學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形!
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!
[學(xué)生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)
(3)(4)y2+y+
例2、分解因式
1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=
4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7)22、8a2b2-2a4b-8b3
三、知識應(yīng)用
1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?
四、拓展應(yīng)用
1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+20xx被20xx整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
五、課堂小結(jié):今天你對因式分解又有哪些新的認(rèn)識?
因式分解教案 8
學(xué)習(xí)目標(biāo)
1、了解因式分解的意義以及它與正式乘法的關(guān)系。
2、能確定多項式各項的公因式,會用提公因式法分解因式。
學(xué)習(xí)重點:
能用提公因式法分解因式。
學(xué)習(xí)難點:
確定因式的公因式。
學(xué)習(xí)關(guān)鍵:
在確定多項式各項公因式時,應(yīng)抓住各項的公因式來提公因式。
學(xué)習(xí)過程
一.知識回顧
1、計算
(1)、n(n+1)(n-1)(2)、(a+1)(a-2)
(3)、m(a+b)(4)、2ab(x-2y+1)
二、自主學(xué)習(xí)
1、閱讀課文P72-73的內(nèi)容,并回答問題:
(1)知識點一:把一個多項式化為幾個整式的xxxxxxxxxx的形式叫做xxxxxxxxxxxx,也叫做把這個多項式xxxxxxxxxx。
(2)、知識點二:由m(a+b+c)=ma+mb+mc可得
ma+mb+mc=m(a+b+c)
我們來分析一下多項式ma+mb+mc的`特點;它的每一項都含有一個相同的因式m,m叫做各項的xxxxxxxxx。如果把這個xxxxxxxxx提到括號外面,這樣
ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種xxxxxxxx的方法叫做xxxxxxxx。
2、練一練。P73練習(xí)第1題。
三、合作探究
1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、
2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是xxxxxxxxxxxxx,右邊是xxxxxxxxxxxxx。
3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?
(1)(a+b)(a-b)=a-b(2)a+2ab+b=(a+b)
(3)-6x3+18x2-12x=-16(x2-3x+2)(4)(x-1)(x+1)=x2-1
4、準(zhǔn)確地確定公因式時提公因式法分解因式的關(guān)鍵,確定公因式可分兩步進(jìn)行:
(1)確定公因式的數(shù)字因數(shù),當(dāng)各項系數(shù)都是整數(shù)時,他們的最大公約數(shù)就是公因式的數(shù)字因數(shù)。
例如:8a2b-72abc公因式的數(shù)字因數(shù)為8。
(2)確定公因式的字母及其指數(shù),公因式的字母應(yīng)是多項式各項都含有的字母,其指數(shù)取最低的。故8a2b-72abc的公因式是8ab
四、展示提升
1、填空(1)a2b-ab2=ab(xxxxxxxx)
(2)-4a2b+8ab-4b分解因式為xxxxxxxxxxxxxxxxxx
(3)分解因式4x2+12x3+4x=xxxxxxxxxxxxxxxxxx
(4)xxxxxxxxxxxxxxxxxx=-2a(a-2b+3c)
2、P73練習(xí)第2題和第3題
五、達(dá)標(biāo)測試。
1、下列各式從左到右的變形中,哪些是整式乘法?哪些是因式分解?哪些兩者都不是?
(1)ax+bx+cx+m=x(a+b+c)+m(2)mx-2m=m(x-2)
(3)2a(b+c)=2ab+2ac(4)(x-3)(x+3)=(x+3)(x-3)
(5)x2-y2-1=(x+y)(x-y)-1(6)(x-2)(x+2)=x2-4
2.課本P77習(xí)題8.5第1題
學(xué)習(xí)反思
一、知識點
二、易錯題
三、你的困惑
因式分解教案 9
教學(xué)目標(biāo)
教學(xué)知識點
使學(xué)生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關(guān)系。
潛力訓(xùn)練要求。
透過觀察,發(fā)現(xiàn)分解因式與整式乘法的關(guān)系,培養(yǎng)學(xué)生觀察潛力和語言概括潛力。
情感與價值觀要求。
透過觀察,推導(dǎo)分解因式與整式乘法的關(guān)系,讓學(xué)生了解事物間的因果聯(lián)系。
教學(xué)重點
1、理解因式分解的好處。
2、識別分解因式與整式乘法的關(guān)系。
教學(xué)難點透過觀察,歸納分解因式與整式乘法的關(guān)系。
教學(xué)方法觀察討論法
教學(xué)過程
Ⅰ、創(chuàng)設(shè)問題情境,引入新課
導(dǎo)入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)
Ⅱ、講授新課
1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。
993-99=99×98×100
2、議一議
你能嘗試把a3-a化成n個整式的乘積的形式嗎?與同伴交流。
3、做一做
(1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;
、3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________
(2)根據(jù)上面的算式填空:
、3x2-3x=()();②m2-16=()();③ma+mb+mc=()();
④y2-6y+9=()2。⑤a3-a=()()。
定義:把一個多項式化成幾個整式的積的形式,叫做把這個多項式分解因式。
4。想一想
由a(a+1)(a-1)得到a3-a的.變形是什么運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什么不同?你還能舉一些類似的例子加以說明嗎?
