成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

反比例函數(shù)教學(xué)設(shè)計(jì)

時(shí)間:2023-12-12 08:31:37 教學(xué)資源 投訴 投稿

(熱)反比例函數(shù)教學(xué)設(shè)計(jì)

  作為一名教職工,有必要進(jìn)行細(xì)致的教學(xué)設(shè)計(jì)準(zhǔn)備工作,教學(xué)設(shè)計(jì)以計(jì)劃和布局安排的形式,對(duì)怎樣才能達(dá)到教學(xué)目標(biāo)進(jìn)行創(chuàng)造性的決策,以解決怎樣教的問題。一份好的教學(xué)設(shè)計(jì)是什么樣子的呢?以下是小編精心整理的反比例函數(shù)教學(xué)設(shè)計(jì),歡迎大家分享。

(熱)反比例函數(shù)教學(xué)設(shè)計(jì)

反比例函數(shù)教學(xué)設(shè)計(jì)1

  教學(xué)目標(biāo)

  知識(shí)與技能:1.進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象。

  2.體會(huì)函數(shù)的三種表示方法的相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合。

  3.培養(yǎng)學(xué)生從函數(shù)圖象中獲取信息的能力,初步探索反比例函數(shù)的性質(zhì)。

  過程與方法:通過學(xué)生自己動(dòng)手列表,描點(diǎn),連線,提高學(xué)生的作圖能力;通過觀察圖象,概括反比例函數(shù)圖象的有關(guān)性質(zhì),訓(xùn)練學(xué)生的概括總結(jié)能力.

  情感、態(tài)度與價(jià)值觀:讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動(dòng)中去,增強(qiáng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心和求知欲。

  教學(xué)重點(diǎn)

  教學(xué)難點(diǎn) 1) 重點(diǎn):畫反比例函數(shù)圖象并認(rèn)識(shí)圖象的特點(diǎn).

  2)難點(diǎn):畫反比例函數(shù)圖象.

  教學(xué)關(guān)鍵 教師畫圖中要規(guī)范,為學(xué)生樹立一個(gè)可以學(xué)習(xí)的模板

  教學(xué)方法 激發(fā)誘導(dǎo),探索交流,講練結(jié)合三位一體的教學(xué)方式

  教學(xué)手段 教師畫圖,學(xué)生模仿

  教具 三角板,小黑板

  學(xué)法 學(xué)生動(dòng)手,動(dòng)眼,動(dòng)耳,采用自主,合作,探究的學(xué)習(xí)方法

  教學(xué)過程

  (包含課前檢測(cè)、新課導(dǎo)入、新課講解、課堂練習(xí)、小結(jié)、形成性檢測(cè)、反饋拓展、作業(yè)布置)

  內(nèi) 容 設(shè)計(jì)意圖

  一:課前檢測(cè):

  1.什么叫做反比例函數(shù);

  (一般地,如果兩個(gè)變量x、y之間的關(guān)系可以表示成y= (k為常數(shù),k0)的形式,那么稱y是x的反比例函數(shù)。)

  2.反比例函數(shù)的定義中需要注意什么?

  (1)k為常數(shù),k0

  (2)從y= 中可知x作為分母,所以x不能為零.

  二:激發(fā)興趣 導(dǎo)入新課

  問題1:對(duì)于一次函數(shù) y = kx + b ( k 0 )的圖象與性質(zhì),我們是如何研究的?

  y=kx+b y=kx

  K0 一、二、三 一、三

  b0 一、三、四

  K0 一、二、四 二、四

  b0 二、三、四

  問題2:對(duì)于反比例函數(shù) y=k/x ( k是常數(shù),k 0 ),我們能否象一次函數(shù)那樣進(jìn)行研究呢?

  可以

  問題3:畫圖象的步驟有哪些呢?

  (1)列表

  (2)描點(diǎn)

  (3)連線

  (教學(xué)片斷:

  師:上一節(jié)課我們研究了反比例函數(shù),今天我們繼續(xù)研究反比例函數(shù),下面哪位同學(xué)說一下自己對(duì)反比例函數(shù)的了解。

  生:我知道反比例函數(shù)來源于生活,生活中的許多問題都屬于反比例函數(shù)問題,例如,在勻速運(yùn)動(dòng)中當(dāng)路程一定時(shí),且路程不等于零,則速度與時(shí)間成反比例函數(shù)關(guān)系。

  生:我知道反比例函數(shù)的解析式為 且k不等于0

  生:我知道反比例函數(shù)的圖象是曲線。

  師:同學(xué)們說的都很好,關(guān)于反比例函數(shù),相信大家還會(huì)知道一些,今天我們先討論到這里.現(xiàn)在大家思考一個(gè)問題,我們?cè)谘芯恳淮魏瘮?shù)時(shí)研究完解析式后,研究的是函數(shù)圖象,那么對(duì)于反比例函數(shù)我們接下來該研究什么呢?

  生:該研究反比例函數(shù)圖象和性質(zhì)了。

  師:現(xiàn)在給大家?guī)追昼姷臅r(shí)間探討一下反比例函數(shù)圖象該怎么畫?

  三:探求新知

  學(xué)生思考、交流、回答。

  提問:你能畫出 的圖象嗎?

  學(xué)生動(dòng)手畫圖,相互觀摩。

  (1) 列表(取值的特殊與有效性)

  x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

  (2)描點(diǎn)(描點(diǎn)的準(zhǔn)確)

  (3)連線(注意光滑曲線)

  議一議

  (1)你認(rèn)為作反比例函數(shù)圖象時(shí)應(yīng)注意哪些問題?與同伴進(jìn)行交流。

  (2)如果在列表時(shí)所選取的數(shù)值不同,那么圖象的形狀是否相同?

  (3)連接時(shí)能否連成折線?為什么必須用光滑的曲線連接各點(diǎn)?

  (4)曲線的發(fā)展趨勢(shì)如何?

