成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

完全平方公式教學(xué)設(shè)計

時間:2023-03-03 12:01:58 教學(xué)資源 投訴 投稿

完全平方公式教學(xué)設(shè)計

  作為一名辛苦耕耘的教育工作者,可能需要進行教學(xué)設(shè)計編寫工作,教學(xué)設(shè)計要遵循教學(xué)過程的基本規(guī)律,選擇教學(xué)目標,以解決教什么的問題。教學(xué)設(shè)計要怎么寫呢?下面是小編整理的完全平方公式教學(xué)設(shè)計,僅供參考,大家一起來看看吧。

完全平方公式教學(xué)設(shè)計

完全平方公式教學(xué)設(shè)計1

  學(xué)習(xí)目標:

  1、經(jīng)歷探索完全平方公式的過程,發(fā)展學(xué)生觀察、交流、歸納、猜測、驗證等能力。

  2、會推導(dǎo)完全平方公式,了解公式的幾何背景,會用公式計算。

  3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

  學(xué)習(xí)重點:

  會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

  學(xué)習(xí)難點:

  掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a、b的廣泛含義。

  學(xué)習(xí)過程:

  一、學(xué)習(xí)準備

  1、利用多項式乘以多項式計算:(a+b)2(a—b)2

  2、這兩個特殊形式的多項式乘法結(jié)果稱為完全平方公式。

  嘗試用自己的語言敘述完全平方公式:

  3、完全平方公式的.幾何意義:閱讀課本64頁,完成填空。

  4、完全平方公式的結(jié)構(gòu)特征:

 。╝+b)2=a2+2ab+b2

  (a—b)2=a2—2ab+b2

  左邊是形式,右邊有三項,其中兩項是形式,另一項是()

  注意:公式中字母的含義廣泛,可以是,只要題目符合公式的結(jié)構(gòu)特征,就可以運用這一公式,可用符號表示為:(□±△)=□2±2□△+△2

  5、兩個完全平方公式的轉(zhuǎn)化:(a—b)2= 2=()2+2()+()2=()

  二、合作探究

  1、利用乘法公式計算:

  (3a+2b)2(2)(—4x2—1)2

  分析:要分清題目中哪個式子相當(dāng)于公式中的a,哪個式子相當(dāng)于公式中的b

  2、利用乘法公式計算:

  992(2)()2

  分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化()2,()2可以轉(zhuǎn)化為()2。

  3、利用完全平方公式計算:

 。╝+b+c)2(2)(a—b)3

  三、學(xué)習(xí)

  對照學(xué)習(xí)目標,通過預(yù)習(xí),你覺得自己有哪些方面的收獲?又存在哪些方面的疑惑?

  四、自我測試

  1、下列計算是否正確,若不正確,請訂正;

  (1)(—1+3a)2=9a2—6a+1

  (2)(3x2—)2=9x4—

 。3)(xy+4)2=x2y2+16

 。4)(a2b—2)2=a2b2—2a2b+4

  2、利用乘法公式計算:

 。1)(3x+1)2

 。2)(a—3b)2

  (3)(—2x+)2

 。4)(—3m—4n)2

  3、利用乘法公式計算:

  9992

  4、先化簡,再求值;

  (m—3n)2—(m+3n)2+2,其中m=2,n=3

  五、思維拓展

  1、如果x2—kx+81是一個完全平方公式,則k的值是()

  2、多項式4x2+1加上一個單項式后,使它能成為一個整式的完全平方,那么加上的單項式可以是()

  3、已知(x+y)2=9,(x—y)2=5,求xy的值

  4、x+y=4,x—y=10,那么xy=()

  5、已知x— =4,則x2+ =()

完全平方公式教學(xué)設(shè)計2

  教學(xué)目標

  在具體情景中進一步理解完全平方公式,能正確運用完全平方公式和平方差公式進行計算.

  重點、難點

  根據(jù)公式的特征及問題的特征選擇適當(dāng)?shù)墓接嬎?

  教學(xué)過程

  一、議一議

  1.邊長為(a+b)的正方形面積是多少?

  2.邊長分別為a、b拍的兩個正方形面積和是多少?

  3.你能比較(1)(2)的結(jié)果嗎?說明你的理由.師生共同討論:學(xué)生回答

  (1)(a+b)

  (2)a +b

  (3)因為(a+b) = a +2ab+b ,所以(a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.

  二、做一做

  例1.利用完全平方式計算1. 102,2. 197

  師:要利用完全平方公式計算,則要創(chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,且計算盡可能簡便.

  學(xué)生活動:在練習(xí)本上演示此題.讓學(xué)生敘述,

  教師板書.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2,=200 -2 2O0 3十3,=10000+400+4 =40000-1200+9 =10404 =38809

  例2.計算:1.(x-3) -x 2.(2a+b- )(2a-b+ )

  師生共同分析:1中(x-3)可利用完全平方公式.

  學(xué)生動筆解答第1題.教師根據(jù)學(xué)生解答情況,板書如下:解:1. (x-3) -x = x +6x+9-x =6x+9

  師問:此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,從而培養(yǎng)學(xué)生創(chuàng)新精神.

  學(xué)生活動:分小組討論第(2)題的解法.此題學(xué)生解答,難度較大.

  教師要引導(dǎo)學(xué)生使用加法結(jié)合律,為使用公式創(chuàng)造條件.學(xué)生小組交流派代表進行全班交流.

  最后教師板書解題過程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-

  三、試一試計算:

  1.(a+b+c)

  2. (a+b)

  師生共同分析:

  對于1要把多項式完全平方轉(zhuǎn)化為二項式的'完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c) =[a+(b+c)]

  對于(2)可化為(a+b) =(a+b)(a+b) .

  學(xué)生動筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述,

  教師板書.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc

  四、隨堂練習(xí)

  P38 1

  五、小結(jié)

  本節(jié)課進一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運算時注意以下幾點.

  1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(a±b) = a ±b的錯誤,或(a±b) = a ±ab+b (漏掉2倍)等錯誤.