下面我們一起來總結(jié)一下。
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c)(2)
5、整式乘法與分解因式的聯(lián)系和區(qū)別
ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。
6。例題下列各式從左到右的變形,哪些是因式分解?
。1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
。3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。
Ⅲ、課堂練習(xí)
P40隨堂練習(xí)
、簟⒄n時小結(jié)
本節(jié)課學(xué)習(xí)了因式分解的好處,即把一個多項式化成幾個整式的積的形式;還學(xué)習(xí)了整式乘法與分解因式的關(guān)系是相反方向的變形。
因式分解教案 10
學(xué)習(xí)目標(biāo)
1、 學(xué)會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學(xué)習(xí)重難點 重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學(xué)過程設(shè)計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的是( )
A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1
5.計算:20062-40102006+20052=___________________.
6.若x+y=1,則 x2+xy+ y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________ 預(yù)習(xí)展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應(yīng)用探究:
1、用簡便方法計算
49.92+9.98 +0.12
拓展提高:
(1)( a2+b2)( a2+b2 10)+25=0 求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關(guān)系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的.題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的,但是這里有用到實際中去的例子,對學(xué)生來說會難一些。
因式分解教案 11
教學(xué)目標(biāo):
1、學(xué)生能夠理解因式分解的概念。
2、學(xué)生能夠應(yīng)用因式分解解決實際問題。
3、學(xué)生能夠簡化代數(shù)式并解決相關(guān)的數(shù)學(xué)題目。
教學(xué)準(zhǔn)備:
1、白板、黑板或投影儀來展示教學(xué)內(nèi)容。
2、學(xué)生練習(xí)冊或作業(yè)本。
教學(xué)步驟:
步驟1:引入因式分解概念(10分鐘)
學(xué)生會發(fā)現(xiàn)數(shù)學(xué)中的代數(shù)式經(jīng)常出現(xiàn)多個項的乘積,比如(a+b)、(a-b)等。引入因式分解的概念,解釋代數(shù)式可以進(jìn)行因式分解,從而更好地理解和簡化代數(shù)式。
步驟2:理解因式分解的重要性(15分鐘)
在這一部分,老師可以通過大量的實例,如多項式的乘積、簡化分?jǐn)?shù)等,來幫助學(xué)生理解因式分解在求解問題和簡化計算中的重要性。
步驟3:展示因式分解的步驟(10分鐘)
解釋因式分解的步驟,例如將代數(shù)式進(jìn)行拆分,找到公因子,應(yīng)用分配律,最終將代數(shù)式簡化為乘積的形式。通過在黑板上解決一些示例問題,讓學(xué)生理解具體的步驟。
步驟4:實際應(yīng)用案例(20分鐘)
給學(xué)生一些實際的'應(yīng)用案例,如利用因式分解解決面積和周長的問題,解決一元二次方程的根等。讓學(xué)生通過解題來鞏固他們對因式分解的理解并應(yīng)用所學(xué)知識。
步驟5:團(tuán)隊合作活動(15分鐘)
將學(xué)生分成小組,給每個小組一個因式分解的問題。要求學(xué)生協(xié)作解決問題,并在規(guī)定時間內(nèi)完成,然后展示他們的解決方案。通過這種互動活動,學(xué)生可以互相學(xué)習(xí)并鞏固因式分解的知識。
步驟6:總結(jié)和擴展(10分鐘)
總結(jié)因式分解的概念和步驟,并鼓勵學(xué)生在課后進(jìn)一步探索因式分解的應(yīng)用,如解決更復(fù)雜的代數(shù)問題,求解方程等。鼓勵學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的因式分解的重要性,并將其擴展到更廣泛的數(shù)學(xué)領(lǐng)域。
擴展活動:
1、請學(xué)生自行搜索因式分解的應(yīng)用實例,并在下節(jié)課上進(jìn)行分享。
2、提供更復(fù)雜的代數(shù)式讓學(xué)生進(jìn)行因式分解,并進(jìn)行討論和解釋。
3、給學(xué)生類似于迷思或解謎的數(shù)學(xué)問題,讓他們運用因式分解的技巧解決問題。
教學(xué)評估方式:
1、在課堂上觀察學(xué)生對因式分解概念的理解程度。