  曲線無限接近坐標(biāo)軸但不與坐標(biāo)軸相交

  學(xué)生先分四人小組進(jìn)行討論,而后小組匯報(bào)

  做一做

  作反比例函數(shù) 的圖象。

  學(xué)生動(dòng)手畫圖,相互觀摩。

  想一想

  觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?

  學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)

  相同點(diǎn):(1)圖象分別都是由兩支曲線組成(2)都不與坐標(biāo)軸相交(3)都是軸對(duì)稱圖形(y=x、y=-x)和中心對(duì)稱圖形(對(duì)稱中心(0,0)即坐標(biāo)原點(diǎn))

  不同點(diǎn):第一個(gè)圖象位于一、三象限;第二個(gè)圖象位于二、四象限

  四:歸納與概括

  反比例函數(shù) y = 有下列性質(zhì):反比例函數(shù)的圖象y = 是由兩支曲線組成的。

  (1) 當(dāng) k0 時(shí),兩支曲線分別位于第___、___象限,

  (2) 當(dāng) k0 時(shí),兩支曲線分別位于第___、___象限.

  五:課堂練習(xí)

  (1)

  (2)反比例函數(shù) 的圖象是________,過點(diǎn)( ,____),其圖象分布在_ __象限;

  六:形成性檢測(cè)

  (1)已知函數(shù) 的圖象分布在第二、四象限內(nèi),則 的取值范圍是_________

  (2)若ab0,則函數(shù) 與 在同一坐標(biāo)系內(nèi)的圖象大致可能是下圖中的 ( )

  (A) (B) (C) (D)

  (3)畫 和 的圖象

  七:反饋拓展

  在同一坐標(biāo)系中作出函數(shù)y=2/x與函數(shù)y=x-1的圖象,并利用圖象求它們的交點(diǎn)坐標(biāo).

  八:作業(yè)布置

  (1) 作反比例函數(shù)y=2/x,y=4/x,y=6/x的圖象

  (2) 習(xí)題5.2.1

  (3)預(yù)習(xí)下一節(jié) 反比例函數(shù)的圖象與性質(zhì)II

  復(fù)習(xí)上節(jié)主要內(nèi)容

  (3分鐘)

  (5分鐘)

  運(yùn)用類比研究一次函數(shù)性質(zhì)的方法,來研究反比例函數(shù)圖象與性質(zhì)

  由于初中學(xué)生屬于義務(wù)教育階段,沒有經(jīng)過入學(xué)選拔,所以兩極分化比較嚴(yán)重,上面提出的問題帶有一定的開放性,面向各層次的學(xué)生,使不同層次的.學(xué)生都有一定的問題可答,從而激發(fā)起不同層次學(xué)生的學(xué)習(xí)積極性。

  數(shù)學(xué)教學(xué)重要目的之一是使學(xué)生學(xué)會(huì)學(xué)習(xí),利用這個(gè)問題可以使學(xué)生學(xué)會(huì)尋找研究的方向,會(huì)提出研究的課題,提高學(xué)習(xí)的能力。

  數(shù)學(xué)學(xué)習(xí)活動(dòng)是學(xué)生對(duì)自己頭腦中已有知識(shí)的重新建構(gòu),所以利用學(xué)生頭腦中已有的一次函數(shù)圖象與性質(zhì),及研究一次函數(shù)圖象與性質(zhì)的方法,創(chuàng)設(shè)問題情境,可以激發(fā)學(xué)習(xí)研究的熱情,點(diǎn)燃學(xué)生思維的火花,并使學(xué)生知道如何研究新問題,使學(xué)生在探究過程中實(shí)現(xiàn)知識(shí)的遷移,形成新的認(rèn)知結(jié)構(gòu)。

  (12分鐘)

  引導(dǎo)學(xué)生正確畫出反比例函數(shù)圖象,并能歸納反比例函數(shù)圖象的有關(guān)性質(zhì).

  在畫第一個(gè)圖象時(shí),教師要在黑板上用三角板一步一步的示范,在重要地方再重點(diǎn)強(qiáng)調(diào),直到整個(gè)圖象的完成。只有以身示范,同學(xué)學(xué)習(xí)才有樣可依,有了正確標(biāo)準(zhǔn)的樣板,學(xué)生學(xué)習(xí)也變得容易。這樣可以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)與嚴(yán)密的做題步驟以及做題的規(guī)范性。

  注:(1)x取絕對(duì)值相等符號(hào)相反的數(shù)值

  (2) x取值要盡可能多,而且有代表性

  (3)連線時(shí)用光滑曲線從小到大依次連接

  (4)圖象不與坐標(biāo)軸相交

  在此學(xué)生若是回答圖象是軸對(duì)稱圖象或者中心對(duì)稱圖象都要予以肯定,這些內(nèi)容留給學(xué)生課下探討,并鼓勵(lì)提出問題的學(xué)生繼續(xù)探索不要放棄。

  (3分鐘)

  此時(shí)圖象由學(xué)生仿照第一個(gè)在下邊自己獨(dú)立畫出,并且監(jiān)督學(xué)生,在有學(xué)生畫的不對(duì)的地方及時(shí)指出,并使其改正后鼓勵(lì)。最后在黑板上畫出正確的圖象,使學(xué)生自己畫的圖象與黑板對(duì)比。

  (5分鐘)

  活動(dòng)效果及注意事項(xiàng) 學(xué)生初次作非線性函數(shù)的圖象,在作圖過程中應(yīng)給學(xué)生留有思考和交流的時(shí)間;連線必須是光滑的曲線

  (4分鐘)

  培養(yǎng)學(xué)生歸納,語言表達(dá)能力

  此中注意分類討論思想的應(yīng)用

  鞏固反比例函數(shù)圖象性質(zhì)

  (2分鐘)

  與新課較接近的簡(jiǎn)化檢測(cè)可以再次回顧所學(xué)內(nèi)容,以及內(nèi)容重點(diǎn)。這類題多為口算或口答,題目簡(jiǎn)單不過所學(xué)內(nèi)容可以全部體現(xiàn)。