  2.要能根據(jù)公式的特征及題目的特征靈活選擇適當(dāng)?shù)墓接嬎?

  3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項式的完全平方轉(zhuǎn)化為二項式的完全平方.

  六、作業(yè)

  課本習(xí)題1.14 P38 1、2、3.

  七、教后反思

完全平方公式教學(xué)設(shè)計3

  課題教案:完全平方公式

  學(xué)科:數(shù)學(xué)

  年級:七年級

  1內(nèi)容本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。

  1.1以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。使學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  1.2用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)生的數(shù)學(xué)思維。

  2教學(xué)目標

  2.1知識目標:會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。

  2.2技能目標:經(jīng)歷由一般的多項式乘法向乘法公式過渡的探究過程,進一步培養(yǎng)學(xué)生歸納總結(jié)的能力,并給公式的應(yīng)用打下堅實的基礎(chǔ)。

  2.3情感與態(tài)度目標:通過觀察、實驗、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結(jié)論的確定性。

  3教學(xué)重點完全平方公式的準確應(yīng)用。

  4教學(xué)難點掌握公式中字母表達式的意義及靈活運用公式進行計算。

  5教育理念和教學(xué)方式

  5.1教學(xué)是師生交往、積極互動、共同發(fā)展的過程。教師是學(xué)生學(xué)習(xí)的組織者、促進者、合作者:本節(jié)的教學(xué)過程,要為學(xué)生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學(xué)生,贊賞每一位學(xué)生的結(jié)論和對自己的超越,尊重學(xué)生的個人感受和獨特見解;幫助學(xué)生發(fā)現(xiàn)他們所學(xué)東西的個人意義和社會價值,通過恰當(dāng)?shù)慕虒W(xué)方式引導(dǎo)學(xué)生學(xué)會自我調(diào)適,自我選擇。

  學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

  5.2采用“問題情景—探究交流—得出結(jié)論—強化訓(xùn)練”的模式展開教學(xué)。充分利用動手實踐的機會,盡可能增加教學(xué)過程的.趣味性,強調(diào)學(xué)生的動手操作和主動參與,通過豐富多彩的集體討論、小組活動,以合作學(xué)習(xí)促進自主探究。

  6具體教學(xué)過程設(shè)計如下:

  6.1提出問題:[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,你會計算下列各題嗎?

  (x+3)2=,(x-3)2=,

  這些式子的左邊和右邊有什么規(guī)律?再做幾個試一試:

  (2m+3n)2=,(2m-3n)2=

  6.2分析問題

  6.2.1[學(xué)生回答]分組交流、討論 多項式的結(jié)構(gòu)特點

 。1)原式的特點。兩數(shù)和的平方。

 。2)結(jié)果的項數(shù)特點。等于它們平方的和,加上它們乘積的兩倍

  (3)三項系數(shù)的特點(特別是符號的特點)。

 。4)三項與原多項式中兩個單項式的關(guān)系。

  6.2.2[學(xué)生回答]總結(jié)完全平方公式的語言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  6.2.3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

  (a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.

  6.3運用公式,解決問題

  6.3.1口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

  (m+n)2=, (m-n)2=,

  (-m+n)2=, (-m-n)2=,

  6.3.2小試牛刀

  ①(x+y)2=;②(-y-x)2=;

 、(2x+3)2=;④(3a-2)2=;

  6.4學(xué)生小結(jié):你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  6.5[作業(yè)]P34隨堂練習(xí)P36習(xí)題

完全平方公式教學(xué)設(shè)計4

  一、教材分析:

  (一)教材的地位與作用

  本節(jié)內(nèi)容主要研究的是完全平方公式的推導(dǎo)和公式在整式乘法中的應(yīng)用。它是在學(xué)生學(xué)習(xí)了代數(shù)式的概念、整式的加減法、冪的運算和整式的乘法后進行學(xué)習(xí)的,其地位和作用主要體現(xiàn)在以下幾方面:

 。1)整式是初中代數(shù)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運算又是整式中一大主干,乘法公式則是在學(xué)習(xí)了單項式乘法、多項式乘法之后來進行學(xué)習(xí)的;一方面是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié);另一方面,乘法公式的推導(dǎo)是初中代數(shù)中運用推理方法進行代數(shù)式恒等變形的開端,通過乘法公式的學(xué)習(xí)對簡化某些整式的運算、培養(yǎng)學(xué)生的求簡意識有較大好處。

  (2)乘法公式是后續(xù)學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準確率有較大作用,更是以后學(xué)習(xí)因式分解、分式運算的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴密的邏輯推理能力的功能。

 。3)公式的發(fā)現(xiàn)與驗證給學(xué)生體驗規(guī)律發(fā)現(xiàn)的基本方法和基本過程提供了很好模式。

 。ǘ┙虒W(xué)目標的確定

  在素質(zhì)背景下的數(shù)學(xué)教學(xué)應(yīng)以學(xué)生的發(fā)展為本,學(xué)生的能力培養(yǎng)為重,尤其是創(chuàng)新、創(chuàng)造能力,以及培養(yǎng)學(xué)生良好的個性品質(zhì)等。根據(jù)以上指導(dǎo)思想,同時參照義務(wù)教育階段《數(shù)學(xué)課程標準》的要求,確定本節(jié)課的教學(xué)目標如下:

  1、知識目標:

  理解公式的推導(dǎo)過程,了解公式的幾何背景,會應(yīng)用公式進行簡單的計算。

  2、能力目標:

  滲透建模、化歸、換元、數(shù)形結(jié)合等思想方法,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡意識、應(yīng)用意識、解決問題的能力和創(chuàng)新能力。

  3、情感目標:

  培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的精神和善于觀察,大膽創(chuàng)新的思維品質(zhì)。

 。ㄈ┙虒W(xué)重點與難點

  完全平方公式和平方差公式一樣是主要的乘法公式,其本質(zhì)是多項式乘法,是學(xué)生今后用于計算的一種重要依據(jù),因此,本節(jié)教學(xué)的重點與難點如下:

