平行四邊形教案模板集錦5篇
作為一位無私奉獻的人民教師,時常需要用到教案,教案有助于順利而有效地開展教學活動。那么優(yōu)秀的教案是什么樣的呢?下面是小編為大家整理的平行四邊形教案5篇,希望對大家有所幫助。
平行四邊形教案 篇1
教學內容:練習十九的第11~15題。
教學目的:通過練習,使學生進一步熟悉平行四邊形、三角形、梯形面積的計算公式,提高計算面積的熟練程度。
教具準備:將復習題中的平行四邊形、三角形、梯形畫在小黑板上。用厚紙做一個平行四邊形、兩個完全一樣的三角形和兩個完全相同的梯形。
教學過程:
一、復習平行四邊形、三角形、梯形面積的計算公式。
出示下列圖形:
問:這3個圖形分別是什么形?(平行四邊形、三角形和梯形)
平行四邊形的面積怎樣計算?公式是什么?(學生回答后,教師板書:S=ah)
平行四邊形的面積計算公式是怎樣推導出來的?(教師出示一個平行四邊形,讓一學生說推導過程,教師邊聽邊演示)
三角形的面積怎樣計算的?公式是什么?(學生回答后,教師板書:S=ah÷2)
為什么要除以2?(學生回答,教師出示兩個完全相同的'三角形,演示用兩個三角形拼擺一個平行四邊形的過程)
梯形的面積是怎樣計算的?公式是什么?(學生回答后,教師板書:S=(a+b)h÷2)
梯形的面積計算公式是怎樣推導出來的?(學生回答,教師演示用兩個完全相同的梯形拼擺一個平行四邊形的過程。)
量出求這3個圖形面積所需要的線段的長度。(讓學生到黑板前量一量,并標在圖上。讓每個學生在自己的練習本上計算出這3個圖形的面積,算完后,集體核對答案)
二、做練習十九中的題目。
1、第12題,先讓學生說一說題中的圖形各是什么形,再讓學生獨立計算。教師注意巡視,了解學生做的情況,核對時,進行有針對性的講解。
2、第13題和第15題,讓學生獨立計算,做完后集體訂正。
3、第18題,學生做完后,可以提問:在梯形中剪下一個最大的三角形,你是怎樣剪的?
這個最大的三角形是唯一的嗎?為什么?(不是唯一的,因為以梯形的下底為三角形的底,頂點在梯形的上底上的三角形有無數(shù)個,它們的面積是相等的。)
4、練習十九后面的思考題,學生自己試做。教師提示:這道題可以用梯形面積減去以4厘米為底,以12厘米為高的三角形的面積來計算;也可以用含有未知數(shù)X的等式來計算。
三、作業(yè)。
練習十九第11題和第14題。
課后小結:
平行四邊形教案 篇2
一、學習目標
1、經歷探索多項式與多項式相乘的運算法則的過程,發(fā)展有條理的思考及語言表達能力。
2、 會進行簡單的多項式與多項式的乘法運算
二、學習過程
。ㄒ唬┳詫W導航
1、創(chuàng)設情境
某地區(qū)在退耕還林期間,將一塊長m米、寬a米的長方形林區(qū)的長、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。
這塊林區(qū)現(xiàn)在的長為 米,寬為 米。因而面積為________米2。
還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。
由于這兩個算式表示的都是同一塊地的面積,則有 =
如果把(m+n)看作一個整體,你還能用別的方法得到這個等式嗎?
2、概括:
多項式乘以多項式的法則:
3、計算
。1) (2)
4、練一練
。1)
(二)合作攻關
1、某酒店的廚房進行改造,在廚房的中間設計一個準備臺,要求四面的過道寬都為x米,已知廚房的長寬分別為8米和5米,用代數(shù)式表示該廚房過道的總面積。
2、解方程
(三)達標訓練
1、填空題:
(1) = =
。2) = 。
2、計算
。1) (2)
(3) (4)
。ㄋ模┨嵘
1、怎樣進行多項式與多項式的乘法運算?
2、若 的乘積中不含 和 項,則a= b=
應用題
第三十五講 應用題
在本講中將介紹各類應用題的解法與技巧.
當今數(shù)學已經滲入到整個社會的各個領域,因此,應用數(shù)學去觀察、分析日常生活現(xiàn)象,去解決日常生活問題,成為各類數(shù)學競賽的一個熱點.
應用性問題能引導學生關心生活、關心社會,使學生充分到數(shù)學與自然和人類社會的密切聯(lián)系,增強對數(shù)學的理解和應用數(shù)學的信心.
解答應用性問題,關鍵是要學會運用數(shù)學知識去觀察、分析、概括所給的實際問題,揭示其數(shù)學本質,將其轉化為數(shù)學模型.其求解程序如下:
在初中范圍內常見的數(shù)學模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.
例題求解
一、用數(shù)式模型解決應用題
數(shù)與式是最基本的數(shù)學語言,由于它能夠有效、簡捷、準確地揭示數(shù)學的本質,富有通用性和啟發(fā)性,因而成為描述和表達數(shù)學問題的重要方法.