  (5分鐘)

  這類練習(xí)要求動(dòng)筆計(jì)算或者畫圖,有一定難度,可以深化所學(xué)內(nèi)容。

  (4分鐘)

  此題既是對(duì)函數(shù)圖象畫法的復(fù)習(xí)又是對(duì)方程求解的深化。其中蘊(yùn)含了數(shù)形結(jié)合思想。

  (1分鐘)

  鞏固作反比例函數(shù)圖象的步驟,預(yù)習(xí)下一節(jié)課內(nèi)容

  教學(xué)反思與檢討:

  本節(jié)課通過學(xué)生自主探索,合作交流,自主畫圖,以認(rèn)知規(guī)律為主線,以發(fā)展能力為目標(biāo),以從直觀感受到分析歸納為手段,培養(yǎng)學(xué)生的合情推理能力和積極的情感態(tài)度,促進(jìn)良好的數(shù)學(xué)觀的形成。培養(yǎng)了學(xué)生的抽象思維能力,同時(shí)也向?qū)W生滲透了歸納類比,數(shù)形結(jié)合以及分類討論的數(shù)學(xué)思想方法。

  由于此節(jié)課是動(dòng)手畫圖,限于器材以及教學(xué)設(shè)備,圖象顯示不能用幾何畫板和投影儀,不過一筆一筆的教學(xué)生一個(gè)范例,既可給學(xué)生思考也可有學(xué)習(xí)的空間。

  在由圖象獲取性質(zhì)的時(shí)候有一些不足,以后教課時(shí)要注意引導(dǎo),使學(xué)生較快獲得有效信息,從而歸納出要得到的性質(zhì)和結(jié)論。在這節(jié)課要多強(qiáng)調(diào)光滑曲線以及畫法。

  反比例函數(shù)的圖象與性質(zhì)

  一:畫出 的圖象

  (1)列表(取值的特殊與有效性)

  x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

  (2)描點(diǎn)(描點(diǎn)的準(zhǔn)確)

  (3)連線(注意光滑曲線)

  注:(1)x取絕對(duì)值相等符號(hào)相反的數(shù)值

  (2)x取值要盡可能多,而且有代表性 三:練習(xí)

  (3)連線時(shí)用光滑曲線從小到大依次連接

  (4)圖象不與坐標(biāo)軸相交

  二:反比例函數(shù)的圖象y = 是由兩支曲線組成的。

  (1) 當(dāng) k0 時(shí),兩支曲線分別位于第一、三象限,

  (2) 當(dāng) k0 時(shí),兩支曲線分別位于第二、四象限.

反比例函數(shù)教學(xué)設(shè)計(jì)2

  教學(xué)目標(biāo)

  1、經(jīng)歷從實(shí)際問題抽象出反比例函數(shù)的探索過程,發(fā)展學(xué)生的抽象思維能力。

  2、理解反比例函數(shù)的概念,會(huì)列出實(shí)際問題的反比例函數(shù)關(guān)系式。

  3、使學(xué)生會(huì)畫出反比例函數(shù)的圖象。

  4、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì)。

  教學(xué)重點(diǎn)

  1、使學(xué)生了解反比例函數(shù)的表達(dá)式,會(huì)畫反比例函數(shù)圖象

  2、使學(xué)生掌握反比例函數(shù)的圖象性質(zhì)

  3、利用反比例函數(shù)解題

  教學(xué)難點(diǎn)

  1、列函數(shù)表達(dá)式

  2、反比例函數(shù)圖象解題

  教學(xué)過程

  教師活動(dòng)

  一、作業(yè)檢查與講評(píng)

  二、復(fù)習(xí)導(dǎo)入

  1、什么是正比例函數(shù)?

  我們知道當(dāng)

 。1)當(dāng)路程s一定,時(shí)間t與速度v成反比例,即vt=s(s是常數(shù))

  (2)當(dāng)矩形面積一定時(shí),長(zhǎng)a和寬b成反比例,即ab=s(s是常數(shù))

  創(chuàng)設(shè)問題情境

  問題1:小華的`爸爸早晨騎自行車帶小華到15千米外的鎮(zhèn)上去趕集,回來時(shí)讓小華乘坐公共汽車,用的時(shí)間少了。假設(shè)自行車和汽車的速度在行駛過程中都不變,爸爸要小華找出從家里到鎮(zhèn)上的時(shí)間和乘坐不同工具的速度之間的關(guān)系。

  分析和其他實(shí)際問題一樣,要探求兩個(gè)變量之間的關(guān)系,就應(yīng)先選用適當(dāng)?shù)姆?hào)表示變量,再根據(jù)題意列出相應(yīng)的函數(shù)關(guān)系式。

  設(shè)小華乘坐工具的速度是v千米/時(shí),從家里到鎮(zhèn)上的時(shí)間是t小時(shí)。因?yàn)樵趧蛩龠\(yùn)動(dòng)中,時(shí)間=路程÷速度,所以

  從這個(gè)關(guān)系式中發(fā)現(xiàn):

  1、路程一定時(shí),時(shí)間t就是速度v的反比例函數(shù)。即速度增大了,時(shí)間變;速度減小了,時(shí)間增大。

  2、自變量v的取值是v>0。

  問題2:學(xué)校課外生物小組的同學(xué)準(zhǔn)備自己動(dòng)手,用舊圍欄建一個(gè)面積為24平方米的矩形飼養(yǎng)場(chǎng)。設(shè)它的一邊長(zhǎng)為x(米),求另一邊的長(zhǎng)y(米)與x的函數(shù)關(guān)系式。

  分析根據(jù)矩形面積可知

  xy=24,即

  從這個(gè)關(guān)系中發(fā)現(xiàn):

  1、當(dāng)矩形的面積一定時(shí),矩形的一邊是另一邊的反比例函數(shù)。即矩形的一邊長(zhǎng)增大了,則另一邊減。蝗粢贿厹p小了,則另一邊增大;

  2、自變量的取值是x>0。

反比例函數(shù)教學(xué)設(shè)計(jì)3

  教學(xué)目標(biāo):

  1、理解反比例函數(shù),并能從實(shí)際問題中抽象出反比例關(guān)系的函數(shù)解析式;

  2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);

  3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;

  4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;

  5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力.