  本節(jié)的重點是體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),并會運用公式進行簡單的計算。

  本節(jié)的難點是從廣泛意義上理解公式中的字母含義,判明要計算的代數(shù)式是哪兩數(shù)的和(差)的平方。

  二、教學(xué)方法與手段

  (一)教學(xué)方法:

  針對初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索,啟發(fā)引導(dǎo),合作交流展開教學(xué),引導(dǎo)學(xué)生主動地進行觀察、猜測、驗證和交流。同時考慮到學(xué)生的認知方式、思維水平和學(xué)習(xí)能力的差異進行分層次教學(xué),讓不同層次的學(xué)生都能主動參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)活動和因材施教原則,教師努力為學(xué)生的探索性學(xué)習(xí)創(chuàng)造知識環(huán)境和氛圍,遵循知識產(chǎn)生過程,從特殊→一般→特殊,將所學(xué)的知識用于實踐中。

  采用小組討論,大組競賽等多種形式激發(fā)學(xué)習(xí)興趣。

 。ǘ┙虒W(xué)手段:

  利用投影儀輔助教學(xué),突破教學(xué)難點,公式的推導(dǎo)變成生動、形象、直觀,提高教學(xué)效率。

 。ㄈ⿲W(xué)法指導(dǎo):

  在學(xué)法上,教師應(yīng)引導(dǎo)學(xué)生積極思維,鼓勵學(xué)生進行合作學(xué)習(xí),讓每個學(xué)生都動口、動手、動腦,自己歸納出運算法則,培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。

  三、教材處理

  根據(jù)本節(jié)內(nèi)容特點,本著循序漸進的原則,我將以“邊長為(a+b)的正方形面積是多少?”這個實際問題引入新課,關(guān)于兩數(shù)和的平方公式通過實例、推導(dǎo)、驗證幾個步驟完成。關(guān)于兩數(shù)差的平方公式,我將為學(xué)生提供三種不同的思路,由學(xué)生自己選擇學(xué)習(xí)、理解,然后再歸納的方法進行,再通過分層次練習(xí),加以鞏固。

  四、教學(xué)程序

  一、創(chuàng)設(shè)情境,引出課題

  如圖,有一個邊長為a米的正方形廣場,則這個廣場的面積是多少?

  a

  若在這個廣場的相鄰兩邊鋪一條寬為10米的道路,則面積是多少?

  a 10

  引導(dǎo)學(xué)生利用圖形分割求面積。

  另一方面:正方形

  10 10a 102面積為(a+10)2,所以:

 。╝+10)2=a2+20a+102

  a a2 10a

  a 10

  b ab b2把10替換為b,

 。╝+b)2=a2+2ab+b2

  a a2 ab提出課題

  a b

  通過較為簡單的幾何圖形面積計算和較熟悉的整式乖法計算。引入本節(jié)學(xué)習(xí)內(nèi)容(a+b)·(a+b)

  (根據(jù)初一學(xué)生年齡特點,采用圖形變化來激發(fā)學(xué)生學(xué)習(xí)興趣)

  問題是知識、能力的生長點,通過富有實際意義的問題能激活學(xué)生原有認知,促使學(xué)生主動地進行探索和思考。

  對公式(a+b)2=a2+2ab+b2的形式進行初步認識,接觸。

  二、交流對話,探求新知

  1、推導(dǎo)兩數(shù)和的完全平方公式

  計算(a+b)2

  解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  2、理解公式特征

 、偎闶剑簝蓴(shù)和的平方

 、诜e:兩個數(shù)的.平方和加上這兩個數(shù)積的2倍

  3、語言敘述

  (a+b)2=a2+2ab+b2用語言如何敘述

  4、公式(a—b)2=a2—2ab+b2教學(xué)

 、倮枚囗検匠朔ǎ╝—b)2=(a—b)(a—b)

  ②利用換元思想(a—b)2=[a+(—b)]2

 、劾脠D形

  b

  a

  (a—b)b

  a

  5、學(xué)生總結(jié)、歸納:

  (a+b)2=a2+2ab+b2

 。╝—b)2=a2—2ab+b2

  這兩個公式叫做完全平方公式,兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和,加上(或減去)這兩數(shù)積的2倍。

  6、公式中的字母含義的理解。(學(xué)生回答)

 。▁+2y)2是哪兩個數(shù)的和的平方?

 。▁+2y)2=()2+2()()+()2

 。2x—5y)2是哪兩個數(shù)的差的平方?

 。2x+5y)2=()2+2()()+()2

  變式(2x—5y)2可以看成是哪兩個數(shù)的和的平方?

  利用多項式乘法推導(dǎo)公式,使學(xué)生了解公式的來源以及理解乘法公式的本質(zhì)。

  組織學(xué)生小組討論,使學(xué)生明確公式特征,加深對公式表象的理解。

  由學(xué)生對公式

  (a+b)2=a2+2ab+b2進行口頭語言敘述。

  (1)說明:教師提供三種模式,由學(xué)生選擇一種去解決。培養(yǎng)學(xué)生學(xué)習(xí)的主動性,開闊學(xué)生的思路。

 。2)同時對滲透數(shù)形結(jié)合思想、換元思想,也是分散、分步突破本節(jié)的難點的第一個層次;

 。3)體會辯證統(tǒng)一的唯物主義觀點;

  (4)正確引導(dǎo)學(xué)生學(xué)習(xí)時知識的正遷移。

  使學(xué)生學(xué)會對公式的正確表述,有利于學(xué)生正確用于計算之中,此時也可以讓學(xué)生對兩個公式特點進行討論歸納,適當(dāng)總結(jié)一定的口訣:“頭平方,尾平方,兩倍的乘積中間放!奔由顚W(xué)生對公式中的字母含義的理解,明確字母意義的廣泛性。

  三、整理新知形成結(jié)構(gòu)

  1、完全平方公式并分析公式左右的特征。

  2、換元的基本想法

  四、應(yīng)用新知,體驗成功

  1、例1教學(xué):用完全平方公式計算

 。1)(a+3)2

 。2)(y—)2

  (3)(—2x+t)2

 。4)(—3x—4y)2

  學(xué)生直接運用公式計算,教師板演,講評時邊口述理由,針對第(4)題(—3x—4y)2可以看成是—3x與4y差的平方,也可以看成—3x與—4y和的平方。

  提出以下問題:

 。1)可否看成兩數(shù)和的平方,運用兩數(shù)和的平方公式來計算?