【例1】(20xx年安徽中考題)某風景區(qū)對5個旅游景點的門票價格進行了調整,據(jù)統(tǒng)計,調價前后各景點的游客人數(shù)基本不變。有關數(shù)據(jù)如下表所示:
景點ABCDE
原價(元)1010152025
現(xiàn)價(元)55152530
平均日人數(shù)(千人)11232
。1)該風景區(qū)稱調整前后這5個景點門票的平均收費不變,平均日總收入持平。問風景區(qū)是怎樣計算的?
(2)另一方面,游客認為調整收費后風景區(qū)的平均日總收入相對于調價前,實際上增加了約9.4%。問游客是 怎樣計算的?
。3)你認為風景區(qū)和游客哪一個的說法較能反映整體實際?
思路點撥 (1)風景區(qū)是這樣計算的:
調整前的平均價格: ,設整后的平均價格:
∵調整前后的平均價格不變,平均日人數(shù)不變.
∴平均日總收入持平.
。 2)游客是這樣計算的:
原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)
現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日總收入增加了
。3)游客的說法較能反映整體實際.
二、用方程模型解應用題
研究和解決生產實際和現(xiàn)實生恬中有關問題常常要用到方程<組)的知識,它可以幫助人們從數(shù)量關系和相等關系的角度去認識和理解現(xiàn)實世界.
【例2】 (重慶中考題)某中學新建了一棟4層的教學大樓,每層樓有8間教室,進出這棟大樓共有4道門,其中兩道正門大小相同,兩道側門大小也相同.安全檢查中,對4道門進行了測試:當同時開啟一道正門和兩道側門時,2min內可以通過560名學生;當同時開啟一道正門和一道側門時,4mln內可以通過800名學生.
(1)求平均每分鐘一道正門和一道側門各可以通過多少名學生?
(2)檢查中發(fā)現(xiàn),緊急情況時因學生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學生應在5min內通過這4道門安全撤離.假設這棟教學大樓每間教室最多有45名學生,問:建造的這4道門整否符合安全規(guī)定?請說明理由.
思路點撥 列方程(組)的關鍵是找到題中等量關系:兩種測試中通過的學生數(shù)量.設未知數(shù)時一般問什么設什么.“符合安全規(guī)定”之義為最大通過量不小于學生總數(shù).
(1)設平均每分鐘一道正門可以通過x名學生,一道側門可以通過y名學生,由題意得:
,解得:
(2)這棟樓最多有學生4×8×4 5=1440(名).
擁擠時5min4道門能通過.
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道門符合安全規(guī)定.
三、用不等式模型解應用題
現(xiàn)實世界中的不等關系是普遍存在的,許多問題有時并不需要研究它們之間的相等關系,只需要確定某個量的變化范圍,即可對所研究的問題有比較清楚的認識.
【例3】 (蘇州中考題)我國東南沿海某地的風力資源豐富,一年內月平均的風速不小于3m/s的時間共約160天,其中日平均風速不小于6m/s的時間占60天.為了充分利用“風能”這種“綠色資源”,該地擬建一個小型風力發(fā)電場,決定選用A、B兩種型號的風力發(fā)電機,根據(jù)產品說明,這兩種風力發(fā)電機在各種風速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:
日平均風速v(米/秒)v<33≤v<6v≥6
日發(fā)電量 (千瓦?時)A型發(fā)電機O≥36≥150
B型發(fā)電機O≥24≥90
根據(jù)上面的數(shù)據(jù)回答:
(1)若這個發(fā)電場購x臺A型風力發(fā)電機,則預計這些A型風力發(fā)電機一年的發(fā)電總量至少為 千瓦?時;
(2)已知A型風力發(fā)電機每臺O.3萬元,B型風力發(fā)電機每臺O.2萬元.該發(fā)電場擬購置風力發(fā)電機共10臺,希望購機的費用不超過2.6萬元,而建成的風力發(fā)電場每年的發(fā)電總量不少于102000千瓦?時,請你提供符合條件的購機方案.
根據(jù)上面的數(shù)據(jù)回答:
思路點撥 (1) (100×36+60×150)x=12600x;
(2)設購A型發(fā)電機x臺,則購B型發(fā)電機(10—x)臺,
解法一根據(jù)題意得:
解得5≤x ≤6.
故可購A型發(fā)電機5臺,B型發(fā)電機5臺;或購A型發(fā)電機6臺,B型發(fā)電視4臺.
四、用函數(shù)知識解決的應用題
函數(shù)類應用問題主要有以下兩種類型:(1)從實際問題出發(fā),引進數(shù)學符號,建立函數(shù)關系;(2)由提供的基本模型和初始條件去確定函數(shù)關系式.
【例4】 (揚州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤楊”報刊零售點.對經營的某種晚報,楊嫂提供丁如下信息:
、儋I進每份0.20元,賣出每份0.30元;
、谝粋月內(以30天計),有20天每天可以賣出200份,其余10天每天只能賣出120份;
、垡粋月內,每天從報社買進的報紙份數(shù)必須相同.當天賣不掉的報紙,以每份0.10元退回給報社;
(1)填表:
一個月內每天買進該種晚報的份數(shù)100150
當月利潤(單位:元)
(2)設每天從報社買進該種晚報x份,120≤x≤200時,月利潤為y元,試求出y與x的函數(shù)關系式,并求月利潤的最大值.
