- 相關(guān)推薦
北師大版數(shù)學(xué)必修五第一章知識點
在平平淡淡的學(xué)習(xí)中,大家最不陌生的就是知識點吧!知識點在教育實踐中,是指對某一個知識的泛稱。為了幫助大家掌握重要知識點,以下是小編整理的北師大版數(shù)學(xué)必修五第一章知識點,僅供參考,歡迎大家閱讀。
解三角形判斷有幾個解
已知條件:一邊和兩角
一般解法:由A+B+C=180°,求角A,由正弦定理求出b與c,在有解時,有一解。
已知條件:兩邊和夾角
一般解法:由余弦定理求第三邊c,由正弦定理求出小邊所對的角,再由A+B+C=180°求出另一角,在有解時有一解。
已知條件:三邊
一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解時只有一解。
已知條件:兩邊和其中一邊的對角
一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C邊,可有兩解、一解或無解。(或利用余弦定理求出c邊,再求出其余兩角B、C)
、偃鬭>b,則A>B有唯一解;
、谌鬮>a,且b>a>bsinA有兩解;
、廴鬭
常用定理
正弦定理
a/sinA=b/sinB=c/sinC=2R(2R在同一個三角形中是恒量,R是此三角形外接圓的半徑)。
變形公式
(1)a=2RsinA,b=2RsinB,c=2RsinC
。2)sinA:sinB:sinC=a:b:c
。3)asinB=bsinA,asinC=csinA,bsinC=csinB
。4)sinA=a/2R,sinB=b/2R,sinC=c/2R
面積公式(5)S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h(原始公式)
余弦定理
a2=b2+c2—2bccosA
b2=a2+c2—2accosB
c2=a2+b2—2abcosC
注:勾股定理其實是余弦定理的一種特殊情況。
變形公式
cosC=(a2+b2—c2)/2ab
cosB=(a2+c2—b2)/2ac
cosA=(c2+b2—a2)/2bc
數(shù)學(xué)數(shù)列知識點
1、數(shù)列的通項、數(shù)列項的項數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項與數(shù)列的前項和公式的關(guān)系
2、等差數(shù)列中
(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性。
(2)也成等差數(shù)列。
。3)兩等差數(shù)列對應(yīng)項和(差)組成的新數(shù)列仍成等差數(shù)列。
。4)仍成等差數(shù)列。
。5)“首正”的遞等差數(shù)列中,前項和的最大值是所有非負(fù)項之和;“首負(fù)”的遞增等差數(shù)列中,前項和的最小值是所有非正項之和;
(6)有限等差數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定。若總項數(shù)為偶數(shù),則“偶數(shù)項和“奇數(shù)項和=總項數(shù)的一半與其公差的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和—偶數(shù)項和”=此數(shù)列的中項。
。7)兩數(shù)的等差中項惟一存在。在遇到三數(shù)或四數(shù)成等差數(shù)列時,?紤]選用“中項關(guān)系”轉(zhuǎn)化求解。
(8)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式)。
3。等比數(shù)列中:
。1)等比數(shù)列的符號特征(全正或全負(fù)或一正一負(fù)),等比數(shù)列的首項、公比與等比數(shù)列的單調(diào)性。
。2)兩等比數(shù)列對應(yīng)項積(商)組成的新數(shù)列仍成等比數(shù)列。
。3)“首大于1”的正值遞減等比數(shù)列中,前項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數(shù)列中,前項積的最小值是所有小于或等于1的項的積;
(4)有限等比數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定。若總項數(shù)為偶數(shù),則“偶數(shù)項和”=“奇數(shù)項和”與“公比”的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和“首項”加上“公比”與“偶數(shù)項和”積的和。
。5)并非任何兩數(shù)總有等比中項。僅當(dāng)實數(shù)同號時,實數(shù)存在等比中項。對同號兩實數(shù)的等比中項不僅存在,而且有一對。也就是說,兩實數(shù)要么沒有等比中項(非同號時),如果有,必有一對(同號時)。在遇到三數(shù)或四數(shù)成等差數(shù)列時,常優(yōu)先考慮選用“中項關(guān)系”轉(zhuǎn)化求解。
。6)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項法、通項法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式)。
4。等差數(shù)列與等比數(shù)列的聯(lián)系
(1)如果數(shù)列成等差數(shù)列,那么數(shù)列(總有意義)必成等比數(shù)列。
。2)如果數(shù)列成等比數(shù)列,那么數(shù)列必成等差數(shù)列。
。3)如果數(shù)列既成等差數(shù)列又成等比數(shù)列,那么數(shù)列是非零常數(shù)數(shù)列;但數(shù)列是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件。
(4)如果兩等差數(shù)列有公共項,那么由他們的公共項順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù)。
如果一個等差數(shù)列與一個等比數(shù)列有公共項順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進(jìn)行研討,且以其等比數(shù)列的項為主,探求等比數(shù)列中那些項是他們的公共項,并構(gòu)成新的數(shù)列。
5。數(shù)列求和的常用方法:
。1)公式法:①等差數(shù)列求和公式(三種形式),
、诘缺葦(shù)列求和公式(三種形式),
。2)分組求和法:在直接運用公式法求和有困難時,常將“和式”中“同類項”先合并在一起,再運用公式法求和。
。3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項和有其共性或數(shù)列的通項與組合數(shù)相關(guān)聯(lián),則?煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前和公式的推導(dǎo)方法)。
(4)錯位相減法:如果數(shù)列的通項是由一個等差數(shù)列的通項與一個等比數(shù)列的通項相乘構(gòu)成,那么常選用錯位相減法,將其和轉(zhuǎn)化為“一個新的的等比數(shù)列的和”求解(注意:一般錯位相減后,其中“新等比數(shù)列的項數(shù)是原數(shù)列的項數(shù)減一的差”!)(這也是等比數(shù)列前和公式的推導(dǎo)方法之一)。
。5)裂項相消法:如果數(shù)列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關(guān)聯(lián),那么常選用裂項相消法求和
(6)通項轉(zhuǎn)換法。
如何快速學(xué)好數(shù)學(xué)
一、課內(nèi)重視聽講,課后及時復(fù)習(xí)。
新知識的接受,數(shù)學(xué)能力的培養(yǎng)主要在課堂上進(jìn)行,所以要特點重視課內(nèi)的學(xué)習(xí)效率,尋求正確的學(xué)習(xí)方法。上課時要緊跟老師的思路,積極展開思維預(yù)測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎(chǔ)知識和基本技能的學(xué)習(xí),課后要及時復(fù)習(xí)不留疑點。
首先要在做各種習(xí)題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。
認(rèn)真獨立完成作業(yè),勤于思考,從某種意義上講,應(yīng)不造成不懂即問的學(xué)習(xí)作風(fēng),對于有些題目由于自己的思路不清,一時難以解出,應(yīng)讓自己冷靜下來認(rèn)真分析題目,盡量自己解決。在每個階段的學(xué)習(xí)中要進(jìn)行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡(luò),納入自己的知識體系。
二、適當(dāng)多做題,養(yǎng)成良好的解題習(xí)慣。
要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。
對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。
【數(shù)學(xué)必修五第一章知識點】相關(guān)文章:
數(shù)學(xué)必修五知識點總結(jié)08-23
高二數(shù)學(xué)必修五知識點總結(jié)07-16
數(shù)學(xué)必修五知識點總結(jié)10篇08-23
數(shù)學(xué)必修五知識點總結(jié)(10篇)08-23
數(shù)學(xué)必修四知識點總結(jié)04-25
必修一高一第一章知識點總結(jié)03-03