- 高中數(shù)學優(yōu)秀教學設(shè)計 推薦度:
- 相關(guān)推薦
高中數(shù)學教學設(shè)計優(yōu)秀
作為一名教學工作者,總不可避免地需要編寫教學設(shè)計,借助教學設(shè)計可以更好地組織教學活動。我們應(yīng)該怎么寫教學設(shè)計呢?下面是小編精心整理的高中數(shù)學教學設(shè)計優(yōu)秀,僅供參考,大家一起來看看吧。
高中數(shù)學教學設(shè)計優(yōu)秀1
一、目標
1、知識與技能
(1)理解流程圖的順序結(jié)構(gòu)和選擇結(jié)構(gòu)。
(2)能用字語言表示算法,并能將算法用順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖
2、過程與方法
學生通過模仿、操作、探索、經(jīng)歷設(shè)計流程圖表達解決問題的過程,理解流程圖的結(jié)構(gòu)。
3、情感、態(tài)度與價值觀
學生通過動手作圖。用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養(yǎng)學生的邏輯思維能力。
二、重點、難點
重點:算法的順序結(jié)構(gòu)與選擇結(jié)構(gòu)。
難點:用含有選擇結(jié)構(gòu)的流程圖表示算法。
三、學法與教學用具
學法:學生通過動手作圖。用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經(jīng)歷設(shè)計流程圖表達解決問題的過程。進而學習順序結(jié)構(gòu)和選擇結(jié)構(gòu)表示簡單的流程圖。
教學用具:尺規(guī)作圖工具,多媒體。
四、教學思路
。ㄒ唬栴}引入 揭示題
例1 尺規(guī)作圖,確定線段的一個5等分點。
要求:同桌一人作圖,一人寫算法,并請學生說出答案。
提問:用字語言寫出算法有何感受?
引導學生體驗到:顯得冗長,不方便、不簡潔。
教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構(gòu)成一張圖即流程圖表示算法。
本節(jié)要學習的是順序結(jié)構(gòu)與選擇結(jié)構(gòu)。
右圖即是同流程圖表示的算法。
。ǘ⒂^察類比 理解題
1、 投影介紹流程圖的符號、名稱及功能說明。
符號 符號名稱 功能說明
終端框 算法開始與結(jié)束
處理框 算法的各種處理操作
判斷框 算法的各種轉(zhuǎn)移
輸入輸出框 輸入輸出操作
指向線 指向另一操作
2、講授順序結(jié)構(gòu)及選擇結(jié)構(gòu)的概念及流程圖
。1)順序結(jié)構(gòu)
依照步驟依次執(zhí)行的一個算法
流程圖:
(2)選擇結(jié)構(gòu)
對條進行判斷決定后面的步驟的結(jié)構(gòu)
流程圖:
3、用自然語言表示算法與用流程圖表示算法的比較
(1)半徑為r的圓的面積公式 當r=10時寫出計算圓的'面積的算法,并畫出流程圖。
解:
算法(自然語言)
①把10賦與r
、谟霉 求s
、圯敵鰏
流程圖
。2) 已知函數(shù) 對于每輸入一個X值都得到相應(yīng)的函數(shù)值,寫出算法并畫流程圖。
算法:(語言表示)
、 輸入X值
②判斷X的范圍,若 ,用函數(shù)Y=x+1求函數(shù)值;否則用Y=2-x求函數(shù)值
③輸出Y的值
流程圖
小結(jié):含有數(shù)學中需要分類討論的或與分段函數(shù)有關(guān)的問題,均要用到選擇結(jié)構(gòu)。
學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)
。ㄈ┠7虏僮 經(jīng)歷題
1、用流程圖表示確定線段A.B的一個16等分點
2、分析講解例2;
分析:
思考:有多少個選擇結(jié)構(gòu)?相應(yīng)的流程圖應(yīng)如何表示?
流程圖:
。ㄋ模w納小結(jié) 鞏固題
1、順序結(jié)構(gòu)和選擇結(jié)構(gòu)的模式是怎樣的?
2、怎樣用流程圖表示算法。
(五)練習P99 2
。┳鳂I(yè)P99 1
高中數(shù)學教學設(shè)計優(yōu)秀2
一、課題:
人教版全日制普通高級中學教科書數(shù)學第一冊(上)《2.7對數(shù)》
二、指導思想與理論依據(jù):
《數(shù)學課程標準》指出:高中數(shù)學課程應(yīng)講清一些基本內(nèi)容的實際背景和應(yīng)用價值,開展“數(shù)學建!钡膶W習活動,把數(shù)學的應(yīng)用自然地融合在平常的教學中。任何一個數(shù)學概念的引入,總有它的現(xiàn)實或數(shù)學理論發(fā)展的需要。都應(yīng)強調(diào)它的現(xiàn)實背景、數(shù)學理論發(fā)展背景或數(shù)學發(fā)展歷史上的背景,這樣才能使教學內(nèi)容顯得自然和親切,讓學生感到知識的發(fā)展水到渠成而不是強加于人,從而有利于學生認識數(shù)學內(nèi)容的實際背景和應(yīng)用的價值。在教學設(shè)計時,既要關(guān)注學生在數(shù)學情感態(tài)度和科學價值觀方面的發(fā)展,也要幫助學生理解和掌握數(shù)學基礎(chǔ)知識和基本技能,發(fā)展能力。在課程實施中,應(yīng)結(jié)合教學內(nèi)容介紹一些對數(shù)學發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學在人類社會進步、人類文化建設(shè)中的作用,同時反映社會發(fā)展對數(shù)學發(fā)展的促進作用。
三、教材分析:
本節(jié)內(nèi)容主要學習對數(shù)的概念及其對數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識。而對數(shù)的概念是對數(shù)函數(shù)部分教學中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學教學的始終。通過對數(shù)的學習,可以解決數(shù)學中知道底數(shù)和冪值求指數(shù)的問題,以及對數(shù)函數(shù)的相關(guān)問題。
四、學情分析:
在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學生認知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學習指數(shù)的基礎(chǔ)上學習對數(shù)的概念是水到渠成的事。
五、教學目標:
(一)教學知識點:
1.對數(shù)的概念。
2.對數(shù)式與指數(shù)式的互化。
(二)能力目標:
1.理解對數(shù)的'概念。
2.能夠進行對數(shù)式與指數(shù)式的互化。
(三)德育滲透目標:
1.認識事物之間的相互聯(lián)系與相互轉(zhuǎn)化,
2.用聯(lián)系的觀點看問題。
六、教學重點與難點:
重點是對數(shù)定義,難點是對數(shù)概念的理解。
七、教學方法:
講練結(jié)合法八、教學流程:
問題情景(復習引入)——實例分析、形成概念(導入新課)——深刻認識概念(對數(shù)式與指數(shù)式的互化)——變式分析、深化認識(對數(shù)的性質(zhì)、對數(shù)恒等式,介紹自然對數(shù)及常用對數(shù))——練習小結(jié)、形成反思(例題,小結(jié))
八、教學反思:
對本節(jié)內(nèi)容在進行教學設(shè)計之前,本人反復閱讀了課程標準和教材,教材內(nèi)容的處理收到了一定的預期效果,尤其是練習的處理,充分發(fā)揮了學生的主體作用,也提高了學生主體的合作意識,達到了設(shè)計中所預想的目標。然而還有一些缺憾:對本節(jié)內(nèi)容,難度不高,本人認為,教師的干預(講解)還是太多。在以后的教學中,對于一些較簡單的內(nèi)容,應(yīng)放手讓學生多一些探究與合作。隨著教育改革的深化,教學理念、教學模式、教學內(nèi)容等教學因素,都在不斷更新,作為數(shù)學教師要更新教學觀念,從學生的全面發(fā)展來設(shè)計課堂教學,關(guān)注學生個性和潛能的發(fā)展,使教學過程更加切合《課程標準》的要求。
對于本教學設(shè)計,時間倉促,不足之處在所難免,期待與各位同仁交流。
高中數(shù)學教學設(shè)計優(yōu)秀3
一、教學內(nèi)容分析
《普通高中課程標準實驗教科書·數(shù)學(1)》(人教A版)第44頁。-----《實習作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學文化的特色,學生通過了解函數(shù)的發(fā)展歷史進一步感受數(shù)學的魅力。學生在自己動手收集、整理資料信息的過程中,對函數(shù)的概念有更深刻的理解;感受新的學習方式帶給他們的學習數(shù)學的樂趣。
二、學生學習情況分析
該內(nèi)容在《普通高中課程標準實驗教科書·數(shù)學(1)》(人教A版)第44頁。學生第一次完成《實習作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗,所以需要教師精心設(shè)計,做好準備工作,充分體現(xiàn)教師的“導演”角色。特別在分組時注意學生的合理搭配(成績的好壞、家庭有無電腦、男女生比例、口頭表達能力等),選題時,各組之間盡量不要重復,盡量多地選不同的題目,可以讓所有的學生在學習共享的過程中受到更多的數(shù)學文化的熏陶。
三、設(shè)計思想
《標準》強調(diào)數(shù)學文化的重要作用,體現(xiàn)數(shù)學的文化的價值。數(shù)學教育不僅應(yīng)該幫助學生學習和掌握數(shù)學知識和技能,還應(yīng)該有助于學生了解數(shù)學的價值。讓學生逐步了解數(shù)學的思想方法、理性精神,體會數(shù)學家的創(chuàng)新精神,以及數(shù)學文明的.深刻內(nèi)涵。
四、教學目標
1.了解函數(shù)概念的形成、發(fā)展的歷史以及在這個過程中起重大作用的歷史事件和人物;
2.體驗合作學習的方式,通過合作學習品嘗分享獲得知識的快樂;
3.在合作形式的小組學習活動中培養(yǎng)學生的領(lǐng)導意識、社會實踐技能和民主價值觀。
五、教學重點和難點
重點:了解函數(shù)在數(shù)學中的核心地位,以及在生活里的廣泛應(yīng)用;