  教學(xué)重點(diǎn):

  結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);

  教學(xué)難點(diǎn):描點(diǎn)畫出反比例函數(shù)的圖象

  教學(xué)用具:直尺

  教學(xué)方法:小組合作、探究式

  教學(xué)過程:

  1、從實(shí)際引出反比例函數(shù)的概念

  我們?cè)谛W(xué)學(xué)過反比例關(guān)系.例如:當(dāng)路程S一定時(shí),時(shí)間t與速度v成反比例

  即vt=S(S是常數(shù));

  當(dāng)矩形面積S一定時(shí),長(zhǎng)a與寬b成反比例,即ab=S(S是常數(shù))

  從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:

  (S是常數(shù))

  (S是常數(shù))

  一般地,函數(shù) (k是常數(shù), )叫做反比例函數(shù).

  如上例,當(dāng)路程S是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積S是常數(shù)時(shí),長(zhǎng)a是寬b的反比例函數(shù).

  在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供

  2、列表、描點(diǎn)畫出反比例函數(shù)的圖象

  例1、畫出反比例函數(shù) 與 的圖象

  解:列表

  說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測(cè)出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對(duì)稱著取分別畫點(diǎn)描圖

  一般地反比例函數(shù) (k是常數(shù), )的圖象由兩條曲線組成,叫做雙曲線.

  3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)

  前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).

  顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)

  (1) 的圖象在第一、三象限.可以擴(kuò)展到k 0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.

  的討論與此類似.

  抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程.

  (2)函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小;

  從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.

  同樣可以推出 的圖象的性質(zhì).

  (3)函數(shù) 的`圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出, .如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出 圖象的性質(zhì).

  函數(shù) 的圖象性質(zhì)的討論與次類似.

  4、小結(jié):

  本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.

  5、布置作業(yè) 習(xí)題13.8 1-4

反比例函數(shù)教學(xué)設(shè)計(jì)4

  一、知識(shí)與技能

  1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.

  2.能綜合利用幾何、方程、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.

  二、過程與方法

  1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.

  2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.

  三、情感態(tài)度與價(jià)值觀

  1.積極參與交流,并積極發(fā)表意見.

  2.體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.

  教學(xué)重點(diǎn):掌握從實(shí)際問題中建構(gòu)反比例函數(shù)模型.

  教學(xué)難點(diǎn):從實(shí)際問題中尋找變量之間的關(guān)系.關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析實(shí)際情況,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.

  教具準(zhǔn)備

  1.教師準(zhǔn)備:課件(課本有關(guān)市煤氣公司在地下修建煤氣儲(chǔ)存室等).

  2.學(xué)生準(zhǔn)備:(1)復(fù)習(xí)已學(xué)過的反比例函數(shù)的圖象和性質(zhì),(2)預(yù)習(xí)本節(jié)課的內(nèi)容,嘗試收集有關(guān)本節(jié)課的情境資料.

  教學(xué)過程

  一、創(chuàng)設(shè)問題情境,引入新課

  復(fù)習(xí):反比例函數(shù)圖象有哪些性質(zhì)?

  反比例函數(shù) y?k

  x 是由兩支曲線組成,

  當(dāng)K0時(shí),兩支曲線分別位于第一、三象限內(nèi),在每一象限內(nèi),y隨x的增大而減少;

  當(dāng)K0時(shí),兩支曲線分別位于第二、四象限內(nèi),在每一象限內(nèi),y隨x的增大而增大.

  二、講授新課

  [例1]市煤氣公司要在地下修建一個(gè)容積為104m3的圓柱形煤氣儲(chǔ)存室.

  (1)儲(chǔ)存室的底面積S(單位:m2)與其深度d(單位:m)有怎樣的函數(shù)關(guān)系?

  (2)公司決定把儲(chǔ)存室的底面積S定為500m2,施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)多深?

  (3)當(dāng)施工隊(duì)按(2)中的計(jì)劃挖進(jìn)到地下15m時(shí),碰上了堅(jiān)硬的巖石,為了節(jié)約建設(shè)資金,公司臨時(shí)改變計(jì)劃把儲(chǔ)存室的深改為15m,相應(yīng)的,儲(chǔ)存室的底面積應(yīng)改為多少才能滿足需要(保留兩位小數(shù))。

  設(shè)計(jì)意圖:讓學(xué)生體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,讓學(xué)生充分認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具,此活動(dòng)讓學(xué)生從實(shí)際問題中尋找變量之間的關(guān)系.而關(guān)鍵是充分運(yùn)用反比例函數(shù)分析實(shí)際情況,建立函數(shù)模型,并且利用函數(shù)的性質(zhì)解決實(shí)際問題.

  師生行為:

  先由學(xué)生獨(dú)立思考,然后小組內(nèi)合作交流,教師和學(xué)生最后合作完成此活動(dòng).

  在此活動(dòng)中,教師有重點(diǎn)關(guān)注:

 、倌芊駨膶(shí)際問題中抽象出函數(shù)模型;

 、谀芊窭煤瘮(shù)模型解釋實(shí)際問題中的現(xiàn)象;

 、勰芊穹e極主動(dòng)的闡述自己的見解.

  生:我們知道圓柱的容積是底面積×深度,而現(xiàn)在容積一定為104m3,所以S·d=104.變形就可得到底面積S與其深度d的函數(shù)關(guān)系,即S=

  所以儲(chǔ)存室的底面積S是其深度d的反比例函數(shù).