2、讓學(xué)生解決一些基本的因式分解題目,并批改他們的答案。
3、觀察學(xué)生在團(tuán)隊合作活動中的表現(xiàn)和解決問題的能力。
結(jié)語:
通過這份因式分解英語教案,學(xué)生能夠在實際例子和互動活動中更好地理解因式分解的概念和步驟,并學(xué)會應(yīng)用因式分解解決數(shù)學(xué)問題。這樣的教學(xué)方法將幫助學(xué)生培養(yǎng)數(shù)學(xué)思維能力和解決問題的技巧。通過互動和擴展活動,學(xué)生還能夠深入探索因式分解在數(shù)學(xué)中的更多應(yīng)用,進(jìn)一步拓寬他們的知識面。
因式分解教案 12
一、案例背景
現(xiàn)代教育理論認(rèn)為,教師為主導(dǎo),學(xué)生為主體,教師應(yīng)當(dāng)充分調(diào)動學(xué)生的學(xué)習(xí)積極性,使之主動地探索、研究,讓學(xué)生都參與到課堂活動中,透過學(xué)生自我感受,培養(yǎng)學(xué)生觀察、分析、歸納的潛力,逐步提高自學(xué)潛力,獨立思考的潛力,發(fā)現(xiàn)問題和解決問題的潛力,逐漸養(yǎng)成良好的個性品質(zhì)。
因式分解是代數(shù)式的一種重要恒等變形。它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運算、解方程、函數(shù)中有廣泛的應(yīng)用。
二、案例分析
教學(xué)過程設(shè)計
(一)『情境引入』
情境一:如何計算375×2.8+375×4.9+375×2.3你是怎樣想的
問題:為什么375×2.8+375×4.9+375×2.3能夠?qū)懗?75×(2.4+4.9+2.3)依據(jù)是什么
【評析】:(1)、復(fù)習(xí)舊知,加深記憶,同時為下面的學(xué)習(xí)作鋪墊。
。2)、學(xué)生對這樣的問題有興趣,能迅速找出一些不同的速算方法,很快想出乘法分配律的逆向變形,設(shè)置這樣的情境,由數(shù)推廣到式,效率較高。還為新課資料的學(xué)習(xí)創(chuàng)設(shè)了良好的情緒和氛圍。
情境二:分析比較
把單項式乘多項式的乘法法則
a(b+c+d)=ab+ac+ad①
反過來,就得到
ab+ac+ad=a(b+c+d)②
思考(1)你是怎樣認(rèn)識①式和②式之間的關(guān)系的
(2)②式左邊的多項式的每一項有相同的因式嗎你能說出這個因式嗎
【評析】:(1)、探索因式分解的方法,事實上是對整式乘法的再認(rèn)識,因此,在教學(xué)過程中,教師要借助學(xué)生已有的整式乘法運算的基礎(chǔ),給他們留下充分探索與交流的時間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過程。
。2)、本題注重培養(yǎng)學(xué)生觀察、分析、歸納的潛力,并向?qū)W生滲透比較、類比的數(shù)學(xué)思想方法。
。ǘ禾骄恳蚴椒纸狻
1、認(rèn)識公因式
(1)、【概念1】:
(2)、議一議
下列多項式的各項是否有公因式如果有,試找出公因式。
①多項式a2b+ab2的公因式是ab,……公因式是字母;
、诙囗検3x2—3y的公因式是3,……公因式是數(shù)字系數(shù);
、鄱囗検3x2—6x3的公因式是3x2,……公因式是數(shù)學(xué)系數(shù)與字母的乘積。
分析并猜想
確定一個多項式的公因式時,要從和兩方面,分別進(jìn)行思考。
、偃绾未_定公因式的數(shù)字系數(shù)
②如何確定公因式的字母字母的指數(shù)怎樣定
練一練:寫出下列多項式各項的公因式
。1)8x—16(2)2a2b—ab2
(3)4x2—2x(4)6m2n—4m3n3—2mn
【評析】:(1)、教師不要直接給出找多項式公因式的方法和解釋,而是鼓勵學(xué)生自主探索,根據(jù)自己的體驗來積累找公因式的方法和經(jīng)驗,并能透過相互間的交流來糾正解題中的常見錯誤。
。2)、對公因式的理解是因式分解的基礎(chǔ),所以在解決這個問題時要注意配以練習(xí),個性是多次方及系數(shù)的公因式,要讓學(xué)生注意。
。3)、找公因式的一般步驟可歸納為:一看系數(shù)二看字母三看指數(shù)。
2、認(rèn)識因式分解
【概念2】:把一個多項式化成幾個整式積的形式的叫做把這個多項式因式分解。
。ㄕn本)P71練一練第1題
。1)、下列各式由左邊到右邊的變形,哪些是因式分解,哪些不是
、佟b+ac+d=a(b+c)+d
、。a2—1=(a+1)(a—1)
③。(a+1)(a—1)=a2—1
。2)、你認(rèn)為提公因式法分解因式和單項式乘多項式這兩種變形是怎樣的關(guān)系從中你得到什么啟發(fā)
【評析】:(1)、本題主要是為了加深學(xué)生對因式分解概念的理解,使學(xué)生清楚因式分解的結(jié)果應(yīng)是整式乘積的形式。
(2)、教師安排本題意圖就是引導(dǎo)學(xué)生進(jìn)行分析討論,鼓勵學(xué)生勤于思考,各抒己見,培養(yǎng)學(xué)生的邏輯思維潛力和表達(dá)、交流潛力。讓學(xué)生在主動學(xué)習(xí)中掌握了因式分解是整式乘法的互逆的過程,以及理解利用它們之間的關(guān)系進(jìn)行因式分解的這種思想,從而降低了本節(jié)課的難點。
。ㄈ豪}研究』
例1:把下列各式分解因式
(1)6a3b—9a2b2c(2)—2m3+8m2—12m
解:(1)6a3b—9a2b2c
=3a2b·2a—3a2b·3bc(找公因式,把各項分成公因式與一個單項式的乘積的形式)