  (2)可否看成兩數(shù)差的平方,運用兩數(shù)差的平方公式來計算?

 。3)能不能進行符號轉(zhuǎn)化?如(—3x—4y)2=(3x+4y)2

  2、公式鞏固

  (1)同桌同學(xué)互相編一道用完全平方公式計算題目,然后解答。

 。2)下列各式的計算,錯在哪里?應(yīng)怎樣改正?

 、伲╝+b)2=a2+b2 ②(a—b)2=a2—b2

 、郏╝—2b)2=a2+2ab+2b2

  3、練習(xí):運用完全平方公式計算:(學(xué)生板演)

 、伲╝+5)2

 、冢3+x)2

 、郏▂—2)2

 、埽7—y)2

 、荩2x+3y)2

 、蓿ā2x—3y)2

 、撸3—)2

 、啵ā —)2

  4、例2,運用完全平方公式計算:

  (1)1012

 。2)982

  5、練習(xí):運用完全平方公式計算

  (1)912

 。2)7982

 。3)(10)2

  6、討論:

 。1—2x)(—1—2x),(x—2y)(—2y+1)如何計算

  五、公式拓展,鼓勵探究

  1、a2+b2=(a+b)2—______ a2+b2+ _______=(a+b)2

  a2+b2+ ________ =(a—b)2

  2、(a+b)2—(a—b)2=______

  3、(a+b+c)2=________

  4、提出思考題:(a+b)3=?(a+b)4=?

  5、已知求的值。

  6、已知,求x和y的值。

 。1)遵循及時鞏固原則。

 。2)針對初一學(xué)生注意力不能持久的特點。

  (3)形成知識網(wǎng)絡(luò),有利于學(xué)生進一步學(xué)習(xí)公式的運用:

 。1)直接運用公式進行計算。

 。2)進一步幫助學(xué)生掌握換元法。

 。3)進行符號轉(zhuǎn)化的變換,加深學(xué)生對公式理解的深度,也為進一步學(xué)習(xí)其它知識打好基礎(chǔ)。

  講練結(jié)合:

 。1)合作學(xué)習(xí),四人小組討論(教師逐步引導(dǎo)到運用完全平方公式計算)學(xué)生講自己解題的想法和步驟,培養(yǎng)語言表達能力。

 。2)體會公式實際運用作用,增加學(xué)習(xí)興趣,進一步辨析完全平方公式與平方差公式的區(qū)別。

  提出一個問題,引導(dǎo)學(xué)生用學(xué)習(xí)研究完全平方公式的方法去研究公式的拓展變形問題。如:三項式的平方,兩項式的立方、四次方等,培養(yǎng)學(xué)生的嚴謹?shù)闹螌W(xué)態(tài)度和鉆研精神。

  六、小結(jié)提高,知識升華

  1、兩個公式(a+b)2=a2+2ab+b2

 。╝—b)2=a2—2ab+b2

  2、兩種推導(dǎo)方法:多項式乘法導(dǎo)出;圖形面積導(dǎo)出

  3、換元法與轉(zhuǎn)化

  七、作業(yè)布置,分層落實

  1、閱讀教材6.17內(nèi)容

  2、見省編作業(yè)本6.17

  3、對(a+b)2,(a+b)3 ……的展開式從項數(shù)、系數(shù)方面進行研究

  由學(xué)生自己小結(jié)本節(jié)所學(xué)知識、方法等。教師根據(jù)學(xué)生回答情況作出補充。

  (1)作業(yè)1主要以培養(yǎng)學(xué)習(xí)良好的學(xué)習(xí)習(xí)慣為目的。

 。2)結(jié)合學(xué)生實際情況,貫徹面向全體學(xué)生,因材施教原則。

  作業(yè)2要求全體學(xué)都能完成。作業(yè)3為選做題,部分學(xué)有余力的學(xué)生可選做。在減輕學(xué)生的課業(yè)負擔(dān)同時,注重人本思想,以學(xué)生的能力發(fā)展為重。也能滿足不同層次學(xué)生的不同要求。

完全平方公式教學(xué)設(shè)計5

  教材分析

  1本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式

  1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標準》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

  2、用標準的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴謹,啟迪學(xué)習(xí)態(tài)度和方法。

  學(xué)情分析

  1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:

 、偻愴椀亩x。

 、诤喜⑼愴椃▌t

 、鄱囗検匠艘远囗検椒▌t。

  2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

  在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

  教學(xué)目標

  (一)教學(xué)目標:

  1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

  2、會推導(dǎo)完全平方公式,并能運用公式進行簡單的計算。

  (二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理

  數(shù)、實數(shù)、代數(shù)式、、;掌握必要的`運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進行描述。

  (四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

  (五)情感與態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

  教學(xué)重點和難點

  重點:能運用完全平方公式進行簡單的計算。

  難點:會推導(dǎo)完全平方公式

  教學(xué)過程

  教學(xué)過程設(shè)計如下:

  〈一〉、提出問題

  [引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析問題

  1、[學(xué)生回答]分組交流、討論

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

  (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

 。1)原式的特點。

  (2)結(jié)果的項數(shù)特點。

  (3)三項系數(shù)的特點(特別是符號的特點)。

 。4)三項與原多項式中兩個單項式的關(guān)系。

  2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

  3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、運用公式,解決問題

  1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2、判斷:

  ( )① (a-2b)2= a2-2ab+b2

  ( )② (2m+n)2= 2m2+4mn+n2

  ( )③ (-n-3m)2= n2-6mn+9m2

  ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

  ( )⑥ (-a-2b)2=(a+2b)2

  ( )⑦ (2a-4b)2=(4a-2b)2

  ( )⑧ (-5m+n)2=(-n+5m)2

  3、一現(xiàn)身手

 、 (x+y)2 =______________;② (-y-x)2 =_______________;

 、 (2x+3)2 =_____________;④ (3a-2)2 =_______________;

  ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

 、 (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

  〈四〉、[學(xué)生小結(jié)]

  你認為完全平方公式在應(yīng)用過程中,需要注意那些問題?