難點:培養(yǎng)學生合作交流的能力以及收集和處理信息的能力。
六、教學過程設(shè)計
【課堂準備】
1.分組:4~6人為一個實習小組,確定一人為組長。教師需要做好協(xié)調(diào)工作,確保每位學生都參加。
2.選題:根據(jù)個人興趣初步確定實習作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。
高中數(shù)學教學設(shè)計優(yōu)秀4
教學目標:
1、了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。
2、會求一些簡單函數(shù)的反函數(shù)。
3、在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學思想方法的認識。
4、進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。
教學重點:
求反函數(shù)的方法。
教學難點:
反函數(shù)的概念。
教學過程:
一、創(chuàng)設(shè)情境,引入新課
1、復習提問
、俸瘮(shù)的概念
、趛=f(x)中各變量的意義
2、同學們在物理課學過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學習的內(nèi)容。
3、板書課題
由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。
二、實例分析,組織探究
1、問題組一:
。ㄓ猛队敖o出函數(shù)與;與()的圖象)
。1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)
。2)由,已知y能否求x?
。3)是否是一個函數(shù)?它與有何關(guān)系?
。4)與有何聯(lián)系?
2、問題組二:
。1)函數(shù)y=2x1(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)?
。2)函數(shù)(x是自變量)與函數(shù)x=2y1(y是自變量)是否是同一函數(shù)?
(3)函數(shù)()的定義域與函數(shù)()的值域有什么關(guān)系?
3、滲透反函數(shù)的概念。
。ń處燑c明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)
從學生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力。
通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎(chǔ)。
三、師生互動,歸納定義
1、(根據(jù)上述實例,教師與學生共同歸納出反函數(shù)的定義)
函數(shù)y=f(x)(x∈A)中,設(shè)它的值域為C。我們根據(jù)這個函數(shù)中x,y的關(guān)系,用y把x表示出來,得到x=j(y)。如果對于y在C中的任何一個值,通過x=j(y),x在A中都有的值和它對應(yīng),那么,x=j(y)就表示y是自變量,x是自變量y的.函數(shù)。這樣的函數(shù)x=j(y)(y∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作:。考慮到"用x表示自變量,y表示函數(shù)"的習慣,將中的x與y對調(diào)寫成。
2、引導分析:
1)反函數(shù)也是函數(shù);
2)對應(yīng)法則為互逆運算;
3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);
4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;
5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);
6)要理解好符號f;
7)交換變量x、y的原因。
3、兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系
。ㄔ瘮(shù)中的自變量x與反函數(shù)中的函數(shù)值y是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)
4、函數(shù)與其反函數(shù)的關(guān)系
函數(shù)y=f(x)
函數(shù)
定義域
A
C
值域
C
A
四、應(yīng)用解題,總結(jié)步驟
1、(投影例題)
【例1】求下列函數(shù)的反函數(shù)
。1)y=3x—1(2)y=x1
【例2】求函數(shù)的反函數(shù)。
。ń處煱鍟}過程后,由學生總結(jié)求反函數(shù)步驟。)
2、總結(jié)求函數(shù)反函數(shù)的步驟:
1°由y=f(x)反解出x=f(y)。
2°把x=f(y)中x與y互換得。
3°寫出反函數(shù)的定義域。
(簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】
。1)有沒有反函數(shù)?
(2)的反函數(shù)是________。
。3)(x<0)的反函數(shù)是__________。
在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設(shè)產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學生體會函數(shù)與方程、一般到特殊的數(shù)學思想,并對數(shù)學的符號語言有更好的把握。
通過動畫演示,表格對照,使學生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解。
通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結(jié),培養(yǎng)學生分析、思考的習慣,以及歸納總結(jié)的能力。
題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進。并體現(xiàn)了對定義的反思理解。學生思考練習,師生共同分析糾正。
五、鞏固強化,評價反饋
1、已知函數(shù)y=f(x)存在反函數(shù),求它的反函數(shù)y=f(x)
。1)y=—2x3(xR)(2)y=—(xR,且x)
。3)y=(xR,且x)
2、已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。
五、反思小結(jié),再度設(shè)疑
本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟。互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。
。ㄗ寣W生談一下本節(jié)課的學習體會,教師適時點撥)
進一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調(diào)動學生的積極性。"問題是數(shù)學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。
六、作業(yè)
習題2.4第1題,第2題
進一步鞏固所學的知識。
高中數(shù)學教學設(shè)計優(yōu)秀5
教學目標
1、明確等差數(shù)列的定義。
2、掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題
3、培養(yǎng)學生觀察、歸納能力。
教學重點
1、等差數(shù)列的概念;
2、等差數(shù)列的通項公式
教學難點
等差數(shù)列“等差”特點的理解、把握和應(yīng)用
教具準備
投影片1張
教學過程
(I)復習回顧
師:上兩節(jié)課我們共同學習了數(shù)列的定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)
(Ⅱ)講授新課
師:看這些數(shù)列有什么共同的特點?
1,2,3,4,5,6;①
10,8,6,4,2,②
生:積極思考,找上述數(shù)列共同特點。
對于數(shù)列①(1≤n≤6);(2≤n≤6)
對于數(shù)列②-2n(n≥1)(n≥2)
對于數(shù)列③(n≥1)(n≥2)
共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。
師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。
一、定義:
等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的'差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。
如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2。
二、等差數(shù)列的通項公式
師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:
若將這n-1個等式相加,則可得:
即:即:即:……
由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。
如數(shù)列①(1≤n≤6)
數(shù)列②:(n≥1)
數(shù)列③:(n≥1)
由上述關(guān)系還可得:即:則:=如:
三、例題講解
例1:(1)求等差數(shù)列8,5,2…的第20項
(2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。
(Ⅲ)課堂練習
生:(口答)課本P118練習3
。〞婢毩暎┱n本P117練習1
師:組織學生自評練習(同桌討論)
(Ⅳ)課時小結(jié)
師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。
即(n≥2)
②等差數(shù)列通項公式(n≥1)
推導出公式:(V)課后作業(yè)
1、課本P118習題3.21,2
2、(1)預習內(nèi)容:課本P116例2P117例4
。2)預習提綱:
、偃绾螒(yīng)用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?