=3a2b(2a—3bc)(提取公因式)
。2)—2m3+8m2—12m
=—(2m·m2—2m·4m+2m·6)(首項符號為負(fù),先將多項式放在帶負(fù)號的括號內(nèi),注意放入括號中各項符號的變化。)
=—2m(m2—4m+6)(提取公因式)
【評析】:(1)、因式分解的概念和好處需要學(xué)生多層次的感受,教師不要期望一次透徹的講解和分析就能讓學(xué)生完全掌握。這時先讓學(xué)生進(jìn)行初步的感受,再透過不同形式的練習(xí)增強對概念的理解例。
。2)、教師在講解例題時,應(yīng)鼓勵學(xué)生自己動手找公因式,讓學(xué)生透過動手動腦、實際操作,教師可在下面收集錯誤,再加以點評,加深對因式分解方法的理解。
。3)、教學(xué)中教師不能簡單地要求學(xué)生記憶運算法則,更要重視學(xué)生對算理的理解,讓學(xué)生嘗試說出每一步運算的道理,有意識地培養(yǎng)學(xué)生有條理地思考和語言表達(dá)潛力。
本題的易錯點:
。1)、漏項:提公因式后括號中的項數(shù)應(yīng)與原多項式的項數(shù)一樣,這樣可檢查是否漏項。
。2)、符號:由于添括號法則在上學(xué)期沒有涉及,所以有必要在此處強調(diào),添括號法則:括號前面是“+”號,括到括號里的各項都不變號;括號前面是“—”號,括到括號里的各項都要變號。
。ㄋ模红柟叹毩(xí)』
練一練:辨別下列因式分解的正誤
。1)8a3b2—12ab4+4ab=4ab(2a2b—3b3)
(2)4x2—12x3=2x2(2—6x)
。3)a3—a2=a2(a—1)=a3—a2
解(1)錯誤,分解因式后,括號內(nèi)的多項式的項數(shù)漏掉了一項。
。2)錯誤,分解因式后,括號內(nèi)的多項式中仍有公因式。
。3)錯誤,分解因式后,又回到到了整式的乘法。
【評析】:(1)、這些多是學(xué)生易錯的,本題設(shè)置的目的`是讓學(xué)生運用例1的成果準(zhǔn)確辨別因式分解中的常見錯誤,對因式分解的認(rèn)識更加清晰。本例仍采用小組討論、交流的方式,讓學(xué)生都參與到課堂活動中。
。2)、當(dāng)多項式的某一項恰好是公因式時,這一項應(yīng)看成它與1的乘積,提公因式后剩下的應(yīng)是1.1作為項的系數(shù)通?墒÷,但如果單獨成一項時,它在因式分解時不能漏項。
。3)、進(jìn)行多項式分解因式時,務(wù)必把每一個因式都分解到不能分解為止。
(4)、教師安排這一過程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過程,展現(xiàn)學(xué)生生動活潑、主動求知和富有的個性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到真正強化,也分散了本節(jié)課的難點。
。ㄎ澹合胍幌搿唬
如何把多項式3a(x+y)—2b(x+y)分解因式
解:3a(x+y)—2b(x+y)=(x+y)(3a—2b)
評析:公因式(x+y)是多項式,屬較高要求,當(dāng)多項式中有相同的整體(多項式)時,不要把它拆開,提取公因式時把它整體提出來,有時還需要做適當(dāng)變形,如:(2—a)=—(a—2),教學(xué)時可初步滲透換元思想,將換元思想引入因式分解,可使問題化繁為簡。
【概念3】把多項式化成公因式與另一個多項式的積的形式,這種分解因式的方法叫做提公因式法。
初中因式分解教學(xué)反思
1、本節(jié)課根據(jù)學(xué)生的知識結(jié)構(gòu),采用的教學(xué)流程是:提出問題—實際操作—歸納方法—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、構(gòu)成和發(fā)展的過程,讓學(xué)生進(jìn)一步發(fā)展觀察、歸納、類比、概括、逆向思考等潛力,發(fā)展有條理思考及語言表達(dá)潛力;
2、分解因式是一種變形,變形的結(jié)果應(yīng)是整式的積的形式,分解因式與整式的乘法是互逆關(guān)系,即把分解因式看作是一個變形的過程,那么整式乘法又是分解因式的逆過程,這種互逆關(guān)系一方面體現(xiàn)二者之間的密切聯(lián)系,另一方面又說明了二者之間的根本區(qū)別。探索因式分解的方法,事實上是對整式乘法的再認(rèn)識,因此,在教學(xué)過程中,教師要借助學(xué)生已有的整式乘法運算的基礎(chǔ),給學(xué)生帶給豐富搞笑的問題情境,并給他們留下充分探索與交流的時間和空間,讓他們經(jīng)歷從整式乘法到因式分解的這種互逆變形的過程;
3、在提公因式方面,學(xué)生對公因式的認(rèn)識不足,對提公因式的要求不清楚,造成了學(xué)生在做分解因式時出現(xiàn)了以下錯誤:
(1)公因式找錯;
。2)公因式找不完整(如:漏掉公因式的系數(shù)(或系數(shù)不是取各項系數(shù)的最大公約數(shù))、公因式中內(nèi)含多項式時,漏掉系數(shù)或字母因數(shù)),導(dǎo)致因式分解不徹底;
4、由于在七年級上冊教材中沒有涉及添括號法則,所以學(xué)生在分解第一項系數(shù)是負(fù)數(shù)的多項式時,出現(xiàn)了很多符號錯誤;
因式分解是一個重點,也是一個難點,以上存在問題在以后的教學(xué)中有待進(jìn)一步加強。
因式分解教案 13
教學(xué)目標(biāo):
1.知識與技能:掌握運用提公因式法、公式法分解因式,培養(yǎng)學(xué)生應(yīng)用因式分解解決問題的能力.