  (1)公式右邊共有3項。

  (2)兩個平方項符號永遠為正。

  (3)中間項的符號由等號左邊的兩項符號是否相同決定。

  (4)中間項是等號左邊兩項乘積的2倍。

  〈五〉、探險之旅

 。1)(-3a+2b)2=________________________________

 。2)(-7-2m) 2 =__________________________________

 。3)(-0.5m+2n) 2=_______________________________

 。4)(3/5a-1/2b) 2=________________________________

 。5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

 。7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  板書設(shè)計

  完全平方公式

  兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

  兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

完全平方公式教學(xué)設(shè)計6

  一、學(xué)生起點分析

  學(xué)生的知識技能基礎(chǔ):學(xué)生通過對本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎(chǔ)知識的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。

  學(xué)生活動經(jīng)驗基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力;同時在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力。

  二、教學(xué)任務(wù)分析

  教科書在學(xué)生已經(jīng)學(xué)習(xí)了整式的加法、乘法,以及平方差公式的基礎(chǔ)上,提出了本課的具體學(xué)習(xí)任務(wù):經(jīng)歷探索完全平方公式的過程,并能運用公式進行簡單的計算。但這僅僅是這堂課外顯的具體教學(xué)目標,或者說是一個近期目標。整式是初中數(shù)學(xué)研究范圍內(nèi)的一塊重要內(nèi)容,整式的運算又是整式中的一大主干,乘法公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié)。同時,乘法公式的推導(dǎo)是初中數(shù)學(xué)中運用推理方法進行代數(shù)式恒等變形的開端,通過乘法公式的學(xué)習(xí)對簡化某些整式的運算、培養(yǎng)學(xué)生的求簡意識有較大好處。而且乘法公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運算速度、準確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運算的重要基礎(chǔ),同時也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴密的邏輯推理能力的作用。為此,本節(jié)課的教學(xué)目標是:

  1.經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導(dǎo)過程中,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。

  2.體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的.層次上理解完全平方公式,并會運用公式進行簡單的計算。

  3.了解完全平方公式的幾何背景,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識。

  4.在學(xué)習(xí)中使學(xué)生體會學(xué)習(xí)數(shù)學(xué)的樂趣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,感愛數(shù)學(xué)的內(nèi)在美。

  三、教學(xué)設(shè)計分析

  本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):回顧與思考、情境引入、初識完全平方公式、再識完全平方公式、又識完全平方公式、課堂小結(jié)、布置作業(yè)。

  第一環(huán)節(jié)回顧與思考

  活動內(nèi)容:復(fù)習(xí)已學(xué)過的平方差公式

  1.平方差公式:(a+b)(a-b)=a-b;公式的結(jié)構(gòu)特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。右邊是兩數(shù)的平方差。

  2.應(yīng)用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。

  活動目的:本堂課的學(xué)習(xí)方向仍是引導(dǎo)鼓勵學(xué)生通過已學(xué)習(xí)的知識經(jīng)過個人思考、小1組合作等方式推導(dǎo)出本課新知,進一步發(fā)展學(xué)生的符號感和推理能力。而這個過程離不開舊知識的鋪墊,平方差公式的學(xué)習(xí)有很多教學(xué)環(huán)節(jié)和形式與本節(jié)的學(xué)習(xí)是類似的,其中包含的基本知識與基本能力也仍是本節(jié)的精神主旨,因而復(fù)習(xí)很有必要。

  實際教學(xué)效果:在復(fù)習(xí)過程中,學(xué)生能夠順利地回答出平方差公式的內(nèi)容,而對于其結(jié)構(gòu)特點及應(yīng)用時的注意事項,通過學(xué)生之間的相互補充,絕大多數(shù)學(xué)生也得以掌握。在復(fù)習(xí)中既把舊知識得以復(fù)習(xí),同時學(xué)生也會主動的去回顧平方差公式一節(jié)的學(xué)習(xí)過程,從而為本節(jié)課的類比學(xué)習(xí)奠定了基礎(chǔ)。

  第二環(huán)節(jié)情境引入

  活動內(nèi)容:出示幻燈片,提出問題。

  一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。

  用不同的形式表示實驗田的總面積,并進行比較。

  活動目的:數(shù)學(xué)源自于生活,通過生活當(dāng)中的一個實際問題,引入本節(jié)課的學(xué)習(xí)。從而在學(xué)生運用舊知計算和比較實驗田的面積當(dāng)中引出完全平方公式。由于實驗田的總面積有多種表示方式,通過對比這些表示方式可以使學(xué)生對于公式有一個直觀的認識。同時在古代人們也是通過類似的圖形認識了這個公式。在列代數(shù)式解決問題的過程當(dāng)中,通過自主探究和交流學(xué)到了新的知識,學(xué)生的學(xué)習(xí)積極性和主動性得到大大的激發(fā)。

  實際教學(xué)效果:問題提出后,學(xué)生能夠主動地去尋找解決問題的方法。同時問題要求用不同的形式來表示總面積,這就要求學(xué)生從不同的角度來進行考慮,從而對于學(xué)生的思維提出了挑戰(zhàn)。不過由于前面列代數(shù)式一部分內(nèi)容的學(xué)習(xí),絕大多數(shù)學(xué)生能夠很順利地想到兩種不同的方法,并從中建立了數(shù)形結(jié)合的意識。從而在學(xué)生的自主探索過程中引出了完全平方公式,使學(xué)生有了一個直觀認識。在整個過程中老師只是在提出問題和引導(dǎo)學(xué)生解決問題,學(xué)生的自主性得到了充分的體現(xiàn),課堂氣氛平等融洽。