、诘炔顢(shù)列有哪些性質(zhì)?
高中數(shù)學教學設(shè)計優(yōu)秀6
我先來介紹一下參加我們這次講座的幾位嘉賓,我身邊這位是蘇州五中的羅強校長,這邊這位是蘇州中學的劉華老師,那邊那位是大家熟悉的首都師范大學數(shù)學系博士生導師王尚志教授。歡迎大家來到我們研討的現(xiàn)場!
老師們都知道,素質(zhì)教育要落實在課堂上,課堂是我們實行數(shù)學新課程的主戰(zhàn)場,做好教學設(shè)計是我們整個高中數(shù)學新課程推進的一個關(guān)鍵點。那么,怎樣才能做好數(shù)學的教學設(shè)計呢?我們問過一些老師,大家感覺有些疑惑,比如說有的老師們認為:教學設(shè)計是不是就是備備課,寫好一個教案、做一個課件,是不是這樣?我們想聽聽來自江蘇的老師怎么看這個問題?
羅強:我來談?wù)勛约簩虒W設(shè)計理論的學習和實踐過程中的一些體會。以前我們在教學實踐中往往把教學設(shè)計變成一種簡單的教案設(shè)計,但實際上這只是一種經(jīng)驗型的教學設(shè)計,沒有上升為科學型的教學設(shè)計。其實,國際上對教學設(shè)計的研究已經(jīng)進行多年,提出了許多思想、理論、案例,教學設(shè)計已經(jīng)成為一個獨立的研究領(lǐng)域。
教學設(shè)計理論的發(fā)展基本上經(jīng)歷了兩個階段:第一個階段是突出以“教的傳遞策略”為中心來進行教學設(shè)計的傳統(tǒng)教學設(shè)計理論,它更接近工程學,遵循設(shè)計的規(guī)則和程序,強調(diào)目標遞進和按部就班的系統(tǒng)操作過程,其特點是注重目標細化,注重分層要求,注重教學內(nèi)容各要素的協(xié)調(diào)。就好像我們要造一幢房子,先要把這幢房子的圖紙設(shè)計出來,然后再設(shè)計一個施工的藍圖,教學就是按照這樣的設(shè)計來進行實施的一個過程。
第二個階段是突出以“學的組織方式”為中心來進行教學設(shè)計的現(xiàn)代教學設(shè)計理論,它的基礎(chǔ)是信息加工理論與建構(gòu)主義的學習理論,現(xiàn)代教學設(shè)計理論強調(diào)依據(jù)學習任務(wù)類型(如認知、情感與心理動作等)來選擇教學策略,強調(diào)以問題為中心,營造一個能激活學生原有知識經(jīng)驗,有利于新知識建構(gòu)的學習環(huán)境。其特點是問題與環(huán)境,強調(diào)創(chuàng)設(shè)情境,提出問題,營造問題解決的環(huán)境,突出學生的自主學習和自主探究。
按照新的教學設(shè)計的理論,我們應(yīng)該以學為中心來進行教學設(shè)計,簡單的說就是——為學習而設(shè)計教學!打個比喻,就是說我們教師好比是導游,帶著學生去一個新的景點旅游,那么在這個過程中間,教學設(shè)計就是設(shè)計這么一個導游圖,讓學生在參觀各個景點的過程中,經(jīng)歷學習這些知識的一種過程。
按照為學習而設(shè)計教學的理念,我覺得在教學設(shè)計時要考慮三條線索,這樣實際上也就構(gòu)成了教學設(shè)計的一種三維結(jié)構(gòu)。第一條線索就是一種數(shù)學知識線索。因為教師進行的是學科教學;第二個線索是學生的認知線索。因為學習的主體是學生;第三個線索就是教師的教學組織線索,因為教學過程是通過教師的組織來實現(xiàn)的。比如第一條線索——數(shù)學知識,我覺得數(shù)學知識實際有三個形態(tài):一是自然形態(tài),它既存在于客觀世界中間,實際上也存在于學生的頭腦中間;二是學術(shù)形態(tài),它是作為數(shù)學學科的一種知識體系而存在。那么,我們的教學就是要在數(shù)學的自然形態(tài)和學術(shù)形態(tài)的中間架一座橋梁,這座橋梁就是數(shù)學的教育形態(tài)。因此,我覺得教學設(shè)計的本質(zhì)就是設(shè)計好數(shù)學的教育形態(tài),教學設(shè)計的過程實際上就是構(gòu)建數(shù)學教育形態(tài)的一個過程。
通過對教學設(shè)計理論的學習,并在實踐中反思和總結(jié),我的體會很深。有一位美國學者蘭達曾經(jīng)說過:教學設(shè)計是使天才能夠做到的事一般人也能去做。我想對教學設(shè)計理論的學習是一個大家都要努力的目標。
張思明:剛才羅強老師從理論上分析了什么是教學設(shè)計?教學設(shè)計應(yīng)該關(guān)注哪些問題?下面我們請劉華老師幫我們分析一下:在你們實驗區(qū)和老師接觸的實踐中,你感覺到老師們在教學設(shè)計中存在著哪些主要問題?
劉華:我想解剖一個由職初教師,就是剛剛工作的青年教師所提供的一個教學案例。
我先簡單介紹一下他的教學設(shè)計。這是高一函數(shù)單調(diào)性的一節(jié)起始課,在教學設(shè)計中,這個職初教師首先明確了這節(jié)課的三維目標,然后他提出了兩個生活中的情境,一個情境是生活中的氣溫圖;第二個情境是股票的價格走勢圖,然后引入新課。接著把函數(shù)單調(diào)性的概念介紹給學生,緊接著進入了例題講解階段,最后是有兩個思考題。
我覺得這個教學設(shè)計大致存在這樣四點比較普遍的問題:
第一個問題就是這位教師在確定課程目標的時候,比較機械地套用了新課程的理念,按照“知識技能,方法與過程,情感、態(tài)度、價值觀”這樣的三維目標來敘述他的本節(jié)課目標。在這些目標中,知識與技能的目標還是比較實在的,但“過程與方法”的目標以及“情感、態(tài)度、價值觀”的目標就比較空洞,流于形式。其實,這位老師對教學目標并沒有做深入的分析,這樣的教學目標只是一個標簽而已,這是第一個問題。
第二個問題是問題情境的設(shè)計。好的情境應(yīng)當是兼顧生活化與數(shù)學化,股票的價格走勢圖這個情境離學生的生活太遠,其中還包含了許多股票方面的專門知識,對函數(shù)單調(diào)性這個數(shù)學概念的反映也不夠準確,作為本課的情境,不太恰當。
第三個問題就是在情境到數(shù)學概念的產(chǎn)生過程中,應(yīng)當讓學生充分體驗或參與數(shù)學化的探索過程,從而建構(gòu)起函數(shù)單調(diào)性這一概念。我們看到在這位教師的設(shè)計當中,他忽略了學生活動,尤其是學生思維活動這樣一個環(huán)節(jié),而是直接把概念拋給了學生。我們認為學生在數(shù)學學習中,“過程”相對來說比僅僅接受概念這個“結(jié)果”更為重要。
最后一個問題就是我們發(fā)現(xiàn)有很多老師認為數(shù)學教學設(shè)計主要就是習題的設(shè)計,這位教師本節(jié)課的例題、習題量非常多,而且對這些習題的要求他存在著一步到位的傾向,尤其是他最后拋出來的含字母的函數(shù)單調(diào)性的探索這個問題,我們覺得在新授課當中這個習題的要求太高了。我覺得老師們在教學設(shè)計中主要存在這樣幾點問題。