2.過程與方法:經(jīng)歷探索因式分解方法的過程,培養(yǎng)學(xué)生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法.
3.情感態(tài)度與價值觀:通過因式分解的學(xué)習(xí),使學(xué)生體會數(shù)學(xué)美,體會成功的自信和團(tuán)結(jié)合作精神,并體會整體數(shù)學(xué)思想和轉(zhuǎn)化的數(shù)學(xué)思想.
教學(xué)重、難點:用提公因式法和公式法分解因式.
教具準(zhǔn)備:多媒體課件(小黑板)
教學(xué)方法:活動探究法
教學(xué)過程:
引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什么叫因式分解?
知識詳解
知識點1 因式分解的定義
把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.
【說明】 (1)因式分解與整式乘法是相反方向的變形.
例如:
(2)因式分解是恒等變形,因此可以用整式乘法來檢驗.
怎樣把一個多項式分解因式?
知識點2 提公因式法
多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).
探究交流
下列變形是否是因式分解?為什么?
(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.
典例剖析 師生互動
例1 用提公因式法將下列各式因式分解.
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)題直接提取公因式分解即可,(2)題首先要適當(dāng)?shù)淖冃? 再把b-a化成-(a-b),然后再提取公因式.
小結(jié) 運用提公因式法分解因式時,要注意下列問題:
(1)因式分解的結(jié)果每個括號內(nèi)如有同類項要合并,而且每個括號內(nèi)不能再分解.
(2)如果出現(xiàn)像(2)小題需統(tǒng)一時,首先統(tǒng)一,盡可能使統(tǒng)一的個數(shù)少。這時注意到(a-b)n=(b-a)n(n為偶數(shù)).
(3)因式分解最后如果有同底數(shù)冪,要寫成冪的形式.
學(xué)生做一做 把下列各式分解因式.
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知識點3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b).即兩個數(shù)的平方差,等于這兩個數(shù)的和與這個數(shù)的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).
(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的.2倍,等于這兩個數(shù)的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
探究交流
下列變形是否正確?為什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.
例2 把下列各式分解因式.
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本題旨在考查用完全平方公式分解因式.
學(xué)生做一做 把下列各式分解因式.
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).
綜合運用
例3 分解因式.
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本題旨在考查綜合運用提公因式法和公式法分解因式.
小結(jié) 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式. 是三項式考慮用完全平方式,最后,直到每一個因式都不能再分解為止.
探索與創(chuàng)新題
例4 若9x2+kxy+36y2是完全平方式,則k= .
分析:完全平方式是形如:a2±2ab+b2即兩數(shù)的平方和與這兩個數(shù)乘積的2倍的和(或差).
學(xué)生做一做 若x2+(k+3)x+9是完全平方式,則k= .
課堂小結(jié)
用提公因式法和公式法分解因式,會運用因式分解解決計算問題.
各項有"公"先提"公",首項有負(fù)常提負(fù),某項提出莫漏"1",括號里面分到"底"。
自我評價 知識鞏固
1.若x2+2(m-3)x+16是完全平方式,則m的值等于( )
A.3 B.-5 C.7. D.7或-1
2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )
A.2 B.4 C.6 D.8
3.分解因式:4x2-9y2= .
4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.
5.把多項式1-x2+2xy-y2分解因式
思考題 分解因式(x4+x2-4)(x4+x2+3)+10.
因式分解教案 14
教學(xué)目標(biāo):
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式綜合應(yīng)用;能利用平方差公式法解決實際問題。
2、經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
3、通過對公式的探究,深刻理解公式的應(yīng)用,并會熟練應(yīng)用公式解決問題。
4、通過探究平方差公式特點,學(xué)生根據(jù)公式自己取值設(shè)計問題,并根據(jù)公式自己解決問題的過程,讓學(xué)生獲得成功的體驗,培養(yǎng)合作交流意識。
教學(xué)重點:
應(yīng)用平方差公式分解因式.
教學(xué)難點:
靈活應(yīng)用公式和提公因式法分解因式,并理解因式分解的要求.
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備 導(dǎo)入新課
1、什么是因式分解?判斷下列變形過程,哪個是因式分解?
①(x+2)(x-2)= ②
、
2、我們已經(jīng)學(xué)過的因式分解的方法有什么?將下列多項式分解因式。
x2+2x
a2b-ab
3、根據(jù)乘法公式進(jìn)行計算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 學(xué)習(xí)新知
(一) 猜一猜:你能將下面的多項式分解因式嗎?
。1)= (2)= (3)=
(二)想一想,議一議: 觀察下面的'公式:
。剑╝+b)(a—b)(
這個公式左邊的多項式有什么特征:_____________________________________
公式右邊是__________________________________________________________
這個公式你能用語言來描述嗎? _______________________________________
(三)練一練:
1、下列多項式能否用平方差公式來分解因式?為什么?