思路點撥(1)填表:
一個月內每天買進該種晚報的份數(shù)100150
當月利潤(單位:元)300390
(2)由題意可知,一個月內的20天可獲利潤:
20×=2x(元);其余10天可獲利潤:
10=240—x(元);
故y=x+240,(120≤x≤200), 當x=200時,月利潤y的最大值為440元.
注 根據(jù)題意,正確列出函數(shù)關系式,是解決問題的關鍵,這里特別要注意自變量x的取值范圍.
另外,初三還會提及統(tǒng)計型應用題,幾何型應用題.
【例5】 (桂林市)某公司需在一月(31天)內完成新建辦公樓的裝修工程.如果由甲、乙兩個工程隊合做,12天可完成;如果由甲、乙兩隊單獨做,甲隊比乙隊少用10天完成.
。1)求甲、乙兩工程隊單獨完成此項工程所需的天數(shù).
(2)如果請甲工程隊施工,公司每日需付費用200 0元;如果請乙工程隊施工,公司每日需付費用1400元.在規(guī)定時間內:A.請甲隊單獨完成此項工程;B.請乙隊單獨完成此項工 程; C.請甲、乙兩隊合作完成此項工程.以上方案哪一種花錢最少?
思路點撥 這是一道策略優(yōu)選問題.工程問題中:工作量=工作效率×工時.
(1)設乙工程隊單獨完成此項工程需x天,根據(jù)題意得:
, x=30合題意,
所以,甲工程隊單獨完成此項工程需用20天,乙隊需30天.
(2)各種方案所需的費用分別為:
A.請甲隊需20xx×20=40000元;
B.請乙隊需1400×30=4200元;
C.請甲、乙兩隊合作需(20xx+1400)×12=40800元.
所隊單獨請甲隊完成此項工程花錢最少.
【例6】 (2全國聯(lián)賽初賽題)一支科學考察隊前往某條河流的上游去考察一個生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進若干天后到達目的地,然后在生態(tài)區(qū)考察了若干天,完成任務后以每天25km的速度返回,在出發(fā)后的第60天,考察隊行進了24km后回到出發(fā)點,試問:科學考察隊的生態(tài)區(qū)考察了多少天?
思路點撥 挖掘題目中隱藏條件是關鍵!
設考察隊到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
這里x、y是正整數(shù),現(xiàn)設 法求出①的`一組合題意的解,然后計算出z的值.
為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負整數(shù)).用輾轉相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
與①的左端比較可知,x0 =-3,y0=-2.
下面再求出①的合題意的解.
由不定方程的知識可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t為整數(shù).按題意0 ∴z=60—(x+y)=23. 答:考察隊在生態(tài)區(qū)考察的天數(shù)是23天. 注 本題涉及到的未知量多,最終轉化為二元一次不定方程來解,希讀者仔細咀嚼所用方法. 【例7】 (江蘇省第17屆初中競賽題)華鑫超市對顧客實行優(yōu)惠購物,規(guī)定如下: (1)若一次購物少于200元,則不予優(yōu)惠; (2)若一次購物滿200元,但不超過500元,按標價給予九折優(yōu)惠; (3)若一次購物超過500元,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折 優(yōu)惠. 小明兩次去該超市購物,分別付款198元與554元.現(xiàn)在小亮決定一次去購 買小明分兩次購買的同樣多的物品,他需付款多少? 思路點撥 應付198元購物款討論: 第一次付款198元,可是所購物品的實價,未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應分兩種情況加以討論. 情形1 當198元為購物不打折付的錢時,所購物品的原價為198元 . 又554=450+104,其中450元為購物500元打九折付的錢,104元為購物打八折付的錢;104÷0. 8 =130(元). 因此,554元所購物品的原價為130+500=630(元),于是購買小呀花198 +630=828(元)所購的全部物品,小亮一次性購買應付500×0.9+(828-500)×0.8=712.4(元). 情形2 當198元為購物打九折付的錢時,所購物品的原價為198 ÷0.9=220(元) .仿情形1的討論,,購220+630=850{元}物品一次性付款應為500×0.9+(850-500)×0.8=730(元). 綜上所述,小亮一次去超市購買小明已購的同樣多的物品,應付款712.40元或730元 【例8】 (20xx年全國數(shù)學競賽題)某項工程,如果由甲、乙兩隊承包,2 天完成,需180000元;由乙、丙兩隊承包,3 天完成,需付150000元;由甲、丙兩隊承包,2 天完成,需付160000元.現(xiàn)在工程由一個隊單獨承包,在保證一周完成的前提下,哪個隊承包費用最少? 思路點撥 關鍵問題是甲、乙、丙單獨做各需的天數(shù)及獨做時各方日付工資.分兩個層次考慮: 設甲、乙、丙單獨承包各需x、y、z天完成. 則 ,解得 再設甲、乙、丙單獨工作一天,各需付u、v、w元, 則 ,解得 于是,由甲隊單獨承包,費用是45500×4=182000 (元). 由乙隊單獨承包,費用是29500×6= 177000 (元). 而丙隊不能在一周內完成.所以由乙隊承包費用最少. 學歷訓練 (A級) 1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴散,某制藥廠接到了生產240箱過氧乙酸消毒液的任務.在生產了60箱后,需要加快生產,每天比原來多生產15箱,結果6天就完成了任務.求加快速度后每天生產多少箱消毒液? 2.(山東省競賽題)某市為鼓勵節(jié)約用水,對自來水妁收費標準作如下規(guī)定:每月每戶用水中不超過10t部分按0.45元/噸收費;超過10t而不超過20t部分按每噸0.8元收費;超過20t部分按每噸1.50元收費,某月甲戶比乙戶多繳水費7.10元,乙戶比丙戶多繳水費3.75元,問甲、乙、丙該月各繳水費多少?