  104 生:根據(jù)函數(shù)S= ,我們知道給出一個(gè)d的值就有唯一的S的值和它相d

  對(duì)應(yīng),反過來,知道S的一個(gè)值,也可求出d的值.

  題中告訴我們“公司決定把儲(chǔ)存室的底面積5定為500m2,即S=500m2,”施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)多深,實(shí)際就是求當(dāng)S=500m2時(shí),d=?m.根據(jù)S=104104 ,得500=,解得d=20. dd

  即施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)20米.

  生:當(dāng)施工隊(duì)按(2)中的計(jì)劃挖進(jìn)到地下15m時(shí),碰上了堅(jiān)硬的巖石.為了節(jié)約建設(shè)資金,公司臨時(shí)改變計(jì)劃,把儲(chǔ)存室的深度改為15m,即d=15m,相應(yīng)的儲(chǔ)存室的底面積應(yīng)改為多少才能滿足需要;即當(dāng)d=15m,S=?m2呢?

  104 根據(jù)S=,把d=15代入此式子,得 d

  S=104 ≈666.67. 15104. d

  當(dāng)儲(chǔ)存室的探為15m時(shí),儲(chǔ)存室的底面積應(yīng)改為666.67m2才能滿足需要. 師:大家完成的很好.當(dāng)我們把這個(gè)“煤氣公司修建地下煤氣儲(chǔ)存室”的問題轉(zhuǎn)化成反比例函數(shù)的數(shù)學(xué)模型時(shí),后面的問題就變成了已知函數(shù)值求相應(yīng)自變量的值或已知自變量的值求相應(yīng)的函數(shù)值,借助于方程,問題變得迎刃而解,

  三、鞏固練習(xí)

  1、(基礎(chǔ)題)已知某矩形的面積為20cm2:

  (1)寫出其長(zhǎng)y與寬x之間的函數(shù)表達(dá)式,并寫出x的取值范圍;

  (2)當(dāng)矩形的長(zhǎng)為12cm時(shí),求寬為多少?當(dāng)矩形的寬為4cm,

  求其長(zhǎng)為多少?

  (3)如果要求矩形的長(zhǎng)不小于8cm,其寬至多要多少?

  2、(中檔題)如圖,某玻璃器皿制造公司要制造一種窖積為1升(1升=1立方分米)的圓錐形漏斗.

  (1)漏斗口的面積S與漏斗的深d有怎樣的函數(shù)關(guān)系?

  (2)如果漏斗口的面積為100厘米2,則漏斗的深為多少?

  設(shè)計(jì)意圖:

  讓學(xué)生進(jìn)一步體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的'重要手段,讓學(xué)生充分認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具,更進(jìn)一步激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的欲望.

  師生行為:

  由兩位學(xué)生板演,其余學(xué)生在練習(xí)本上完成,教師可巡視學(xué)生完成情況,對(duì)“學(xué)困生”要提供一定的幫助,此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:①學(xué)生能否順利建立實(shí)際問題的數(shù)學(xué)模型;②學(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),體驗(yàn)用數(shù)學(xué)模型解決實(shí)際問題的樂趣;③學(xué)生能否注意到單位問題.

  生:解:(1)根據(jù)圓錐體的體積公式,我們可以設(shè)漏斗口的面積為Scm,,漏斗的深為dcm,則容積為1升=l立方分米=1000立方厘米.

  13000 所以,S·d=1000, S= . 3d

  (2)根據(jù)題意把S=100cm2代入S=30003000中,得 100= .d=30(cm). dd

  所以如果漏斗口的面積為100c㎡,則漏斗的深為30cm.

  3、(綜合題)新建成的住宅樓主體工程已經(jīng)竣工,只剩下樓體外表面需要貼瓷磚,已知樓體外表面的面積為5X103m2.

  (1)所需的瓷磚塊數(shù)n與每塊瓷磚的面積s又怎樣的函數(shù)關(guān)系?

  (2)為了使住宅樓的外觀更加漂亮,開發(fā)商決定采用灰、白和藍(lán)三種顏色的瓷磚,每塊磚的面積都是80cm2,灰、白、藍(lán)瓷磚使用比例為2:2:1,則需要三種瓷磚各多少塊?

  四、小結(jié)

  1、通過本節(jié)課的學(xué)習(xí),你有哪些收獲?

  列實(shí)際問題的反比例函數(shù)解析式(1)列實(shí)際問題中的函數(shù)關(guān)系式首先應(yīng)分析清楚各變量之間應(yīng)滿足的分式,即實(shí)際問題中的變量之間的關(guān)系立反比例函數(shù)模型解決實(shí)際問題;(2)在實(shí)際問題中的函數(shù)關(guān)系式時(shí),一定要在關(guān)系式后面注明自變量的取值范圍。

  2、利用反比例函數(shù)解決實(shí)際問題的關(guān)鍵:建立反比例函數(shù)模型.

  五、布置作業(yè)

  P54—55.第2題、第5題

  六、課時(shí)小結(jié)

  本節(jié)課是用函數(shù)的觀點(diǎn)處理實(shí)際問題,并且是蘊(yùn)含著體積、面積這樣的實(shí)際問題,而解決這些問題,關(guān)鍵在于分析實(shí)際情境,建立函數(shù)模型,并進(jìn)一步明確數(shù)學(xué)問題,將實(shí)際問題置于已有的知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以是什么?逐步形成考察實(shí)際問題的能力,在解決問題時(shí),應(yīng)充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想.