① ② ③ ④
2、你能把下列的數(shù)或式寫成冪的形式嗎?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
。ㄋ模┳鲆蛔觯
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)試一試:
例4 下面的式子你能用什么方法來分解因式呢?請你試一試。
(1) x4- y4 (2) a3b- ab
。┫胍幌耄
某學(xué)校有一個邊長為85米的正方形場地,現(xiàn)在場地的四個角分別建一個邊長為5米的正方形花壇,問場地還剩余多大面積供學(xué)生課間活動使用?
因式分解教案 15
。ㄒ唬學(xué)習(xí)目標(biāo)
1、會用因式分解進(jìn)行簡單的多項式除法
2、會用因式分解解簡單的方程
(二)學(xué)習(xí)重難點重點:因式分解在多項式除法和解方程中兩方面的應(yīng)用。
難點:應(yīng)用因式分解解方程涉及到的較多的推理過程是本節(jié)課的難點。
(三)教學(xué)過程設(shè)計
看一看
1.應(yīng)用因式分解進(jìn)行多項式除法.多項式除以多項式的一般步驟:
、賍_______________②__________
2.應(yīng)用因式分解解簡單的一元二次方程.
依據(jù)__________,一般步驟:__________
做一做
1.計算:
(1)(-a2b2+16)÷(4-ab);
(2)(18x2-12xy+2y2)÷(3x-y).
2.解下列方程:
(1)3x2+5x=0;
(2)9x2=(x-2)2;
(3)x2-x+=0.
3.完成課后練習(xí)題
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________
。ㄋ模預(yù)習(xí)檢測
1.計算:
2.先請同學(xué)們思考、討論以下問題:
(1)如果A×5=0,那么A的值
(2)如果A×0=0,那么A的`值
(3)如果AB=0,下列結(jié)論中哪個正確( )
、貯、B同時都為零,即A=0,
且B=0;
、贏、B中至少有一個為零,即A=0,或B=0;
(五)應(yīng)用探究
1.解下列方程
2.化簡求值:已知x-y=-3,-x+3y=2,求代數(shù)式x2-4xy+3y2的值
。拓展提高:
解方程:
1、(x2+4)2-16x2=0
2、已知a、b、c為三角形的三邊,試判斷a2-2ab+b2-c2大于零?小于零?等于零?
。ㄆ撸堂堂清練習(xí)
1.計算
2.解下列方程
、7x2+2x=0
、趚2+2x+1=0
③x2=(2x-5)2
、躼2+3x=4x
因式分解教案 16
學(xué)習(xí)目標(biāo)
1、學(xué)會用平方差公式進(jìn)行因式法分解
2、學(xué)會因式分解的而基本步驟.
學(xué)習(xí)重難點重點:
用平方差公式進(jìn)行因式法分解.
難點:
因式分解化簡的過程
自學(xué)過程設(shè)計教學(xué)過程設(shè)計
看一看
平方差公式:
平方差公式的逆運用:
做一做:
1.填空題.
(1)25a2-_______=(5a+2b)(5a-2b);(2)x2-=(x-)(________).
(3)-a2+b2=(b+a)(________);(4)36x2-81y2=9(_______)(_______).
2.把下列各式分解因式結(jié)果為-(x-2y)(x+2y)的多項式是()
A.x2-4yB.x2+4y2C.-x2+4y2D.-x2-4y2
3.多項式-1+0.04a2分解因式的結(jié)果是()
A.(-1+0.2a)2B.(1+0.2a)(1-0.2a)
C.(0.2a+1)(0.2a-1)D.(0.04a+1)(0.04a-1)
4.把下列各式分解因式:
(1)4x2-25y2;(2)0.81m2-n2;
(3)a3-9a;(4)8x3y3-2xy.
5.把下列各式分解因式:
(1)(3a+2b)2-(a-b)2;(2)4(x+2y)2-25(x-y)2.
6.用簡便方法計算:3492-2512.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________
預(yù)習(xí)展示一:
1、下列多項式能否用平方差公式分解因式?
說說你的理由。
4x2+y2
4x2-(-y)2
-4x2-y2-4x2+y2
a2-4a2+3
2.把下列各式分解因式:
(1)16-a2
(2)0.01s2-t2
(4)-1+9x2
(5)(a-b)2-(c-b)2
(6)-(x+y)2+(x-2y)2
應(yīng)用探究:
1、分解因式
4x3y-9xy3
變式:把下列各式分解因式
、賦4-81y4
、2a-8a
2、從前有一位張老漢向地主租了一塊“十字型”土地(尺寸如圖)。為便于種植,他想換一塊相同面積的'長方形土地。同學(xué)們,你能幫助張老漢算出這塊長方形土地的長和寬嗎?w
3、在日常生活中如上網(wǎng)等都需要密碼.有一種因式分解法產(chǎn)生的密碼方便記憶又不易破譯.
例如用多項式x4-y4因式分解的結(jié)果來設(shè)置密碼,當(dāng)取x=9,y=9時,可得一個六位數(shù)的密碼“018162”.你想知道這是怎么來的嗎?