(自來水按整噸收費) 3.(江蘇省競賽題)甲、乙、丙三人共解出100道數(shù)學題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問:難題多還是容易題多?多的比少的多幾道題? 4.某人從A地到B地乘坐出租車有兩種方案,一種出租車收費標準是起步價10元,每千米1.2元;另一種出租車收費標準是起步價8元,每千米1.4元,問選擇哪一種出租車比較合適? (提示:根據(jù)目前出租車管理條例,車型不同,起步價可以不同,但起步價的最大行駛里程是相同的,且此里程內只收起步價而不管其行駛里程是多少) (B級) 1.(全國初中數(shù)學競賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺抽水機抽水,40min可抽完;如果用4臺抽水機抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機 臺. 2.(希望杯)有一批影碟機(VCD)原售價:800元/臺.甲商場用如下辦法促銷: 購買臺數(shù)1~5臺6~10臺11~15臺16~20臺20臺以上 每臺價格760元720元680元640元600元 乙商場用如下辦法促銷:每次購買1~8臺,每臺打九折;每次購買9~16臺,每臺打八五折; 每次購買17~24臺,每臺打八折;每次購買24臺以上,每臺打七五折. 。1)請仿照甲商場的促銷列表,列出到乙商場購買VCD的購買臺數(shù)與每臺價格的對照表; (2)現(xiàn)在有A、B、C三個單位,且單位要買10臺VCD,B單位要買16臺VCD,C單位要買20臺VCD,問他們到哪家商場購買花費較少? 3.(河北創(chuàng)新與知識應用競賽題)某錢幣收藏愛好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請你據(jù)此設計兌換方案. 4.從自動扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運動且男孩每分鐘走動的級數(shù)是女孩的兩倍,已知男孩走了27級到達扶梯頂部,而女孩走了18級到達扶梯頂部(設男孩、女孩每次只踏—級).問: (1)扶梯露在外面的部分有多少級? (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級數(shù)和扶梯的級數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時走了多少級臺階? 5.某化肥廠庫存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍. 6.(黃岡競賽題)有麥田5塊A、B、C、D、E,它們的產量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場,這5塊麥田生產的麥子都在此打場.問建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運輸量最小?圖中圓圈內的數(shù)字為產量,直線段上的字母a、b、d表示距離,且b < a 多邊形的邊角與對角線 j.Co M 第十四講 多邊形的邊角與對角線 邊、角、對角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內外角度數(shù)、對角線條數(shù)是解與多邊形相關的基本問題,常用到三角形內角和、多邊形內、外角和定理、不等式、方程等知識. 多邊形 的內角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質的規(guī)律;360°是一個常數(shù),把內角問題轉化為外角問題,以靜制動是解多邊形有關問題的常用技巧. 將多邊形問題轉化為三角形問題來處理是解多邊形問題的基本策略,連對角線或向外補形、對內分割是轉化的常用方法,從凸 邊形的一個頂點引出的對角線把 凸 邊形分成 個多角形,凸n邊形一共可引出 對角線. 例題求解 【例1】在一個多邊形中,除了兩個內角外,其余內角之和為20xx°,則這個多邊形的邊數(shù)是 . (江蘇省競賽題) 思路點撥 設除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關于x、y的不定方程;又0° 鏈接 世界上的萬事萬物是一個不斷地聚合和分裂的過程,點是幾何學最原始的概念,點生線、線生面、面生體,幾何元素的聚合不斷產生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質,多邊形可分成三角形,三角形可以合成其他 一些幾何圖形. 【例2】 在凸10邊形的所有內角中,銳角的個數(shù)最多是( ) A.0 B.1 C.3 D.5 (全國初中數(shù)學競賽題) 思路點撥 多邊形的內角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內角為銳角的個數(shù)討論轉化為 外角為鈍角的個數(shù)的探討. 【例3】 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開成為兩個三角形,在平面上把這兩個三角形拼成一個四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標出圖中直角),并分別寫出所拼四邊形的對角線的長. (烏魯木齊市中考題) 思路點撥 把動手操作與合情想象相結合 ,解題的關鍵是能注意到重合的邊作為四邊形對角線有不同情形. 注 教學建模是當今教學教育、考試改革最熱門的一個話題,簡單地說,“數(shù)學建!本褪峭ㄟ^數(shù)學化(引元、畫圖等)把實際問題特化為一個數(shù)學問題,再運用相應的數(shù)學知識方法(模型)解決問題. 本例通過設元,把“沒有重疊、沒有空隙”轉譯成等式,通過不定方程求解. 