  第三環(huán)節(jié)初識完全平方公式

  活動內(nèi)容:1.通過多項式的乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數(shù)和的完全平方公式推導(dǎo)出兩數(shù)差的完全平方公式:(a-b)2=a2-2ab+b2.2.引導(dǎo)學(xué)生利用幾何圖形來驗證兩數(shù)差的完全平方公式。

  3.分析完全平方公式的結(jié)構(gòu)特點,并用語言來描述完全平方公式。

  結(jié)構(gòu)特點:左邊是二項式(兩數(shù)和(差))的平方;

  右邊是兩數(shù)的平方和加上(減去)這兩數(shù)乘積的兩倍。

  語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍。

  活動目的:第一個活動是讓學(xué)生在上面討論的基礎(chǔ)上,從代數(shù)運算的角度運用多項式的乘法法則,推導(dǎo)出兩數(shù)和的完全平方公式,并且進一步推導(dǎo)出兩數(shù)差的完全平方公式。在教學(xué)中學(xué)生有條理的思考和語言表達能力得以培養(yǎng)。

  第二個活動使學(xué)生再次從幾何的角度來驗證兩數(shù)差的完全平方公式。從而學(xué)生經(jīng)歷了幾何解釋到代數(shù)運算,再到幾何解釋的過程,學(xué)生的數(shù)形結(jié)合意識得以培養(yǎng),并且從不同的角度推導(dǎo)出了公式,并且加以鞏固。

  第三個活動在前面的基礎(chǔ)上,加以總結(jié),使得學(xué)生從形式上初步地認識了完全平方公式。實際教學(xué)效果:此環(huán)節(jié)的設(shè)計符合學(xué)生的認知水平和認知過程。在第一個活動的教學(xué)中2應(yīng)重視學(xué)生對于算理的理解,讓學(xué)生嘗試說出每一步運算的道理,有意識地培養(yǎng)他們有條理的思考和語言表達能力。在第二個活動中既是對于第二環(huán)節(jié)用幾何解釋驗證兩數(shù)和的完全平方公式的鞏固,同時也是對于學(xué)生數(shù)形結(jié)合意識的一種培養(yǎng),絕大多數(shù)學(xué)生能夠通過交流合作得以掌握。通過幾個活動學(xué)生能夠初步地掌握了完全平方公式,并在推導(dǎo)過程中培養(yǎng)了數(shù)學(xué)的基本能力。

  第四環(huán)節(jié)再識完全平方公式

  活動內(nèi)容:例1用完全平方公式計算:

  (1)(2x3)2;

  (2)(4x+5y)2;

  (3)(mna)22.總結(jié)口訣:首平方,尾平方,兩倍乘積放中央。

  3.鞏固練習(xí)。

 。1)計算:

  11(2y)

  2;(2xyx)2

 ;(n+1)2-n2

  ;(4x+0.5)2

  ;(2x2-3y2)225(2)糾錯練習(xí):指出下列各式中的錯誤,并加以改正:

  (1)(2a1)2=2a22a+1;

  (2)(2a+1)2=4a2+1;

  (3)(a1)2=a22a1.活動目的:應(yīng)用完全平方公式進行簡單的計算。同時例1三個題目的設(shè)計上有一定的梯度,從而總結(jié)出進行簡單計算的一般口訣,并加以鞏固落實。

  實際教學(xué)效果:對照公式,進行獨立的簡單計算,體會公式在解題中的應(yīng)用,進一步熟悉公式。并通過小組交流,自我檢驗,鞏固反饋?疾靷人的實際運用能力,并及時查漏補缺。在此基礎(chǔ)上由教師總結(jié)出口訣,幫助學(xué)生進一步認識完全平方公式,并加以鞏固練習(xí)。

  第五環(huán)節(jié)又識完全平方公式

  活動內(nèi)容:1.例2利用完全平方公式計算:

  22(1)(-1-2x);(2)(-2x+1)

  2.進一步完善口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減;顒幽康模豪2是對課本內(nèi)容的補充,從而使得學(xué)生從更深的一個角度來認識完全平方公式,防止解題時中間項的符號出現(xiàn)問題,并能在解題中通過靈活的變形來運用公式,解決問題。并對上面總結(jié)的口訣進行進一步的完善。

  實際教學(xué)效果:首先放手讓學(xué)生獨立來解決第一個題目,學(xué)生出錯較多,且都集中在中間項的符號上,由此引出有進一步認識公式的必要,從而教師引導(dǎo)學(xué)生再次觀察題目,仔細分析題目當(dāng)中誰相當(dāng)于公式當(dāng)中的a與b,從而運用不同的方法和思路,解決問題。在活動中學(xué)生認識到了解決問題之前恰當(dāng)選擇公式和正確分析題目的必要性,學(xué)習(xí)的積極性再次被激發(fā),在此基礎(chǔ)上教師把上面總結(jié)的口訣再次完善,幫助學(xué)生突破難點,教師的主導(dǎo)作用得以體現(xiàn)。

  第六環(huán)節(jié)課堂小結(jié)

  活動內(nèi)容:1.完全平方公式和平方差公式不同:

  形式不同.

  222結(jié)果不同:完全平方公式的結(jié)果是三項,即(ab)=a2ab+b;22平方差公式的結(jié)果是兩項,即(a+b)(ab)=ab.2.解題過程中要準確確定a和b,對照公式原形的兩邊,做到不丟項、

  3不弄錯符號、2ab時不少乘2。

  3.口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。

  活動目的:課堂小結(jié)并不只是課堂知識點的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對于發(fā)言進行鼓勵,進一步梳理本節(jié)所學(xué),更要有所思考,達到對所學(xué)知識鞏固的目的。

  實際教學(xué)效果:學(xué)生暢所欲言自己的實際收獲,達到了本節(jié)課的教學(xué)目標。

  第七環(huán)節(jié)布置作業(yè)

  1.基礎(chǔ)訓(xùn)練:教材習(xí)題1.13。

  222.拓展練習(xí):(a+b)與(a-b)有怎樣的聯(lián)系?能否用一個等式來表示兩者之間的關(guān)系,并嘗試用圖形來驗證你的結(jié)論?