張思明:劉華老師談了一個單調(diào)性的案例,對一個新教師的案例做了一個分析,分析出了我們老師在教學設(shè)計中常常出現(xiàn)的一些問題。那么面對這樣一些問題,我們應(yīng)該怎么辦?我們就以這個案例為出發(fā)點,請羅強老師對函數(shù)單調(diào)性這個課題做了一個分析和再創(chuàng)造的工作,在這個工作中我們可以看到如何通過教師自己的再學習、再認識,設(shè)計出一個更好、更適用于學生的教學設(shè)計。我們來看一下羅強老師的說課錄像。
羅強老師的說課:各位老師大家好,我向大家匯報一下我對函數(shù)單調(diào)性的教學設(shè)計。
首先談一下我對教學設(shè)計的認識。我覺得教學設(shè)計的根本目的是創(chuàng)設(shè)一個有效的教學系統(tǒng),這樣的教學系統(tǒng)不是隨意出現(xiàn)的而是教師精心創(chuàng)設(shè)的,沒有有效的教學設(shè)計就不可能保證教學的效果和質(zhì)量。教學設(shè)計最根本的著力點是“為學習設(shè)計教學”,而不是“為教學設(shè)計學習”。
教學設(shè)計的首要任務(wù)就是明確教學目標,實際上教學目標是教學設(shè)計的靈魂和統(tǒng)帥,將指引后續(xù)教學設(shè)計的方向,決定后續(xù)教學設(shè)計的具體工作。在制定教學目標的時候,我覺得要把握以下幾點:
第一,把握教學要求,不求一步到位。函數(shù)單調(diào)性是高中階段刻劃函數(shù)變化的一個最基本的性質(zhì)。在高中數(shù)學課程中,對于函數(shù)單調(diào)性的研究分成兩個階段:第一個階段是用運算的性質(zhì)研究單調(diào)性,知道它的變化趨勢;第二階段用導數(shù)的性質(zhì)研究單調(diào)性,知道它的變化快慢。那么高一我們是處在第一個階段。第二,明確知識目標,落實隱性目標。知識目標往往就是教學的顯性目標,確定知識目標的關(guān)鍵在于分清主次輕重,把握好教學要求。根據(jù)課程標準的要求,本節(jié)課的知識目標定位在以下三個方面:一是理解函數(shù)單調(diào)性的概念;二是掌握判斷函數(shù)單調(diào)性的方法;三是會用定義證明一些簡單函數(shù)在某個區(qū)間上的單調(diào)性。另外這節(jié)課的隱性目標我覺得也很重要,因為函數(shù)單調(diào)性的定義是對函數(shù)圖象特征的一種數(shù)學描述,它經(jīng)歷了由圖象直觀特征到自然語言描述再到數(shù)學符號的描述的進化過程,反映了數(shù)學的理性思維和理性精神。對高一學生來講它是一個很有價值的數(shù)學教育載體和契機。因此這節(jié)課的隱性目標應(yīng)該包括讓學生體驗數(shù)學知識的發(fā)生發(fā)展過程,學會數(shù)學概念符號化的建構(gòu)過程。根據(jù)剛才的分析,我把教學流程分成了三個階段:第一個階段是進行函數(shù)單調(diào)性概念的數(shù)學化過程;第二個階段是從不同的角度幫助學生深入理解函數(shù)單調(diào)性的概念;第三個階段是讓學生學會判斷,并用函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性。
第一階段的教學流程分成三個教學環(huán)節(jié)。第一,問題情境;第二,溫故知新;第三,建構(gòu)概念。具體如下:
先是創(chuàng)設(shè)問題情境。由老師和學生一起舉出生活中描繪上升或者下降的變化規(guī)律的成語。老師可以啟發(fā)一下,先說一個“蒸蒸日上”,然后和學生一起舉出比如“每況愈下”,“波瀾起伏”這樣三種描繪不同變化的成語。然后請學生根據(jù)上述成語,給出一個函數(shù),并在平面直角坐標系中繪制相應(yīng)的函數(shù)圖象。這樣設(shè)計的意圖是讓學生結(jié)合生活體驗用樸素的生活語言描繪變化規(guī)律,體會如何將文字語言轉(zhuǎn)化為圖形語言。
接下來是溫故知新。在剛才學生繪制出的三個函數(shù)圖象的基礎(chǔ)上,我請學生觀察它們變化的趨勢。在剛才學生繪制的三個函數(shù)圖象的基礎(chǔ)上,再請學生用初中的語言來敘述什么叫圖象呈逐漸上升的趨勢,也就是“函數(shù)值隨著的增大而增大”。這樣設(shè)計的意圖是讓學生對照繪制的函數(shù)圖象,用自然語言描述函數(shù)的變化規(guī)律,重溫初中函數(shù)單調(diào)性的描述定義。
張思明:剛才我們看到了時駿老師的說課,下面我們來聽一聽嘉賓對這個說課的分析。
羅強:我還是要強調(diào)教學設(shè)計一定要注意為學習而設(shè)計教學。還是拿我剛才的這個比喻,就是教師帶學生去旅游。既然是帶學生去旅游,首先就要考慮我要帶學生到什么地方去?然后需要考慮我怎么才能夠帶學生到達這個地方?然后我要確定學生是不是真的到達了這個地方?還要注意的是,作為教學的一種延伸,我覺得還應(yīng)該讓學生有興趣、有能力繼續(xù)他自己的旅程。我覺得這是我們教學設(shè)計要做的主要工作。
張思明:通過以上幾個案例,我想老師們對于如何做教學設(shè)計有了一個初步的認識。怎樣做好教學設(shè)計呢?我們也想聽一聽在教育指導部門的老師的一些想法,我們特別采訪了江蘇省教研室的董林偉主任,我們來聽一聽董主任關(guān)于教學設(shè)計的思考和認識。
董主任:關(guān)于設(shè)計這兩個詞大家應(yīng)該都非常的熟悉。當人們要從事一項有目的的活動的時候,事先都要有一些設(shè)想,要進行一些規(guī)劃,要進行一些設(shè)計。作為我們教學工作者來說,在開始我們的教學活動之前,我們的老師都必須做一項非常重要的工作,那就是教學設(shè)計。今天我要談的就是關(guān)于教學設(shè)計的話題。我想就三個方面來談?wù)勎业囊恍┗鞠敕ā5谝,我想先談(wù)勈裁唇薪虒W設(shè)計?第二,談?wù)勎覀冊诮虒W設(shè)計過程中應(yīng)該來設(shè)計一些什么?第三,在設(shè)計的過程當中我們要注意哪幾點?下面我想簡要的把這三個方面跟大家做一個交流。
一、關(guān)于什么叫教學設(shè)計?
所謂的教學設(shè)計就是用系統(tǒng)的方法對各種課程資源進行有機的整合,對教學過程中相互聯(lián)系的各個部分作出整體安排的一種構(gòu)想。它是一種構(gòu)想,是一種整體的安排,是我們教師為將來進行的教學勾畫的一些圖景,它反映了我們的教師對自己未來教學的一種認識和期望。如果通俗一點來說,那么所謂的教學設(shè)計可以這樣來理解,就是:你要把學生帶到哪里去?你怎樣把學生帶到那里去?你這樣做能把學生帶到那里去嗎?
二、在教學設(shè)計過程當中我們應(yīng)該關(guān)注些什么,就是說設(shè)計一些什么?