【例4】 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內角大小有關,當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形. (1)請根據(jù)下列圖形,填寫表中空格: (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形? (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說明你的理由. (陜西省中考題) 思路點撥 本例主要研究兩個問題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點接合的地方,n個內角的和為360°,這樣,將問題的討論轉化為求不定方程的正整數(shù)解. 【例5】 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個單位,得到新的五邊形A'B'C'D'E'. 。1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個五邊形嗎?說明理由. (2)證明五邊形A'B'C'D'E'的周長比五邊形ABCD正的周長至少增加25個單位. (江蘇省競賽題) 思路點撥 (1)5塊陰影部分要能拼成一個五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長逼近估算. 1.如圖,用硬紙片剪一個長為16cm、寬為12cm的長方形,再沿對角線把它分成兩個三角形,用這兩個三角形可拼出各種三角形和四邊形來,其中周長最大的是 ?,周長最小的是 cm. (選6《莢國中小學數(shù)學課程標準》) 2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 . 4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個圖案: (1)第4個圖案中有白色地面磚 塊; (2)第n個圖案中有白色地面磚 塊. (江西省中考題) 5.凸n邊形中有且僅有兩個內角為鈍角,則n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀請賽試題) 6.一個凸多邊 形的每一內角都等于140°,那么,從這個多邊形的一個頂點出發(fā)的對角線的條數(shù)是( ) A.9條 B.8條 C.7條 D. 6條 7.有一個邊長為4m的正六邊形客廳,用邊長為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( ) A.216塊 B.288塊 C.384塊 D.512塊 ( “希望杯”邀請賽試題) 8.已知△ABC是邊長為2的等邊三角形,△ACD是一個含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個凸四邊形ABCD. (1))畫出四邊形ABCD; (2)求出四邊形ABCD的對角線BD的長. (上海市閔行區(qū)中考題) 9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù). (北京市競賽題) 10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對邊A3A4的中點,連結A1B1,我們稱A1B1是這個五邊形的一條中對線,如果五邊形的每條中對線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對角線和它平行. (安徽省中考題) 11.如圖,凸四邊形有 個;∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重慶市競賽題) 12.如圖,延長凸五邊形A1A2A3A4A5的各邊相交得到5個角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長凸n邊形(n≥5)的各邊相交,則得到的n個角的和等于 . ( “希望杯”邀請賽試題) 13.設有一個邊長為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復上述過程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復上述過程,所得到的圖形記作A4,那么,A4的周長是 ;A4這個多邊形的面積是原三角形面積的 倍. (全國初中數(shù)學聯(lián)賽題) 14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競賽題) 15.在一個n邊形中,除了一個內角外,其余(n一1)個內角的和為2750°,則這個內角的度數(shù)為( ) A.130° D.140° C .105° D.120° 16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長為( ) A.4 B.4 C.3 D. 3 (江蘇省競賽題) 注 按題中的方法'不斷地做下去,就會成為下圖那樣的圖形,它的邊界有一個美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學現(xiàn)象都導致分形,分形是新興學科“混沌”的重要分支. 17.如圖,設∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山東省競賽題) 18.平面上有A、B,C、D四點,其中任何三點都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個三角形的內角不超過45°. 19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長都是整數(shù),求n. (上海市競賽題) 20.如圖,凸八邊形ABCDEFGH的8 個內角都相等,邊AB、BC、CD、DE、EF、FG的長分別為7,4,2,5,6,2,求該八邊形的周長. 21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開后支撐起來放在地面上的情況,如果折疊起來,床頭部分被折到了床面之下(這里的A、B、C、D各點都是活動的),活動床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設計而成的,其折疊過程可由圖2的變換反映出來. 