小明選用多項式4x3-xy2,取x=10,y=10時。用上述方法產(chǎn)生的密碼是什么?(寫出一個即可)
拓展提高:
若n為整數(shù),則(2n+1)2-(2n-1)2能被8整除嗎?請說明理由.
教后反思考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進(jìn)行變形,從而達(dá)到進(jìn)行因式分解的目的。
因式分解教案 17
教學(xué)目標(biāo):
1、 理解運用平方差公式分解因式的方法。
2、 掌握提公因式法和平方差公式分解因式的綜合運用。
3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問題的能力。
教學(xué)重點:
運用平方差公式分解因式。
教學(xué)難點:
高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運用。
教學(xué)案例:
我們數(shù)學(xué)組的觀課議課主題:
1、關(guān)注學(xué)生的合作交流
2、如何使學(xué)困生能積極參與課堂交流。
在精心備課過程中,我設(shè)計了這樣的自學(xué)提示:
1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?
2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?
①-x2+y2 ②-x2-y2 ③4-9x2
④ (x+y)2-(x-y)2 ⑤ a4-b4
3、試總結(jié)運用平方差公式因式分解的條件是什么?
4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?
5、試總結(jié)因式分解的步驟是什么?
師巡回指導(dǎo),生自主探究后交流合作。
生交流熱情很高,但把全部問題分析完已用了30分鐘。
生展示自學(xué)成果。
生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)
生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)
師:這兩種方法都可以,但第二種方法提出負(fù)號后,一定要注意括號里的各項要變號。
生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)
生4:不對,應(yīng)分解為(2+3x)(2-3x),要運用平方差公式必須化為兩個數(shù)或整式的平方差的形式。
生5: a4-b4可分解為(a2+b2)(a2-b2)
生6:不對,a2-b2 還能繼續(xù)分解為a+b)(a-b)
師:大家爭論的很好,運用平方差公式分解因式,必須化為兩個數(shù)或兩個整式的平方的差的`形式,另因式分解必須分解到不能再分解為止!
反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計也動了一番腦筋,為讓學(xué)生順利得出運用平方差公式因式分解的條件,我設(shè)計了問題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計了問題4,自認(rèn)為,本節(jié)課一定會上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨立完成,反思這節(jié)課主要有以下幾個問題:
(1) 我在備課時,過高估計了學(xué)生的能力,問題2中的③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時,多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學(xué)生的注意力,導(dǎo)致難點、重點不突出,若能把問題2改為:
下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。
(2) 教師備課時,要考慮學(xué)生的知識層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過于心急,過分追求課堂容量、習(xí)題類型全等等,例如在問題2的設(shè)計時可寫一些簡單的,像④、⑤ 可到練習(xí)時再出現(xiàn),發(fā)現(xiàn)問題后再強調(diào)、歸納,效果也可能會更好。
我及時調(diào)整了自學(xué)提示的內(nèi)容,在另一個班也上了這節(jié)課。果然,學(xué)生的討論有了重點,很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非常活躍,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時有點不能應(yīng)對自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試。”生又開始緊張地練習(xí)……下課后,無意間發(fā)現(xiàn)竟還有好幾個同學(xué)課后題沒做。原因是預(yù)習(xí)時不會,上課又沒時間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……?磥,以后上課不能單聽學(xué)生的齊答,要發(fā)揮組長的職責(zé),注重過關(guān)落實。給學(xué)生一點機動時間,讓學(xué)習(xí)有困難的學(xué)生有機會釋疑,練習(xí)不在于多,要注意融會貫通,會舉一反三。
確實,“學(xué)海無涯,教海無邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對不同的學(xué)生,不同的學(xué)情,仍然會產(chǎn)生新的問題,“沒有最好,只有更好!”我會一直探索、努力,不斷完善教學(xué)設(shè)計,更新教育觀念,直到永遠(yuǎn)……
因式分解教案 18
一、教學(xué)目標(biāo)
1.掌握“多──少”、“大──小”兩組反義詞。
2.理解量詞“群、顆、堆”的意思,能正確使用一些量詞。
3.正確、流利地朗讀課文。
二、教學(xué)重難點
認(rèn)字、寫字和正確使用量詞。
三、教學(xué)過程
(一)復(fù)習(xí)檢查
1.復(fù)習(xí)生字。
2.朗讀課文。
(二)學(xué)習(xí)課文,整體把握
1.說一說、比一比。
師:同學(xué)們都讀了課文,請告訴老師,他們在比什么?
生:比大──小。
生:比多──少。
師:誰和誰在比大小,誰和誰在比多少?
生:黃牛和花貓、蘋果和棗在比大小。
生:鴨子和鳥、杏子和桃在比多少。
師:黃牛和花貓、鴨子和鳥都是動物這是一類的,它們可以放在一起來比較。蘋果和棗、杏子和桃都是水果,可以放在一起比較。
2.認(rèn)識量詞。
課件出示課文:
一(頭)黃牛一(只)貓
一(個)蘋果一(顆)棗
一(群)鴨子一(只)鳥
一(堆)杏子一(個)桃
師:括號內(nèi)的字表示量詞。在說一些物體時要用上這類的表示數(shù)量的詞。
師:在上面的這些圖片中(課件出示一些動物圖片)你能說一說嗎?