首先,我們必須明確我們的教學目標,教學目標是我們教學根本的指向與核心的任務(wù),是教學設(shè)計的關(guān)鍵。教學的目標是教學中師生所預期達到的一種教學效果和標準,因此,明確教學目標就是要明確你要把學生帶到哪里去。在確定教學目標的時候,我們要關(guān)注以下的幾點:第一,整體性。就是要注意這部分內(nèi)容在整個高中階段數(shù)學教學中的聯(lián)系,以達到教學的一種連貫性,要正確處理好我們的近期的目標跟遠期目標的相互關(guān)系。第二,在我們明確目標的時候,要關(guān)注它的全面性。新課程對數(shù)學教學的目標提出了新的一種要求,三維目標在關(guān)注知識結(jié)果的同時,更注重對過程目標的關(guān)注和對學習者——學生的關(guān)注,更關(guān)注學生獲取數(shù)學知識的過程以及在學習中的經(jīng)歷、感受和體驗。因此,教師在設(shè)計數(shù)學教學目標時,應(yīng)特別注意關(guān)注新課程所提出的過程性目標。第三,我們要關(guān)注目標的現(xiàn)實性。確定教學目標時,應(yīng)當注意它與所授課任務(wù)的實質(zhì)性聯(lián)系,以避免目標空洞、無法落實。我們在設(shè)計教學目標時,常見的一種狀況是目標過分的大,過分的空洞,那么在落實過程中,就難以達到預設(shè)的目標。其次,我們在教學設(shè)計中要非常關(guān)注學生,要了解學生。我想,以下幾個方面,至少老師在教學設(shè)計過程中應(yīng)該心中有數(shù)。
第一,在數(shù)學方面學生以前做過什么?他在數(shù)學活動或者是在數(shù)學實驗方面,曾經(jīng)做過什么?這里我們實際上要關(guān)注的`是學生的活動經(jīng)驗。
第二,不同的學生在思維方式上會有什么不同。實際上就是要在教學中關(guān)注我所授課的學生的特點,關(guān)注我班學生的構(gòu)成,班級當中不同群體的學生在思維方面有些什么樣的不同。
第三,要初步確定課堂的組織形式,就是說我這一堂課是整個班級一起學習,還是將學生分成若干個組來活動,甚至于是一種個體性的活動,包括開展一些個體性的實驗活動,包括自主學習的一種活動方式。組織形式上還要關(guān)注這堂課需要利用什么模型?是否需要做適當?shù)恼n件?或者準備一些相關(guān)的硬件設(shè)施。這也是我們在確定課堂組織形式是所必須要關(guān)注的。
第四,要勾勒教學的一種順序。這個順序當中主要包括這樣幾點:
第一點,應(yīng)當怎樣提出主題,通俗一點講就是問題情境的創(chuàng)設(shè)。關(guān)于問題情境的創(chuàng)設(shè),我們在相關(guān)的專題中也都提到它的重要性和一些要求。我們在勾勒教學順序的時候,首先要關(guān)注的是怎樣提出主題,這個主題應(yīng)該是跟學生接近的,又要能夠引起他的興趣,又要圍繞著我們的教學主題的,而且能夠使得學生迅速的進入學習活動中。
第二點,就是要關(guān)注是否需要復習以前的相關(guān)知識。一堂課的教學它往往不是獨立的,而是有前后聯(lián)系的,因此需要考慮我在這堂課教學中是否需要復習相關(guān)的知識?
第三點,當學生對材料產(chǎn)生爭論的時候,你準備提出怎樣的探索性問題。當我們提出問題以后學生可能會產(chǎn)生什么樣的一種思考,可能會產(chǎn)生一種什么樣的爭論?我們要了解這些爭論的思維的背景,需要進行正確的引導,那么你就必須要設(shè)計好一些問題串,來引導學生圍繞主題展開探索。
第四點,我們在設(shè)計教學程序的過程中要關(guān)注一下我們使用的材料,我們的課本提出了什么樣的觀點,使用什么樣課外的材料來幫助我們的教學。
第五點,要根據(jù)學生對主題的掌握程度,準備幾個可以供選擇的,課堂當中要自主完成的練習,或者是課后要完成家庭作業(yè)。這些是勾勒我們整個教學流程的一些關(guān)鍵程序。
三、教學設(shè)計中我們應(yīng)該注意的方面。
教學設(shè)計永遠只是教學過程的一種預期,實際的教學活動則永遠是一個謎。我們老師都有經(jīng)驗,同樣的一個課題,同一個老師的備課,他在不同班的授課過程中都會產(chǎn)生不同的教學流程、教學效果。因為我們所面對的學生是不同的,是在變化的,我們的教學生成是變化的,只有當這堂課教學完成了,我們才能知道這堂課最后的結(jié)果。所以前面的教學設(shè)計只是一種預期,我們的教學設(shè)計就是要關(guān)注這樣的一種變化。
因此,教學設(shè)計首先要注意它的整體性,就是說我們的教學設(shè)計不是一種片斷,是一種整體的設(shè)計,它不是寫在我們紙上的一種文本,而是我們教師對自己和學生所持的一種整體性的目標。其次,要注意它的可變性,沒有一件事情是絲毫不差地按照計劃進行的。學生的思維可能還停留在你認為根本不重要的問題上,他們還會以你幾乎不能想象的方式來理解某些概念。當活動過程受到影響時,你必須放棄你原來的教學計劃,運用你對學生已有的知識的了解和更宏觀的數(shù)學教學目標,去指導你的教學行動,也就是說要產(chǎn)生一些生成的問題。第三,要注意它創(chuàng)造性。我們的教師很大程度上會依賴于教材或教學參考書,以確保他們的數(shù)學教學內(nèi)容符合一個內(nèi)部連貫的發(fā)展框架。這種依賴有一定的好處,它能夠使得我們的教學設(shè)計能夠圍繞著我們課程的設(shè)計來進行,但是同時也存在一些問題,就是說畢竟教材是我們課程的一種呈現(xiàn),跟教學的呈現(xiàn)還是有著本質(zhì)差別的。我們的教學設(shè)計應(yīng)該是一種流動的過程,應(yīng)該適合我們的學生,就像設(shè)計師設(shè)計的服裝要符合你所設(shè)計的群體的特點和要求,如果考慮到個體,就要符合他的氣質(zhì),符合他的整體形象。我們的教學設(shè)計也是這樣,我想每個人都應(yīng)該有個人設(shè)計的一種思考和魅力。
剛才談到這幾點僅供我們老師做一種參考。
張思明:各位老師,我們這一講把教學設(shè)計中存在的問題通過幾個案例給大家做了一個初步的展示。我想教學設(shè)計中的問題是一個教學實踐過程中產(chǎn)生的問題,我們每一個老師都有自己的設(shè)計理念,都有自己設(shè)計成功或者不如意甚至失敗的地方。我們希望研討是一個互動的過程,我們真誠的期待著老師們把您們在教學設(shè)計中遇到的問題和成功的經(jīng)驗寄給我們,我們一起來研討。那么這一講就到這里,謝謝老師們的參與!
高中數(shù)學教學設(shè)計優(yōu)秀7
學習目標
明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題。
學習過程
一、學前準備
復習:
1、(課本P28A13)填空:
。1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;
。2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數(shù)是;
(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;
。4)集合A有個元素,集合B有個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是;
二、新課導學
◆探究新知(復習教材P14~P25,找出疑惑之處)
問題1:判斷下列問題哪個是排列問題,哪個是組合問題:
(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?
。2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?
◆應(yīng)用示例
例1.從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?
例2.7位同學站成一排,分別求出符合下列要求的`不同排法的種數(shù)。
。1)甲站在中間;
。2)甲、乙必須相鄰;
。3)甲在乙的左邊(但不一定相鄰);
。4)甲、乙必須相鄰,且丙不能站在排頭和排尾;
(5)甲、乙、丙相鄰;
(6)甲、乙不相鄰;
。7)甲、乙、丙兩兩不相鄰。
◆反饋練習
1、(課本P40A4)某學生邀請10位同學中的6位參加一項活動,其中兩位同學要么都請,要么都不請,共有多少種邀請方法?
2.5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列
3、馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種。
當堂檢測
1、某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目。如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()
A.42B.30C.20D.12
2、(課本P40A7)書架上有4本不同的數(shù)學書,5本不同的物理書,3本不同的化學書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?
課后作業(yè)
1、(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復數(shù)字的數(shù),問:(1)能夠組成多少個六位奇數(shù)?(2)能夠組成多少個大于201345的正整數(shù)?
2、(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?