如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長時,才能實現(xiàn)上述的折疊變化? (淄博市中考題) 22.一個凸n邊形由若干個邊長為1的正方形或正三角形無重疊、無間隙地拼成,求此凸n邊形各個內角的大小,并畫出這樣的 凸n邊形的草圖. 圖形的平移與旋轉 前蘇聯(lián)數(shù)學家亞格龍將幾何學定義為:幾何學是研究幾何圖形在運動中不變的那些性質的學科. 幾何變換是指把一個幾何圖形Fl變換成另一個幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉是常見的合同變換. 如圖1,若把平面圖形Fl上的各點按一定方向移動一定距離得到圖形F2后,則由的變換叫平移變換. 平移前后的圖形全等,對應線段平行且相等,對應角相等. 如圖2,若把平面圖Fl繞一定點旋轉一個角度得到圖形F2,則由Fl到F2的變換叫旋轉變換,其中定點叫旋轉中心,定角叫旋轉角. 旋轉前后的圖形全等,對應線段相等,對應角相等,對應點到旋轉中心的距離相等. 通過平移或旋轉,把部分圖形搬到新的位置,使問題的條件相對集中,從而使條件與待求結論之間的關系明朗化,促使問題的解決. 注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關系,而線段本身的大小要改變. 例題求解 【例1】如圖,P為正方形ABCD內一點,PA:PB:PC=1:2:3,則∠APD= . 思路點撥 通過旋轉,把PA、PB、PC或關聯(lián)的線段集中到同一個三角形. 【例2】 如圖,在等腰Rt△ABC的斜邊AB上取兩點M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長的三角形的形狀是( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨x、m、n的變化而改變 思路點撥 把△ACN繞C點順時針旋轉45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可. 注 下列情形,常實施旋轉變換: (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉角分別定為60°、90°; (2)圖形中有線段的中點,將圖形繞中點旋轉180°,構造中心對稱全等三角形; (3)圖形中出現(xiàn)有公共端點的線段,將含有相等線段的圖形繞公共端點,旋轉兩相等線段的夾角后與另一相等線段重合. 【例3】 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等. (全俄數(shù)學奧林匹克競賽題) 思路點撥 設法將復雜的條件BC?FF=ED?AB=AF?CD>0用一個基本圖形表示,題設中有平行條件,可考慮實施平移變換. 注 平移變換常與平行線相關,往往要用到平行四邊形的性質,平移變換可將角,線段移到適當?shù)奈恢茫狗稚⒌臈l件相對集中,促使問題的解決. 【例4】 如圖,在等腰△ABC的兩腰AB、AC上分別取點E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競賽題) 思路點撥 本例實際上就是證明2EF≥BC,不便直接證明,通過平移把BC與EF集中到同一個三角形中. 注 三角形中的不等關系,涉及到以下基本知識: (1)兩點間線段最短,垂線段最短; (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊; (3)同一個三角形中大邊對大角(大角對大邊),三角形的一個外角大于任何一個和它不相鄰的內角. 【例5】 如圖,等邊△ABC的邊長為 ,點P是△ABC內的一點,且PA2+PB2=PC2,若PC=5,求PA、PB的長. (“希望杯”邀請賽試題) 思路點撥 題設條件滿足勾股關系PA2+PB2=PC2的三邊PA、PB、PC不構成三角形,不能直接應用,通過旋轉變換使其集中到一個三角形中,這是解本例的關 鍵. 學歷訓練 1.如圖,P是正方形ABCD內一點,現(xiàn)將△ABP繞點B顧時針方向旋轉能與△CBP′重合,若PB=3,則PP′= . 2.如圖,P是等邊△ABC內一點,PA=6,PB=8,PC=10,則∠APB . 3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長為 . 4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動的距離AA'是( ) A. B. C.l D. (20xx年荊州市中考題) 5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點C、F,給出以下四個結論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP. 當∠EPF在△ABC內繞頂點P旋轉時(點E不與A、B重合),上述結論中始終正確的有( ) A.1個 B.2個 C .3個 D.4個 (20xx年江蘇省蘇州市中考題) 6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長為( ) A.2 B.3 C . D. (20xx年武漢市選拔賽試題) 7.如圖,正方形ABCD和正方形EFGH的邊長分別為 和 ,對角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長叫做兩個正方形的中心距,當中心O2在直線 上平移時,正方形EFGH也隨之平移,在平移時正方形EFGH的形狀、大小沒有變化. (1)計算:O1D= ,O2F= ; (2)當中心O2在直線 上平移到兩個正方形只有一個公共點時,中心距O1O2= ; (3)隨著中心O2在直線 上平移,兩個正方形的公共點的個數(shù)還有哪些變化?并求出相對應的中心距的值或取值范圍(不必寫出計算過程). (徐州市中考題) 8.圖形的操做過程(本題中四個矩形的水平方向的邊長均為a,豎直 方向的邊長均為b): 在圖a中,將線段A1A2向右平移1個單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分); 在圖b中, 將折線A1A2A3向右平移1個單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分); 。