生:一頭豬。
生:一只兔。
生:一只雞,一群鳥。
師:對了,多的時候用一(群),還能說一群羊、一群螞蟻、一群大雁……
師:我們再來看這些可以用什么量詞,你能說嗎?
生:一個西瓜,一堆西瓜。
生:一棵樹,一顆星。
師:這兩個字不一樣,表示的'物體也不一樣,“棵”一般用在植物類,“顆”一般用在圓圓的、小小的、粒狀的東西。
生:一棵白菜,一顆石頭。
生:一顆心,一顆種子。
3.我會說。
(1)用自己喜歡的方式讀課文。
(2)練習(xí)課后“我會說”。
一(朵)花一(把)扇子一(本)書一(件)衣服一(雙)鞋一(塊)西瓜一(輛)車
(3)續(xù)編兒歌。
學(xué)生先說一說生活中的量詞,思考后續(xù)編兒歌。
例:
一個大,一個小,一頭大象一只兔。
一個皮球一顆扣。
一邊多,一邊少,一群山羊一只雞。
一堆蘿卜一根蔥。
(三)指導(dǎo)生字,書寫生字
1.課件出示生字,學(xué)生觀察生字。
課件展示書寫過程,書寫順序上有什么相同的地方?重點看筆順:先中間后兩邊。
引導(dǎo)學(xué)習(xí)新筆畫“豎鉤”,注意“少”上邊的“小”沒鉤。
2.教師指導(dǎo)、示范,學(xué)生書空。
3.學(xué)生描紅。
4.展示學(xué)生作業(yè)。
因式分解教案 19
【教學(xué)目標(biāo)】
1、了解因式分解的概念和意義;
2、認(rèn)識因式分解與整式乘法的相互關(guān)系——相反變形,并會運用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關(guān)系,并運用它們之間的相互關(guān)系尋求因式分解的方法。
【教學(xué)過程】
、、情境導(dǎo)入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
、、探究新知
1、請每題答得最快的同學(xué)談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的'左邊是一個什么式子,右邊又是什么形式?)
3、類比小學(xué)學(xué)過的因數(shù)分解概念,得出因式分解概念。(學(xué)生概括,老師補充。)
板書課題:§6.1 因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
、、前進(jìn)一步
1、讓學(xué)生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關(guān)系?它們有何聯(lián)系與區(qū)別?
2、因式分解與整式乘法的關(guān)系:
因式分解
結(jié)合:a2-b2 (a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉(zhuǎn)化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉(zhuǎn)化成和差形式(多項式)。
結(jié)論:因式分解與整式乘法的相互關(guān)系——相反變形。
、、鞏固新知
1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應(yīng)的兩個多項式的因式分解嗎?把結(jié)果與你的同伴交流。
㈤、應(yīng)用解釋
例 檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習(xí) 計算下列各題,并說明你的算法:(請學(xué)生板演)
(1)872+87×13
(2)1012-992
、辍⑺季S拓展
1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=
2.機動題:(填空)x2-8x+m=(x-4)( ),且m=
、、課堂回顧
今天這節(jié)課,你學(xué)到了哪些知識?有哪些收獲與感受?說出來大家分享。
㈧、布置作業(yè)
作業(yè)本(1) ,一課一練
因式分解教案 20
教學(xué)目標(biāo)
1、 會運用因式分解進(jìn)行簡單的多項式除法。
2、 會運用因式分解解簡單的方程。
二、教學(xué)重點與難點教學(xué)重點:
教學(xué)重點
因式分解在多項式除法和解方程兩方面的應(yīng)用。
教學(xué)難點:
應(yīng)用因式分解解方程涉及較多的推理過程。
三、教學(xué)過程
(一)引入新課
1、 知識回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
。ǘ⿴熒,講授新課
1、運用因式分解進(jìn)行多項式除法例1 計算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個小問題 :這里的x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)
合作學(xué)習(xí)
想一想:如果已知 ( )( )=0 ,那么這兩個括號內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論!)事實上,若AB=0 ,則有下面的結(jié)論:(1)A和B同時都為零,即A=0,且B=0(2)A和B中有一個為零,即A=0,或B=0
試一試:你能運用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運用因式分解解簡單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個未知數(shù)的.方程的解也叫做根,當(dāng)方程的根多于一個時,常用帶足標(biāo)的字母表示,比如:x1 ,x2
等練習(xí):課本P162課內(nèi)練習(xí)2
做一做!對于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時除以(x+2)嗎?為什么?
教師總結(jié):運用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項,把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項使右邊化為零,切忌兩邊同時除以公因式!4、知識延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=2004,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=2004+1=2005
。ㄈ┦崂碇R,總結(jié)收獲因式分解的兩種應(yīng)用:
(1)運用因式分解進(jìn)行多項式除法
。2)運用因式分解解簡單的方程
。ㄋ模┎贾谜n后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
【因式分解教案】相關(guān)文章:
小學(xué)數(shù)學(xué)因式分解教案03-19
【必備】因式分解教案10篇10-08
因式分解教案范文集錦十篇09-01
因式分解教案范文匯總七篇06-04
因式分解教學(xué)設(shè)計12-06
音樂教案-鐘聲-教案03-25
教案06-18