反比例函數(shù)教學(xué)設(shè)計(jì)5

  第一課時(shí)

  教學(xué)設(shè)計(jì)思想

  本節(jié)課是在學(xué)習(xí)了反比例函數(shù)的概念,反比例函數(shù)的圖像和性質(zhì)等相關(guān)知識(shí)的基礎(chǔ)上引入的。首先創(chuàng)設(shè)問題情境,展示反比例函數(shù)在實(shí)際生活中的應(yīng)用情況,激發(fā)學(xué)生的求知欲和濃厚的學(xué)習(xí)興趣。接下來主要討論了反比例函數(shù)在體積、面積這樣的實(shí)際問題中的應(yīng)用。分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題。

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題。

  2.能綜合利用幾何、方程、反比例函數(shù)的知識(shí)解決一些實(shí)際問題。

  過程與方法

  1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題。

  2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力。

  情感態(tài)度與價(jià)值觀

  體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具。

  教學(xué)重難點(diǎn)

  重點(diǎn):掌握從實(shí)際問題中建構(gòu)反比例函數(shù)模型。

  難點(diǎn):從實(shí)際問題中尋找變量之間的關(guān)系。關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析實(shí)際情況,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的.思想。

  教學(xué)方法

  啟發(fā)引導(dǎo)、合作探究

  教學(xué)媒體

  課件

  教學(xué)過程設(shè)計(jì)

  (一)創(chuàng)設(shè)問題情境,引入新課

  [師]有關(guān)反比例函數(shù)的表達(dá)式,圖像的特征我們都研究過了,那么,我們學(xué)習(xí)它們的目的是什么呢?

  [生]是為了應(yīng)用。

  [師]很好。學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問題。究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)。

  問題:某?萍夹〗M進(jìn)行野外考察,途中遇到一片十幾米寬的爛泥濕地,為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù)的情境。

反比例函數(shù)教學(xué)設(shè)計(jì)6

  教學(xué)目標(biāo)

  1、知識(shí)與技能

  理解反比例函數(shù)的意義;根據(jù)已知條件確定反比例函數(shù)的解析式。

  2、過程與方法

  學(xué)生經(jīng)歷從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會(huì)反比例函數(shù)來源于實(shí)際問題;發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識(shí)。

  3、情感態(tài)度與價(jià)值觀

  經(jīng)歷反比例函數(shù)的形成過程,體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;在學(xué)習(xí)過程中進(jìn)行分組討論,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,體驗(yàn)學(xué)習(xí)的快樂與成就感。

  教學(xué)重點(diǎn)

  理解反比例函數(shù)的意義;根據(jù)已知條件確定反比例函數(shù)的解析式。

  教學(xué)難點(diǎn)

  反比例函數(shù)解析式的確定。

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  問題1:(課件展示)

  體育課上測(cè)試了百米賽跑成績(jī),那么時(shí)間t與平均速度v的關(guān)系是怎樣的?你能用含有t的代數(shù)式表示v嗎?

  問題2:(課件展示)

  我們知道,矩形的面積s與長(zhǎng)a寬b之間的關(guān)系為S=ab,那么,當(dāng)S=245時(shí),長(zhǎng)a寬b可用怎樣的函數(shù)關(guān)系式表示?

  問題3:(課件展示)

  下列問題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?

 。1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運(yùn)行時(shí)間t(單位:h)的變化而變化。

 。2)某住宅小區(qū)要種植一個(gè)面積為1000㎡的.矩形草坪,草坪的長(zhǎng)y(單位m)隨寬x(單位m)的變化而變化。

 。3)已知某市的總面積為1.68×10平方千米,人均占有的土地面積s(單位:平方千米/人)會(huì)隨全市人口n(單位:人)的變化而變化。

  二、觀察思考,明晰概念

  1、這些關(guān)系式都體現(xiàn)了函數(shù)關(guān)系,它們是我們?cè)鴮W(xué)習(xí)過的正比例函數(shù)或一次函數(shù)嗎?

  2、這些函數(shù)關(guān)系式與正比例函數(shù)、一次函數(shù)有何不同?

  3、這些函數(shù)關(guān)系式有什么共同的特征?

  4、各關(guān)系式中兩變量之間有什么關(guān)系?

  5、你能歸納出反比例函數(shù)的概念嗎?

  通過回答以上問題,師生共同總結(jié)反比例函數(shù)的概念。

  三、小組討論,領(lǐng)悟概念

  1、反比例函數(shù)關(guān)系式中有幾個(gè)變量?

  2、變量之間存在什么關(guān)系?

  3、反比例函數(shù)還有其他形式嗎?若有請(qǐng)指出。

  4、反比例函數(shù)中,變量x、y和常數(shù)k有什么具體要求?為什么?

  四、內(nèi)化新知,拓展應(yīng)用

  1、下列函數(shù)中哪些是反比例函數(shù)?請(qǐng)指出反比例函數(shù)中的k值。

  2、已知y是x的反比例函數(shù),且當(dāng)x=2時(shí),y=6。

 。1)寫出y與x的函數(shù)關(guān)系式。

 。2)求當(dāng)x=4時(shí),y的值。

  3、當(dāng)x為何值時(shí)函數(shù)y=x—2a—4是反比例函數(shù)?

  4、已知函數(shù)y= y1+y2,與x成正比例,y2與x成反比例,且當(dāng)x=1時(shí),y=4;當(dāng)x=2時(shí),y=5。

 。1)求y與x的函數(shù)關(guān)系式。

 。2)當(dāng)x=—2時(shí),求函數(shù)y的值。

  五、課堂練習(xí)

  師生共同完成教課書第40頁的練習(xí)題。

  六、課堂小結(jié)

  1、通過本節(jié)課的學(xué)習(xí)你對(duì)反比例函數(shù)有怎樣的認(rèn)識(shí)?

  2、反比例函數(shù)與正比例函數(shù)的區(qū)別有哪些?

  七、作業(yè)布置

  教材中本節(jié)習(xí)題17.1第1、2、4題。

反比例函數(shù)教學(xué)設(shè)計(jì)7

  教學(xué)重點(diǎn):

  理解和領(lǐng)會(huì)反比例函數(shù)的概念。

  教學(xué)難點(diǎn):

  領(lǐng)悟反比例的概念。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  活動(dòng)1

  問題:下列問題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?