1)在圖c中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影; (2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ; 。3)聯(lián)想與探索: 如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草地面積是多少?并說明你的猜想是正確的. (20xx年河北省中考題) 9.如圖,已知點C為線段AB上一點,△ACM、△CBN是等邊三角形,求證:AN=BM. 說明及要求:本題是《幾何》第二冊幾15中第13題,現(xiàn)要求: (1)將△ACM繞C點按逆時針方向旋轉180°,使A點落在CB上,請對照原題圖在圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡). (2)在①所得的圖形中,結論“AN=BM”是否還成立?若成立,請證明;若不成立,請說明理由. (3)在①得到的圖形中,設MA的延長線與BN相交于D點,請你判斷△ABD與四邊形MDNC的形狀,并證明你的結論. 10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點3cm的點P為中心,把這個三角形按逆時針方向旋轉90°至△DEF,則旋轉前后兩個直角三角形重疊部分的面積是 cm2. 11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點E在DC上,AE、BC的延長線交于點F,若AE=10,則S△ADE+S△CEF的值是 . (紹興市中考題) 12.如圖,在△ABC中,∠BAC=120°,P是△ABC內一點,則PA+PB+PC與AB+AC的大小關系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無法確定 13.如圖,設P到等邊三角形ABC兩頂點A、B的距離分別為2、3,則PC所能達到的最大值為( ) A. B. C .5 D.6 (20xx年武漢市選拔賽試題) 14.如圖,已知△ABC中,AB=AC,D為AB上一點,E為AC 延長線上一點,BD=CE,連DE,求證:DE>DC. 15.如圖,P為等邊△ABC內一點,PA、PB、PC的長為正整數(shù),且PA2+PB2=PC2,設PA=m,n為大于5的實數(shù),滿 ,求△ABC的面積. 16.如圖,五羊大學建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門,B為分校大門,為方便人員來往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點水平距離(與小河平行方向)120米,為使A、B兩點間來往路程最短,兩座橋都按這個目標而建,那么,此時A、D兩點間來往的路程是多少米? (“五羊杯”競賽題) 17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內一點,點O到△ABC各邊的距離都等于1,將△ABC繞 點O順時針旋轉45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ. (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC與△A1BlC1公共部分的面積. (山東省競賽題) 18.(1)操作與證明:如圖1,O是邊長為a的正方形ACBD的中心,將一塊半徑足夠長,圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉,求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值. (2)嘗試與思考:如圖2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或正五邊形的中心O點處,并將紙板繞O點旋轉, 當扇形紙板的圓心角為 時,正三角形的邊被紙板覆蓋部分的總長度為定值a;當扇形紙板的圓心角為 時,正五邊形的邊被紙板覆蓋部分的總長度也為定值a. (3)探究與引申:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉.當扇形紙板的圓心角為 時,正n邊形的邊被紙板覆蓋部分 的總長度為定值a;這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關系;若不是定值,請說明理由. 教學目標 1.使學生在理解的基礎上掌握平行四邊形面積的計算公式,并會運用公式正確地計算平行四邊形的面積. 2.通過操作、觀察、比較,發(fā)展學生的空間觀念,培養(yǎng)學生運用轉化的思考方法解決問題的能力和邏輯思維能力. 3.對學生進行辯詐唯物主義觀點的啟蒙教育. 教學重點 理解公式并正確計算平行四邊形的面積. 教學難點 理解平行四邊形面積公式的推導過程. 教學過程 復習引入 。ㄒ唬┠贸鍪孪葴蕚浜玫拈L方形和平行四邊形.量出它的長和寬(平行四邊形量出底和高). 。ǘ┯^察老師出示的幾個平行四邊形,指出它的底和高. 。ㄈ┙處煶鍪疽粋長方形和一個平行四邊形. 1.猜測:哪一個圖形面積比較大?大多少平方厘米呢? 2.要想我們準確的答案,就要用到今天所學的知識——“平行四邊形面積的計算” 板書課題:平行四邊形面積的計算 二、指導探究 。ㄒ唬⿺(shù)方格方法 1.小組合作討論: 。1)圖上標的厘米表示什么?每個小方格表示1平方厘米為什么? 。2)長方形的長是多少厘米?寬是多少厘米?面積是多少平方厘米? (3)用數(shù)方格的方法,求出平行四邊形的面積?(不滿一格的,都按半格計算) (4)比較平行四邊形的底和長方形的長,再比較平行四邊形的'高和長方形的寬,你發(fā)現(xiàn)了什么? 2.集體訂正 3.請同學評價一下用數(shù)方格的方法求平行四邊形的面積. 學生:麻煩,有局限性. 。ǘ┨剿髌叫兴倪呅蚊娣e的計算公式. 1.教師談話 不數(shù)方格怎樣能夠計算平行四邊形的面積呢?