  四、教學(xué)設(shè)計反思

  1.本節(jié)課學(xué)生的探究活動比較多,教師既要全局把握,又要順其自然,千萬不可拔苗助長,為了后面多做幾道練習(xí)而人為的主觀裁斷時間安排,其實公式的探究活動本身既是對學(xué)生能力的培養(yǎng),又是對公式的識記過程,而且還可以提高他們的應(yīng)用公式的本領(lǐng)。因此,不但不可以省,而且還要充分挖掘,以使不同程度的學(xué)生都有事情做且樂此不疲,更加充分的參與其中。對于這一點,教師一定要轉(zhuǎn)變觀念。

  2.在完全平方公式的探求過程中,學(xué)生表現(xiàn)出觀察角度的差異:有些學(xué)生只是側(cè)重觀察某個單獨的式子,把它孤立地看,而不知道將幾個式子聯(lián)系地看;有些學(xué)生則既觀察入微,又統(tǒng)攬全局,表現(xiàn)出了較強的觀察力。教師要善于抓住這個契機,適當(dāng)對學(xué)生進行學(xué)法指導(dǎo),培養(yǎng)他們“既見樹木,又見森林”的優(yōu)良觀察品質(zhì)。

  3.對于公式使用的條件既要把握好“度”,又要把握好“方向”。對于公式中的字母取值范圍,不必過分強調(diào)(實際上,這個范圍限定的太小了);而對于公式的特點,則應(yīng)當(dāng)左右兼顧,特別是公式的左邊,它是正確應(yīng)用公式的前提,卻往往不被重視,結(jié)果造成幾個類似公式的混淆,給正確解題設(shè)置了障礙。

  4.教無定法,教師應(yīng)根據(jù)本班的實際情況靈活安排教學(xué)步驟,切實把關(guān)注學(xué)生的發(fā)展放在首位來考慮,并依此制定合理而科學(xué)的教學(xué)計劃。如,對于較好的班級,則可以優(yōu)先發(fā)展,采取居高臨下的教學(xué)思路,先整體把握再對比擊破,或是將其納入整體結(jié)構(gòu)系統(tǒng),采取類比的學(xué)習(xí)方式;而對于基礎(chǔ)較薄弱的班級,則應(yīng)以提高學(xué)習(xí)興趣、教會學(xué)習(xí)、培養(yǎng)成功體驗為主,千萬不可拔苗助長,以防物極必反。

完全平方公式教學(xué)設(shè)計7

  教學(xué)目標

  理解兩個完全平方公式的結(jié)構(gòu),靈活運用完全平方公式進行運算。

  在運用完全平方公式的過程中,進一步發(fā)展學(xué)生的符號演算的能力,提高運算能力。

  培養(yǎng)學(xué)生在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的見解。

  重點難點

  重點

  完全平方公式的比較和運用

  難點

  完全平方公式的結(jié)構(gòu)特點和靈活運用。

  教學(xué)過程

  一、復(fù)習(xí)導(dǎo)入

  1.說出完全平方公式的內(nèi)容及作用。

  2.計算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?

  學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計算,結(jié)果是一樣的。

  教師歸納:當(dāng)我們對差與和加以區(qū)分時,兩個公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項一個是“減”一個是“加”,注意到區(qū)別有助于計算的準確;另一方面,當(dāng)我們對差與和不加區(qū)分,全部理解成“加項”時,那么兩個公式從結(jié)構(gòu)上來看就是一致的了,其結(jié)構(gòu)都是“兩項和的平方,等于它們的平方和,加上它們的積的兩倍!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點,提高運算的靈活性。

  我們學(xué)習(xí)運算,除了要重視結(jié)果,還要重視過程,平時注意訓(xùn)練運算方法的多樣性,可以加深對算理的理解和運用,提高運算過程的合理性和靈活性,從而真正的提高運算能力。

  二、新課講解

  溫故知新

  與,與相等嗎?為什么?

  學(xué)生討論交流,鼓勵學(xué)生從不同的.角度進行說理,共同歸納總結(jié)出兩條判斷的思路:

  1.對原式進行運算,利用運算的結(jié)果來判斷;

  2.不對原式進行運算,只做適當(dāng)變形后利用整體的方法來判斷。

  思考:與,與相等嗎?為什么?

  利用整體的方法判斷,把看成一個數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。

  總結(jié)歸納得到:;

  三、典例剖析

  例1運用完全平方公式計算:

完全平方公式教學(xué)設(shè)計8

  教學(xué)目標

  經(jīng)歷探索完全平方公式的過程,會推導(dǎo)完全平方公式;

  能利用完全平方公式進行簡單的運算。

  在探索完全平方公式的過程中,發(fā)展學(xué)生的符號感和推理能力,體會數(shù)學(xué)語言的嚴謹與簡潔。

  培養(yǎng)學(xué)生在獨立思考的基礎(chǔ)上,積極參與對數(shù)學(xué)問題的討論,敢于發(fā)表自己的見解。

  重點難點

  重點

  完全平方公式的推導(dǎo)和運用

  難點

  完全平方公式的結(jié)構(gòu)特點和靈活運用。

  教學(xué)過程

  一、復(fù)習(xí)導(dǎo)入

  1.說出平方差公式的內(nèi)容及作用。

  2.我們知道,當(dāng)相乘的兩個多項式有一項相同,另一項相反時,可以用平方差公式直接得到結(jié)果,大大簡化了運算過程,那么當(dāng)相乘的兩個多項式兩項都相同時,是不是也有一個公式來簡化運算過程呢?這節(jié)課我們就來探索一個新的乘法公式:完全平方公式。

  二、新課講解

  探究新知

  計算下列各式,你能發(fā)現(xiàn)它們的結(jié)果有什么規(guī)律嗎?