高中數(shù)學教學設(shè)計優(yōu)秀8
一、教學目標設(shè)計
通過實例理解充分條件、必要條件的意義。
能夠在簡單的問題情境中判斷條件的充分性、必要性。
二、教學重點及難點
充分條件、必要條件的判斷;
充分條件、必要條件的判斷方法。
三、教學流程設(shè)計
四、教學過程設(shè)計
一、概念引入
早在戰(zhàn)國時期,《墨經(jīng)》中就有這樣一段話有之則必然,無之則未必不然,是為大故無之則必不然,有之則未必然,是為小故。
今天,在日常生活中,常聽人說:這充分說明,沒有這個必要等,在數(shù)學中,也講充分和必要,這節(jié)課,我們就來學習教材第一章第五節(jié)充分條件與必要條件。
二、概念形成
1、 首先請同學們判斷下列命題的真假
(1)若兩三角形全等,則兩三角形的面積相等。
(2)若三角形有兩個內(nèi)角相等,則這個三角形是等腰三角形。
(3)若某個整數(shù)能夠被4整除,則這個整數(shù)必是偶數(shù)。
(4) 若ab=0,則a=0。
解答:命題(2)、(3)、(4)為真。命題(4)為假;
2、請同學用推斷符號寫出上述命題。
解答:(1)兩三角形全等 兩三角形的面積相等。
(2) 三角形有兩個內(nèi)角相等 三角形是等腰三角形。
(3) 某個整數(shù)能夠被4整除則這個整數(shù)必是偶數(shù);
(4)ab=0 a=0。
3、充分條件與必要條件
繼續(xù)結(jié)合上述實例說明什么是充分條件、什么是必要條件。
若某個整數(shù)能夠被4整除則這個整數(shù)必是偶數(shù)中,我們稱某個整數(shù)能夠被4整除是這個整數(shù)必是偶數(shù)的充分條件,可以解釋為:只要某個整數(shù)能夠被4整除成立,這個整數(shù)必是偶數(shù)就一定成立;而稱這個整數(shù)必是偶數(shù)是某個整數(shù)能夠被4整除的必要條件,可以解釋成如果某個整數(shù)能夠被4整除 成立,就必須要這個整數(shù)必是偶數(shù)成立
充分條件:一般地,用、分別表示兩件事,如果這件事成立,可以推出這件事也成立,即,那么叫做的充分條件。
[說明]:①可以解釋為:為了使成立,具備條件就足夠了。②可進一步解釋為:有它即行,無它也未必不行。③結(jié)合實例解釋為: x = 0 是 xy = 0 的充分條件,xy = 0不一定要 x = 0。)
必要條件:如果,那么叫做的必要條件。
[說明]:①可以解釋為若,則叫做的必要條件,是的充分條件。②無它不行,有它也不一定行③結(jié)合實例解釋為:如 xy = 0是 x = 0的必要條件,若xy0,則一定有 x若xy = 0也不一定有 x = 0。
回答上述問題(1)、(2)中的條件關(guān)系。
(1)中:兩三角形全等是兩三角形的面積相等的充分條件;兩三角形的面積相等是兩三角形全等的必要條件。
(2)中:三角形有兩個內(nèi)角相等是三角形是等腰三角形的充分條件;三角形是等腰三角形是三角形有兩個內(nèi)角相等的必要條件。
4、拓廣引申
把命題:若某個整數(shù)能夠被4整除,則這個整數(shù)必是偶數(shù)中的條件與結(jié)論分別記作與,那么,原命題與逆命題的真假同與之間有什么關(guān)系呢?
關(guān)系可分為四類:
(1)充分不必要條件,即,而
(2)必要不充分條件,即,而
(3)既充分又必要條件,即,又有
(4)既不充分也不必要條件,即,又有。
三、典型例題(概念運用)
例1:(1)已知四邊形ABCD是凸四邊形,那么AC=BD是四邊形ABCD是矩形的什么條件?為什么?(課本例題p22例4)
(2) 是 的什么條件。
(3)a+b是1,b什么條件。
解:(1)AC=BD是四邊形ABCD是矩形的必要不充分條件。
(2)充分不必要條件。
(3)必要不充分條件。
[說明]①如果把命題條件與結(jié)論分別記作與,則既要對進行判斷,又要對進行判斷。②要否定條件的充分性、必要性,則只需舉一反例即可。
例2:判斷下列電路圖中p與q的充要關(guān)系。其中p:開關(guān)閉合;q:
燈亮。(補充例題)
[說明]①圖中含有兩個開關(guān)時,p表示其中一個閉合,另一個情況不確定。②加強學科之間的橫向溝通,通過圖示,深化概念認識。
例3、探討下列生活中名言名句的充要關(guān)系。(補充例題)
(1)頭發(fā)長,見識短。
(2)驕兵必敗。
(3)有志者事竟成。
(4)春回大地,萬物復蘇。
(5)不入虎穴、焉得虎子
(6)四肢發(fā)達,頭腦簡單
[說明]通過本例,充分調(diào)動學生生活經(jīng)驗,使得抽象概念形象化。從而激發(fā)學生學習熱情。
四、鞏固練習
1、課本P/22練習1.5(1)
2:填表(補充)
p q p是q的
什么條件 q是p的
什么條件
兩個角相等 兩個角是對頂角
內(nèi)錯角相等 兩直線平行
四邊形對角線相等 四邊形是平行邊形
a=b ac=bc
[說明]通過練習,及時鞏固所學新知,反饋教學效果。
五、課堂小結(jié)
1、本節(jié)課主要研究的內(nèi)容:
推斷符號,
充分條件的意義 命題充分性、必要性的判斷。
必要條件的意義
2、 充分條件、必要條件判別步驟:
、 認清條件和結(jié)論。
、 考察p q和q p的真假。
3、充分條件、必要條件判別技巧:
① 可先簡化命題。
② 否定一個命題只要舉出一個反例即可。
、 將命題轉(zhuǎn)化為等價的逆否命題后再判斷。
六、課后作業(yè)
書面作業(yè):課本P/24習題1.51,2,3。
五、教學設(shè)計說明
1、充分條件、必要條件以及下節(jié)課中充要條件與集合的概念一樣涉及到數(shù)學的各個分支,用推出關(guān)系的形式給出它的定義,對高一學生只要求知道它的意義,并能判斷簡單的'充分條件與必要條件。
2、由于充要條件與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學時可以從判斷命題的真假入手,來分析命題的條件對于結(jié)論來說,是否充分,從而引入充分條件的概念,進而引入必要條件的概念。
3、教材中對充分條件、必要條件的定義沒有作過多的解釋說明,為了讓學生能理解定義的合理性,在教學過程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來認識充分條件的概念,從互為逆否命題的等價性來引出必要條件的概念。
4、由于這節(jié)課概念性、理論性較強,一般的教學使學生感到枯燥乏味,為此,激發(fā)學生的學習興趣是關(guān)鍵。教學中始終要注意以學生為主,結(jié)合相關(guān)學科及學生生活經(jīng)驗讓學生在自我思考、相互交流中去給概念下定義,去體會概念的本質(zhì)屬性。
高中數(shù)學教學設(shè)計優(yōu)秀9
一、探究式教學模式概述
1、探究式教學模式的含義。探究式教學就是學生在教師引導下,像科學家發(fā)現(xiàn)真理那樣以類似科學探究的方式來展開學習活動,通過自己大腦的獨立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識規(guī)律的教學模式。它的基本特征是教師不把跟教學內(nèi)容有關(guān)的內(nèi)容和認知策略直接告訴學生,而是創(chuàng)造一種適宜的認知和合作環(huán)境,讓學生通過探究形成認知策略,從而對教學目標進行一種全方位的學習,實現(xiàn)學生從被動學習到主動學習,培養(yǎng)學生的科學探究能力、創(chuàng)新意識和科學精神。可見,探究式教學主張把學習知識的過程和探究知識的過程統(tǒng)一起來,充分發(fā)揮學生學習的自主性和參與性。
2、堂探究式教學的實質(zhì)。課堂探究式教學的實質(zhì)是使學生通過類似科學家科學探究的過程來理解科學探究概念和科學規(guī)律的本質(zhì),并培養(yǎng)學生的科學探究能力。具體地說,它包括兩個相互聯(lián)系的方面:一是有一個以“學”為中心的探究性學習環(huán)境。在這個環(huán)境中有豐富的教學資源,而且這些資源是圍繞某個知識主題來展開的。這個學習環(huán)境具有民主和諧的課堂氣氛,它使學生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗其設(shè)想。二是教師可以給學生提供必要的幫助和指導,使學生在研究中能明確方向。這說明探究式教學的本質(zhì)特征是不直接把與教學目標有關(guān)的概念和認知策略告訴學生,取而代之的是教師創(chuàng)造出一種智力交流和社會交往的環(huán)境,讓學生通過探究自己發(fā)現(xiàn)規(guī)律。
3、探究式教學模式的特征。
(1)問題性。問題性是探究式教學模式的關(guān)鍵。能否提出對學生具有挑戰(zhàn)性和吸引力的問題,使學生產(chǎn)生問題意識,是探究教學成功與否的關(guān)鍵所在。恰當?shù)膯栴}會激起學生強烈的學習愿望,并引發(fā)學生的求異思維和創(chuàng)造思維,F(xiàn)代教育心理學研究提出:“學生的學習過程和科學家的探索過程在本質(zhì)上是一樣的,都是一個發(fā)現(xiàn)問題、分析問題、解決問題的過程!彼耘囵B(yǎng)學生的問題意識是探究式教學的重要使命。
(2)過程性。過程性是探究式教學模式的重點。愛因斯坦說:“結(jié)論總以完成的形式出現(xiàn),讀者體會不到探索和發(fā)現(xiàn)的喜悅,感覺不到思想形成的生動過程,也就很難達到清楚、全面理解的境界。”探究式教學模式正是考慮到這些人的認知特點來組織教學的,它強調(diào)學生探索知識的經(jīng)歷和獲得新知識的親身感悟。