 。1)京滬線鐵路全程為1463km,乘坐某次列車所用時(shí)間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

 。2)某住宅小區(qū)要種植一個(gè)面積為1000m2的矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;

 。3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化。

  師生行為:

  先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問答或交流。學(xué)生用自己的語言說明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式。

  教師組織學(xué)生討論,提問學(xué)生,師生互動(dòng)。

  在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:

  ①能否積極主動(dòng)地合作交流。

 、谀芊裼谜Z言說明兩個(gè)變量間的關(guān)系。

 、勰芊窳私馑懻摰暮瘮(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象。

  分析及解答:(1);(2);(3)

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關(guān)系式,都具有的形式,其中k是常數(shù)。

  二、聯(lián)系生活,豐富聯(lián)想

  活動(dòng)2

  下列問題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?

 。1)一個(gè)游泳池的容積為20xxm3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;

  (2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;

 。3)一個(gè)物體重100牛頓,物體對(duì)地面的壓力p隨物體與地面的接觸面積S的變化而變化。

  師生行為

  學(xué)生先獨(dú)立思考,在進(jìn)行全班交流。

  教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:

 。1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的.函數(shù)關(guān)系;

 。2)能否積極主動(dòng)地參與小組活動(dòng);

 。3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念。

  分析及解答:(1);(2);(3)

  概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零。

  活動(dòng)3

  做一做:

  一個(gè)矩形的面積為20cm2,相鄰的兩條邊長(zhǎng)為xcm和ycm。那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流。教師提出問題,關(guān)注學(xué)生思考。此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

  ①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;

 、趯W(xué)生能否順利抽象反比例函數(shù)的模型;

 、蹖W(xué)生能否積極主動(dòng)地合作、交流;

  活動(dòng)4

  問題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6

 。1)寫出y與x的函數(shù)關(guān)系式:

 。2)求當(dāng)x=4時(shí),y的值。

  師生行為:

  學(xué)生獨(dú)立思考,然后小組合作交流。教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo)。在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

  ①學(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;

 、趯W(xué)生能否積極主動(dòng)地參與小組活動(dòng)。

  分析及解答:

  1、只有xy=123是反比例函數(shù)。

  2、分析:因?yàn)閥是x的反比例函數(shù),所以,再把x=2和y=6代入上式就可求出常數(shù)k的值。

  解:(1)設(shè),因?yàn)閤=2時(shí),y=6,所以有解得k=12

  三、鞏固提高

  活動(dòng)5

  1、已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y=8。

 。1)寫出y與x之間的函數(shù)關(guān)系式。

 。2)求y=2時(shí)x的值。

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

 。1)寫出這個(gè)反比例函數(shù)的表達(dá)式;

 。2)根據(jù)函數(shù)表達(dá)式完成上表。

  學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”。

  四、課時(shí)小結(jié)

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解。在概念的形成過程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象。反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象。

反比例函數(shù)教學(xué)設(shè)計(jì)8

  一、教材分析

  反比例函數(shù)是初中階段所要學(xué)習(xí)的三種函數(shù)中的一種,是一類比較簡(jiǎn)單但很重要的函數(shù),現(xiàn)實(shí)生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學(xué)是基礎(chǔ)。

  二、學(xué)情分析

  由于之前學(xué)習(xí)過函數(shù),學(xué)生對(duì)函數(shù)概念已經(jīng)有了一定的認(rèn)識(shí)能力,另外在前一章我們學(xué)習(xí)過分式的知識(shí),因此為本節(jié)課的教學(xué)奠定的一定的基礎(chǔ)。

  三、教學(xué)目標(biāo)

  知識(shí)目標(biāo):理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達(dá)式.

  解決問題:能從實(shí)際問題中抽象出反比例函數(shù)并確定其表達(dá)式. 情感態(tài)度:讓學(xué)生經(jīng)歷從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會(huì)反比例函數(shù)來源于實(shí)際.

  四、教學(xué)重難點(diǎn)

  重點(diǎn):理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.

  難點(diǎn):反比例函數(shù)表達(dá)式的確立.

  五、教學(xué)過程

  (1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運(yùn)行時(shí)間t(單位:h)的變化而變化;

 。2)某住宅小區(qū)要種植一個(gè)面積1000m2的矩形草坪,草坪的長(zhǎng)y(單

  位:m)隨寬x(單位:m)的變化而變化。

  請(qǐng)同學(xué)們寫出上述函數(shù)的表達(dá)式

  14631000(2)y= tx

  k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=

  是自變量,y是函數(shù)。

  此過程的目的在于讓學(xué)生從實(shí)際問題中抽象出反比例函數(shù)模型的過程,體會(huì)反比例函數(shù)來源于實(shí)際. 由于是分式,當(dāng)x=0時(shí),分式無意義,所以x≠0。

  當(dāng)y= 中k=0時(shí),y=0,函數(shù)y是一個(gè)常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時(shí)y就不是反比例函數(shù)了。

  舉例:下列屬于反比例函數(shù)的是

 。1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此過程的目的是通過分析與練習(xí)讓學(xué)生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設(shè)其解析式(函數(shù)關(guān)系式)

  已知y與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=

  k x?1

  k已知y+1與x成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y=

  已知y+1與x-1成反比例,則可設(shè)y與x的函數(shù)關(guān)系式為y+1= k x?1此過程的目的.是為了讓學(xué)生更深刻的了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。

  例:已知y與x2反比例,并且當(dāng)x=3時(shí)y=4

 。1)求出y和x之間的函數(shù)解析式

 。2)求當(dāng)x=1.5時(shí)y的值

  解析:因?yàn)閥與x2反比例,所以設(shè)y?k,只要將k求出即可得到y(tǒng)x2

  和x之間的函數(shù)解析式。之后引導(dǎo)學(xué)生書寫過程。能從實(shí)際問題中抽象出反比例函數(shù)并確定其表達(dá)式最后學(xué)生練習(xí)并布置作業(yè)