  鼓勵學(xué)生發(fā)表各自的看法,只要言之成理,只要是自己動腦筋發(fā)現(xiàn)的,都要給予肯定,以此調(diào)動學(xué)生參與的熱情。

  綜合學(xué)生的觀察,得到:兩數(shù)和的'平方,等于它們的平方和,加上它們的積的兩倍。

  2.這個結(jié)論可以推廣到任意兩個數(shù)的計算上去嗎?

  我們可以利用多項式乘法法則來推導(dǎo)一下:(師生共同完成)

  3.兩數(shù)差的平方等于什么呢?請同學(xué)們計算。

  學(xué)生一般會這樣計算:

  及時引導(dǎo)學(xué)生用語言敘述這個結(jié)果:

  兩數(shù)差的平方,等于它們的平方和,減去它們的積的兩倍。

  以上兩個公式都叫做完全平方公式,它們之間有聯(lián)系嗎?啟發(fā)學(xué)生把“-b”整個的看成一個數(shù),用兩數(shù)和的平方公式來計算,結(jié)果怎么樣?結(jié)果發(fā)現(xiàn)兩數(shù)差的平方可以用兩數(shù)和的平方公式推導(dǎo)出來,也就是兩數(shù)差的平方公式可以歸屬于兩數(shù)和的平方公式。但為了使用方便,通常我們還是以兩個公式來呈現(xiàn)。

  完全平方公式:;

  用語言敘述為:兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的兩倍。

  完全平方公式的理解

  1.比較兩數(shù)和、兩數(shù)差的平方公式的異同。

  學(xué)生討論,發(fā)表各自的看法。

  2.比較完全平方公式與平方差公式的不同之處。

  學(xué)生發(fā)表看法后,教師特別指出完全平方公式計算的結(jié)果有三項,不要誤以為是兩項,比方;,是錯誤的。我們用圖形的面積來加深一下對這個結(jié)果的理解:如圖,顯然整個正方形的面積由四部分組成。

  三、典例剖析

  例1運用完全平方公式計算:

 。3);(4);

  師生共同解答,教師板書。初學(xué)運用時要寫清楚運用公式的步驟,熟記公式。

  例2運用完全平方公式計算:

  學(xué)生解答,進一步體會兩個完全平方公式的異同。

  四、課堂練習(xí)

  1.下面各式的計算對不對?如果不對,應(yīng)怎樣改正?

  2.運用完全平方公式計算:

 。1);(2);(3);

  3.運用完全平方公式計算:

  教師要注意發(fā)現(xiàn)學(xué)生的錯誤,組織學(xué)生對錯誤進行分析,對于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯誤的原因。

  五、小結(jié)

  師生共同回顧完全平方公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學(xué)生掌握不夠牢固的知識進行辨析、強調(diào)與補充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。

  六、布置作業(yè)

  P50第2(1)、(2),4題

完全平方公式教學(xué)設(shè)計9

  教學(xué)目標

  1.了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;

  2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;

  3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。

  教學(xué)建議

  一、教學(xué)重點、難點

  重點:通過具體例子了解公式、應(yīng)用公式.

  難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。

  二、重點、難點分析

  人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

  三、知識結(jié)構(gòu)

  本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

  四、教法建議

  1.對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的'前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊涵的思想,明確公式的應(yīng)用具有普遍性,達到對公式的靈活應(yīng)用。

  2.在教學(xué)過程中,應(yīng)使學(xué)生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。

  3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學(xué)生分析問題、解決問題的能力。

  教學(xué)設(shè)計示例

  公式

  一、教學(xué)目標

 。ㄒ唬┲R教學(xué)點

  1.使學(xué)生能利用公式解決簡單的實際問題.

  2.使學(xué)生理解公式與代數(shù)式的關(guān)系.

  (二)能力訓(xùn)練點

  1.利用數(shù)學(xué)公式解決實際問題的能力.

  2.利用已知的公式推導(dǎo)新公式的能力.

 。ㄈ┑掠凉B透點

  數(shù)學(xué)來源于生產(chǎn)實踐,又反過來服務(wù)于生產(chǎn)實踐.

 。ㄋ模┟烙凉B透點

  數(shù)學(xué)公式是用簡潔的數(shù)學(xué)形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡潔美.

  二、學(xué)法引導(dǎo)

  1.?dāng)?shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過的公式為基礎(chǔ)、突破難點

  2.學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計算

  三、重點、難點、疑點及解決辦法

  1.重點:利用舊公式推導(dǎo)出新的圖形的計算公式.

  2.難點:同重點.

  3.疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.

  四、課時安排

  1課時

  五、教具學(xué)具準備

  投影儀,自制膠片。

  六、師生互動活動設(shè)計

  教者投影顯示推導(dǎo)梯形面積計算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.

  七、教學(xué)步驟

 。ㄒ唬﹦(chuàng)設(shè)情景,復(fù)習(xí)引入

  師:同學(xué)們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們在小學(xué)里學(xué)過許多公式,請大家回憶一下,我們已經(jīng)學(xué)過哪些公式,教法說明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計算感到不生疏.

  在學(xué)生說出幾個公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運用公式解決實際問題.

  板書:公式

  師:小學(xué)里學(xué)過哪些面積公式?

  板書:S=ah

 。ǔ鍪就队1)。解釋三角形,梯形面積公式

  【教法說明】讓學(xué)生感知用割補法求圖形的面積。

【完全平方公式教學(xué)設(shè)計】相關(guān)文章:

《完全平方公式》教學(xué)設(shè)計03-16

《完全平方公式》教案02-15

完全平方公式數(shù)學(xué)教案03-01

《完全平方公式》教案15篇02-19

《平方差公式》教案09-17

公頃平方千米教學(xué)設(shè)計03-19

《圓面積公式推導(dǎo)》優(yōu)秀教學(xué)設(shè)計范文07-01

《圓面積公式推導(dǎo)》優(yōu)秀的教學(xué)設(shè)計模板07-23

平方根教學(xué)反思04-10