。3)開放性。開放性是探究式教學模式的難點。探究式教學模式總是綜合合作學習、發(fā)現(xiàn)學習、自主學習等學習方式的長處,培養(yǎng)學生良好的學習態(tài)度和學習方法,提倡和發(fā)展多樣化的學習方式。探究式教學模式要面對大量開放性的問題,教學資源和探究的結(jié)論面對生活、生產(chǎn)和科研是開放的,這一切都為教師的教與學生的學帶來了機遇與挑戰(zhàn)。
二、教學設(shè)計案例
1、教學內(nèi)容:數(shù)字排列中3、9的探究式教學。
2、教學目標。
。1)知識與技能:掌握數(shù)字排列的知識,能靈活運用所學知識。
。2)過程與方法:在探究過程中掌握分析問題的方法和邏輯推理的方法。
。3)情感態(tài)度與價值觀:培養(yǎng)學生觀察、分析、推理、歸納等綜合能力,讓學生體會到認識客觀規(guī)律的一般過程。
3、教學方法:談話探究法,討論探究法。
4、教學過程。
(1)創(chuàng)設(shè)情境。教師:在高中數(shù)學第十章的教學中,有關(guān)數(shù)字排列的問題占有重要位置。我們曾經(jīng)做過的有關(guān)數(shù)字排列的題目,如“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除。那么能被3整除的`數(shù),能被9整除的數(shù)有何特點?
。2)提出問題。
問題1:在用1、2、3、4、5、6六個數(shù)字組成沒有重復數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()
A、36個B、18個C、12個D、24個
問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?
。3)探究思考。點評:乍一看問題1,對于由若干個數(shù)字排列成9的倍數(shù)的問題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點,尋求解決問題的途徑。
教師:同學們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫出幾個能被9整除的數(shù),如981、1872等,看看它們有何特點?
學生:它們都滿足“各位數(shù)字之和能被9整除”。
教師:此結(jié)論的正確性如何?
學生:老師,我們證明此結(jié)論的正確性,好嗎?
教師:好。
學生:證明:不妨以n是一個四位數(shù)為例證之。
設(shè)n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)
則n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可證定理的后半部分。
教師:看來上述結(jié)論正確。所以得到如下定理。
定理:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。
教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問題,請同學們先解答問題1。
學生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教師:啟發(fā)學生觀察這些數(shù)字有何特點?提問學生。
學生:可以看出只要從1、2、3、4、5、6這六個數(shù)中,選取的四個數(shù)字中含1(或2),或者同時含1、2,選取的四個數(shù)字之和都不是9的倍數(shù)。
教師:請學生們繼續(xù)嘗試選取其他數(shù)字試一試。
學生:3+4+5+6=18是9的倍數(shù)。
教師:因此用1、2、3、4、5、6六個數(shù)字組成沒有重復數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進行全排列所得,共有=24(個)。
故應(yīng)選D。
。4)學以致用。
問題2:在用0、1、2、3、4、5這六個數(shù)字組成沒有重復數(shù)字的自然數(shù)中,有多少個能被6整除的五位數(shù)?
教師:從上面的定理知:如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。同學們對問題2有何想法?
學生討論:
學生1:被6整除的。五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。
學生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個數(shù)字可分兩類:一類是5個數(shù)字中無0,另一類是5個數(shù)字中有0(但不含3)。
學生3:第一類:5個數(shù)字中無0的五位偶數(shù)有。
第二類:5個數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個位有個;第二,個位是2或4有,所以共有+ 。
學生4:由分類計數(shù)原理得:能被6整除的無重復數(shù)字的五位數(shù)共有+ + =108(個)。
(5)概括強化。
重點:了解數(shù)字排列問題的特點,理解掌握數(shù)字排列中3、9問題的規(guī)律。
難點:數(shù)字排列知識的靈活應(yīng)用。
關(guān)鍵:證明的思路以及定理的得出。
新學知識與已知知識之間的區(qū)別和聯(lián)系:已知知識“由若干個數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個位數(shù)字為偶數(shù),則這個數(shù)就是偶數(shù),當排列成的數(shù)的個位數(shù)字為0或5時,則這個數(shù)就能被5整除”。新學知識“如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被9整除,那么這個數(shù)n就能夠被9整除;如果一個自然數(shù)n各個數(shù)位上的數(shù)字之和能被3整除,那么這個數(shù)n就能夠被3整除。都是數(shù)字排列知識,要學會靈活應(yīng)用。
。6)作業(yè)。請同學們自擬練習題,以求達到熟練解決此類問題的目的。
總之,探究式教學模式是針對傳統(tǒng)教學的種種弊端提出來的,新課程改革強調(diào)改變課程過于注重知識的傳授和過于強調(diào)接受式學習的狀況,倡導學生主動參與樂于探究、勤于動手,讓學生經(jīng)歷科學探究過程,學習科學研究方法,并強調(diào)獲得知識、技能的過程成為學會學習和形成價值觀的過程,以培養(yǎng)學生的探究精神、創(chuàng)新意識和實踐能力。
高中數(shù)學教學設(shè)計優(yōu)秀10
一、教學內(nèi)容分析:
本節(jié)教材選自人教a版數(shù)學必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學習中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學空間點、線、面位置關(guān)系的基礎(chǔ)作為學習的出發(fā)點,結(jié)合有關(guān)的實物模型,通過直觀感知、操作確認(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學習對培養(yǎng)學生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學習作用重大。
二、學生學習情況分析:
任教的學生在年段屬中上程度,學生學習興趣較高,但學習立幾所具備的語言表達及空間感與空間想象能力相對不足,學習方面有一定困難。
三、設(shè)計思想
本節(jié)課的設(shè)計遵循從具體到抽象的原則,適當運用多媒體輔助教學手段,借助實物模型,通過直觀感知,操作確認,合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機結(jié)合,讓學生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學的概念,領(lǐng)會數(shù)學的思想方法,養(yǎng)成積極主動、勇于探索、自主學習的學習方式,發(fā)展學生的空間觀念和空間想象力,提高學生的數(shù)學邏輯思維能力。
四、教學目標
通過直觀感知——觀察——操作確認的認識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準確使用數(shù)學符號語言、文字語言表述判定定理。培養(yǎng)學生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學生在觀察、探究、發(fā)現(xiàn)中學習,在自主合作、交流中學習,體驗學習的樂趣,增強自信心,樹立積極的學習態(tài)度,提高學習的自我效能感。
五、教學重點與難點
重點是判定定理的引入與理解,難點是判定定理的應(yīng)用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。
六、教學過程設(shè)計
(一)知識準備、新課引入
提問1:根據(jù)公共點的情況,空間中直線a和平面?有哪幾種位置關(guān)系?并完成下表:(多媒體幻燈片演示) a??