想一想,如果我們把平行四邊形轉化成我們過去學過的圖形,就可以根據(jù)已學過的面積公式計算出它的面積了,轉化成什么圖形,怎樣轉化呢?請大家拿出手里的學具試試看. 2.學生動手剪拼(可以小組合作),并向周圍同學說一說是怎樣轉化的. 3.學生到前面演示轉化的方法. 4.演示課件:平行四邊形的面積 5.組織學生討論: 。1)平行四邊形和轉化后的長方形有什么關系? 。2)怎樣計算平行四邊形的面積?為什么? 。3)如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么平行四邊形面積的字母公式是什么? 。ㄈ⿷ 例1.一塊平行四邊形鋼板,它的面積是多少?(得數(shù)保留整數(shù)) 4.8×3.5≈17(平方米) 答:它的面積約是17平方米. 三、質疑小結 今天你學到了哪些知識?怎樣計算平行四邊形面積? 四、鞏固練習 。ㄒ唬┝惺讲⒂嬎忝娣e 1.底=8厘米,高=5厘米, 2.底=10米,高=4米, 3.底=20分米,高=7分米 。ǘ┱f出下面每個平行四邊形的底和高,計算它們的面積. (三)應用題 有一塊地近似平行四邊形,底是43米,商是20.1米,這塊地的面積約是多少平方米?(得數(shù)保留整數(shù)) 。ㄋ模┝砍瞿闶掷锲叫兴倪呅螌W具的底和高,并計算出它的面積. 教案點評: 該教學設計在學習面積的計算過程中,引導學生進行大膽猜想,提出假設,放手讓學生去實踐,把學生推到了課堂教學活動的主體地位,用科學的方法去驗證假設,使學生學到了解決問題的方法,同時培養(yǎng)了學生的邏輯思維和動手操作的能力。 教學目標: 知識技能:認識平行四邊形,能在方格紙上畫平行四邊形。 過程方法:在對簡單圖形分類的過程中,經歷認識平行四邊形的過程。 情感態(tài)度:鼓勵學生發(fā)現(xiàn)日常生活中形狀是平行四邊形的物體,初步體會平行四邊形的作用。 教學過程: 一、 創(chuàng)設情境 1、認識平行四邊形 。1)出示下圖,認真觀察。94頁的一組圖形,讓學生仔細觀察,然后提出分類的要求。 (2)在交流的基礎上,讓學生了解什么樣的圖形叫做平行四邊形。 。3)引導學生從自動拉門、籬笆中找出平行四邊形。 2、感悟平行四邊形的`特征 、艑W會畫平行四邊形。 教師掩飾在方格紙上畫一個平行四邊形。 、埔龑W生找到平行四邊形的不穩(wěn)定性。 二、實踐與應用 1.下面哪些圖形是平行四邊形?把它涂上色。 2.在方格紙上畫一個大一點的平行四邊形。 三、全課小結 學生匯報本節(jié)課的收獲。 教學內容: 教科書第79~81頁 教學目標: 1.使學生通過探索,理解和掌握平行四邊形的面積計算公式,會計算平行四邊形的面積。 2.通過操作、觀察、比較活動,初步認識轉化的方法,培養(yǎng)學生的觀察、分析、概括、推導能力,發(fā)展學生的空間觀念。 教學過程: 一、導入 1.觀察主題圖(有條件的地方可做成多媒體課件出示),讓學生找一找圖中有哪些學過的圖形。 2.觀察圖中學校門前的兩個花壇,說一說這兩個花壇都是什么形狀的?怎樣比較兩個花壇的大?你會計算它們的面積嗎? 3.引入學習內容:長方形的面積我們已經會計算了,今天我們研究平行四邊形面積的計算。 板書課題:平行四邊形的面積 二、平行四邊形面積計算 1.用數(shù)方格的方法計算面積。 。1)用多媒體或幻燈出示教材第80頁方格圖:我們已經知道可以用數(shù)方格的方法得到一個圖形的`面積,F(xiàn)在請同學們用這個方法算出這個平行四邊形和這個長方形的面積。 說明要求:一個方格表示1cm2,不滿一格的都按半格計算。把數(shù)出的數(shù)據(jù)填在表格中(見教材第80頁表格)。 。2)同桌合作完成。 (3)匯報結果,可用投影展示學生填好的表格。 。4)觀察表格的數(shù)據(jù),你發(fā)現(xiàn)了什么? 通過學生討論,可以得到平行四邊形與長方形的底與長、高與寬及面積分別相等;這個平行四邊形面積等于它的底乘高;這個長方形的面積等于它的長乘寬。 2.推導平行四邊形面積計算公式。 。1)引導:我們用數(shù)方格的方法得到了一個平行四邊形的面積,但是這個方法比較麻煩,也不是處處適用。我們已經知道長方形的面積可以用長乘寬計算,平行四邊形的面積是不是也有其他計算方法呢? 學生討論,鼓勵學生大膽發(fā)表意見。 。2)歸納學生意見,提出:通過數(shù)方格我們已經發(fā)現(xiàn)這個平行四邊形的面積等于底乘高,是不是所有的平行四邊形都可以用這個方法計算呢?需要驗證一下。因為我們已經會計算長方形的面積,所以我們能不能把一個平行四邊形變成一個長方形計算呢?請同學們試一試。 學生用課前準備的平行四邊形和剪刀進行剪和拼,教師巡視。 請學生演示剪拼的過程及結果。 教師用課件或教具演示剪—平移—拼的過程。(如教材第81頁的圖示) (3)我們已經把一個平行四邊形變成了一個長方形,請同學們觀察拼出的長方形和原來的平行四邊形,你發(fā)現(xiàn)了什么? 小組討論?梢猿鍪居懻擃}: 、倨闯龅拈L方形和原來的平行四邊形比,面積變了沒有? 、谄闯龅拈L方形的長和寬與原來的平行四邊形的底和高有什么關系? 、勰芨鶕(jù)長方形面積計算公式推導出平行四邊形的面積計算公式嗎? 小組匯報,教師歸納: 我們把一個平行四邊形轉化成為一個長方形,它的面積與原來的平行四邊形面積相等。 這個長方形的長與平行四邊形的底相等, 這個長方形的寬與平行四邊形的高相等, 因為 長方形的面積=長×寬, 所以 平行四邊形的面積=底×高。 3.教師指出在數(shù)學中一般用S表示圖形的面積,a表示圖形的底,h表示圖形的高,請同學們把平行四邊形的面積計算公式用字母表示出來。 三、鞏固和應用 1.出示例1。讀題并理解題意。 學生試做,交流作法和結果。 2.討論:下面兩個平行四邊形的面積相等嗎?為什么? 【平行四邊形教案】相關文章: 《平行四邊形的面積》教案01-02 認識平行四邊形教案03-05 平行四邊形面積教案02-09 平行四邊形的面積教案07-24 平行四邊形的面積教案03-17 平行四邊形教案優(yōu)秀03-27 平行四邊形的認識教案07-30 平行四邊形面積的計算教案03-03 數(shù)學《平行四邊形的面積》教案02-14 數(shù)學平行四邊形的面積教案02-28平行四邊形教案 篇3
平行四邊形教案 篇4
平行四邊形教案 篇5