提問2:根據(jù)直線與平面平行的定義(沒有公共點)來判定直線與平面平行你認為方便嗎?談?wù)勀愕目捶ǎ⒅赋鍪欠裼袆e的判定途徑。
[設(shè)計意圖:通過提問,學生復習并歸納空間直線與平面位置關(guān)系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準備。]
。ǘ┡卸ǘɡ淼奶角筮^程
1、直觀感知
提問:根據(jù)同學們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?
生1:例舉日光燈與天花板,樹立的電線桿與墻面。
生2:門轉(zhuǎn)動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學生到教室門前作演示),然后教師用多媒體動畫演示。
[學情預設(shè):此處的預設(shè)與生成應(yīng)當是很自然的,但老師要預見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。]
2、動手實踐
教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉(zhuǎn)動,觀察另一邊與桌面的位置給人以平行的感覺,而當把直角腰放在桌面上并轉(zhuǎn)動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準備的.木條放在講臺桌上作上述情形的演示)。
[設(shè)計意圖:設(shè)置這樣動手實踐的情境,是為了讓學生更清楚地看到線面平行與否的關(guān)鍵因素是什么,使學生學在情境中,思在情理中,感悟在內(nèi)心中,學自己身邊的數(shù)學,領(lǐng)悟空間觀念與空間圖形性質(zhì)。]
3、探究思考
。1)上述演示的直線與平面位置關(guān)系為何有如此的不同?關(guān)鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關(guān)鍵是三個要素:①平面外一條線②我們把直線與平面相交或平行的位置關(guān)系統(tǒng)稱為直線在平面外,用符號表示為平面內(nèi)一條直線③這兩條直線平行
(2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?
4、歸納確認:(多媒體幻燈片演示)
直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個平面平行。
簡單概括:(內(nèi)外)線線平行?線面平行a符號表示:ba||? a||b??
溫馨提示:
作用:判定或證明線面平行。
關(guān)鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。
思想:空間問題轉(zhuǎn)化為平面問題
。ㄈ)定理運用,問題探究(多媒體幻燈片演示)
1、想一想:
。1)判斷下列命題的真假?說明理由:
、偃绻粭l直線不在平面內(nèi),則這條直線就與平面平行()
、谶^直線外一點可以作無數(shù)個平面與這條直線平行( )
、垡恢本上有二個點到平面的距離相等,則這條直線與平面平行( )
。2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關(guān)系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學情預設(shè):設(shè)計這組問題目的是強調(diào)定理中三個條件的重要性,同時預設(shè)(1)中的③學生可能認為正確的,這樣就無法達到老師的預設(shè)與生成的目的,這時教師要引導學生思考,讓學生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學生空間想象力強,能按老師的要求生成正確的結(jié)果則就由個別學生進行演示。]
2、作一作:
設(shè)a、b是二異面直線,則過a、b外一點p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?
先由學生討論交流,教師提問,然后教師總結(jié),并用準備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。
[設(shè)計意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認識,更重要的是培養(yǎng)學生空間感與思維的嚴謹性。]
3、證一證:
例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點,求證:ef ||平面bcd。
變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點,連結(jié)ef、fg、gh、he、ac、bd請分別找出圖中滿足線面平行位置關(guān)系的所有情況。(共6組線面平行)變式二:在變式一的圖中如作pq?ef,使p點在線段ae上、q點在線段fc上,連結(jié)ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關(guān)系?(在變式一的基礎(chǔ)上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。
[設(shè)計意圖:設(shè)計二個變式訓練,目的是通過問題探究、討論,思辨,及時鞏固定理,運用定理,培養(yǎng)學生的識圖能力與邏輯推理能力。]例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點,求證:ef ||平面bdd1b1分析:根據(jù)判定定理必須在平
面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點問題找中點解決的方法,可以取bd或b1d1中點而證之。
思路一:取bd中點g連d1g、eg,可證d1gef為平行四邊形。
思路二:取d1b1中點h連hb、hf,可證hfeb為平行四邊形。
[知識鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉(zhuǎn)化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點。平行問題找中點解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]
4、練一練:
練習1:見課本6頁練習1、2
練習2:將兩個全等的正方形abcd和abef拼在一起,設(shè)m、n分別為ac、bf中點,求證:mn ||平面bce。
變式:若將練習2中m、n改為ac、bf分點且am = fn,試問結(jié)論仍成立嗎?試證之。
[設(shè)計意圖:設(shè)計這組練習,目的是為了鞏固與深化定理的運用,特別是通過練習2及其變式的訓練,讓學生能在復雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達到逐步培養(yǎng)空間感與邏輯思維能力。]
(四)總結(jié)
先由學生口頭總結(jié),然后教師歸納總結(jié)(由多媒體幻燈片展示):
1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個平面平行。
2、定理的符號表示:ba||? a||b??簡述:(內(nèi)外)線線平行則線面平行
3、定理運用的關(guān)鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點利用平行四邊形或三角形中位線性質(zhì)等。
七、教學反思
本節(jié)“直線與平面平行的判定”是學生學習空間位置關(guān)系的判定與性質(zhì)的第一節(jié)課,也是學生開始學習立幾演澤推理論述的思維方式方法,因此本節(jié)課學習對發(fā)展學生的空間觀念和邏輯思維能力是非常重要的。
本節(jié)課的設(shè)計遵循“直觀感知——操作確認——思辯論證”的認識過程,注重引導學生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認識直線和平面平行的判定方法,讓學生通過自主探索、合作交流,進一步認識和掌握空間圖形的性質(zhì),積累數(shù)學活動的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀念與推理能力。
本節(jié)課的設(shè)計注重訓練學生準確表達數(shù)學符號語言、文字語言及圖形語言,加強各種語言的互譯。比如上課開始時的復習引入,讓學生用三種語言的表達,動手實踐、定理探求過程以及定理描述也注重三種語言的表達,對例題的講解與分析也注意指導學生三種語言的表達。
本節(jié)課對定理的探求與認識過程的設(shè)計始終貫徹直觀在先,感知在先,學自己身邊的數(shù)學,感知生活中包涵的數(shù)學現(xiàn)象與數(shù)學原理,體驗數(shù)學即生活的道理,比如讓學生舉生活中能感知線面平行的例子,學生會舉出日光燈與天花板,電線桿與墻面,轉(zhuǎn)動的門等等,同時老師的舉例也很貼進生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學生從中抽象概括出定理。
高中數(shù)學教學設(shè)計優(yōu)秀11
重點難點教學:
1、正確理解映射的概念;
2、函數(shù)相等的兩個條件;
3、求函數(shù)的定義域和值域。
教學過程:
1、使學生熟練掌握函數(shù)的概念和映射的定義;
2、使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3.使學生掌握函數(shù)的`三種表示方法。
教學內(nèi)容:
1、函數(shù)的定義
設(shè)A、B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)fx和它對應(yīng),那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:,yf A其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{|}f A?叫值域(range)。顯然,值域是集合B的子集。
注意:
、 “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
、诤瘮(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
2、構(gòu)成函數(shù)的三要素定義域、對應(yīng)關(guān)系和值域。
3、映射的定義
設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的一個映射。
4、區(qū)間及寫法:
設(shè)a、b是兩個實數(shù),且a
。1)滿足不等式axb?的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];
。2)滿足不等式axb?的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);
5、函數(shù)的三種表示方法
、俳馕龇
、诹斜矸
、蹐D像法
【高中數(shù)學教學設(shè)計優(yōu)秀】相關(guān)文章:
高中數(shù)學優(yōu)秀教學設(shè)計10-04
高中數(shù)學教學設(shè)計02-20
高中數(shù)學教學設(shè)計(精選10篇)04-26
高中數(shù)學教學設(shè)計15篇(合集)08-30
優(yōu)秀教學設(shè)計12-31
優(yōu)秀的教學設(shè)計06-16