  通過此環(huán)節(jié),加深對(duì)本節(jié)課所內(nèi)容的認(rèn)識(shí),以達(dá)到鞏固的目的。

  六、評(píng)價(jià)與反思

  本節(jié)課是在學(xué)生現(xiàn)有的認(rèn)識(shí)基礎(chǔ)上進(jìn)行講解,便于學(xué)生理解反比例函數(shù)的概念。而本節(jié)課的重點(diǎn)在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達(dá)式.應(yīng)該對(duì)這一方面的內(nèi)容多練習(xí)鞏固。

反比例函數(shù)教學(xué)設(shè)計(jì)9

  教學(xué)目標(biāo):

  1、知識(shí)與能力目標(biāo):

  (1)復(fù)習(xí)反比例函數(shù)概念、圖象與性質(zhì)的知識(shí)點(diǎn),通過相應(yīng)知識(shí)點(diǎn)的配套練習(xí)加深學(xué)生對(duì)反比例函數(shù)本章知識(shí)的理解與掌握。

 。2)能夠根據(jù)問題中的條件確定反比例函數(shù)的解析式,會(huì)畫出它的圖象,并根據(jù)問題確定自變量的取值范圍及增減性。

  2、過程與方法目標(biāo):通過對(duì)相關(guān)問題的變式探究,正確運(yùn)用反比例函數(shù)知識(shí),進(jìn)一步體驗(yàn)形成解決問題的一些基本策略,發(fā)展實(shí)踐能力和創(chuàng)新精神。

  3、情感態(tài)度與價(jià)值觀目標(biāo):創(chuàng)設(shè)教學(xué)情景,鼓勵(lì)學(xué)生主動(dòng)參與反比例函數(shù)復(fù)習(xí)活動(dòng),激發(fā)學(xué)習(xí)興趣,獲得問題解決后的樂趣,繼續(xù)滲透數(shù)形結(jié)合等數(shù)學(xué)思想方法。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):進(jìn)一步掌握反比例函數(shù)的概念、圖像、性質(zhì)并正確運(yùn)用。

  難點(diǎn):反比例函數(shù)性質(zhì)的靈活運(yùn)用。數(shù)形結(jié)合思想的應(yīng)用。

  教學(xué)方法:

  探究——討論——交流——總結(jié)

  教學(xué)媒體:

  多媒體課件。

  教學(xué)過程:

  一、知識(shí)梳理:

  同學(xué)們,今天我們就來復(fù)習(xí)反比例函數(shù),通過今天的復(fù)習(xí)課,希望大家加深對(duì)反比例函數(shù)知識(shí)的理解和運(yùn)用首先請(qǐng)同學(xué)們回憶一下,對(duì)反比例函數(shù)你了解那知識(shí)?

  課件展示:

  1、反比例函數(shù)的意義

  2、反比例函數(shù)的圖象與性質(zhì)

  3、利用反比例函數(shù)解決實(shí)際問題

  二、合作交流、解讀探究

 。ㄒ唬┡c反比例函數(shù)的意義有關(guān)的問題

  課件展示:

  憶一憶:什么是反比例函數(shù)?

  要求學(xué)生說出反比例函數(shù)的意義及其等價(jià)形式

  鞏固練習(xí):課件展示:

  1、下列函數(shù)中,哪些是反比例函數(shù)?

  (1)y= 5/x(2)y=x/4+2 (3)y= -5/3x(4)y=-7 x的-1次方(5)y=1/x+4

  2、寫出下列問題中的函數(shù)關(guān)系式,并指出它們是什么函數(shù)?

 、女(dāng)路程s一定時(shí),時(shí)間t與平均速度v之間的關(guān)系。

 、瀑|(zhì)量為m(kg)的氣體,其體積v(m3)與密度ρ(kg/m3)之間的關(guān)系。

  3、若y=為反比例函數(shù),則m=______

  4、若y=(m-1)為反比例函數(shù),則m=______ 。

 。ǘ┻\(yùn)用反比例函數(shù)的圖象與性質(zhì)解決問題

  1、反比例函數(shù)的'圖象是

  2、圖象性質(zhì)見下表(課件展示):

  3、做一做(課件展示)

 。1)函數(shù)y=的圖象在第______象限,當(dāng)x<0時(shí),y隨x的增大而______ 。

 。2)雙曲線y=經(jīng)過點(diǎn)(-3,______)。

  (3)函數(shù)y=的圖象在二、四象限內(nèi),m的取值范圍是______ 。

 。4)若雙曲線經(jīng)過點(diǎn)(-3,2),則其解析式是______.

 。5)已知點(diǎn)A(-2,y1),B(-1,y2) C(4,y3)都在反比例函數(shù)y=的圖象上,則y1、y2與y3的大小關(guān)系(從大到。開___________ 。

 。ㄈ)綜合運(yùn)用(課件展示)

  一次函數(shù)的圖像y=ax+b與反比例函數(shù)y=交與M(2,m)、N(-1,-4)兩點(diǎn)。(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)根據(jù)圖像寫出反比例函數(shù)的值大于一次函數(shù)的值的X的取值范圍

  三、隨堂練習(xí)

  見課件

  四、小結(jié)

  1、反比例函數(shù)的意義

  2、反比例函數(shù)的圖象與性質(zhì)

  五、作業(yè):

  配套練習(xí)22頁21、22題

反比例函數(shù)教學(xué)設(shè)計(jì)10

  [教學(xué)目標(biāo)]

  1.回顧反比例函數(shù)的概念.通過實(shí)際問題,進(jìn)一步感受用反比例函數(shù)解決實(shí)際問題的過程與方法,體會(huì)反比例函數(shù)是分析、解決實(shí)際問題的一種有效的模型.

  2.歸納總結(jié)反比例函數(shù)的圖象和性質(zhì),進(jìn)一步體會(huì)形數(shù)結(jié)合的數(shù)學(xué)思想方法.

  [教學(xué)過程]

  1.回顧、梳理本章的知識(shí):

  如同已經(jīng)學(xué)過的有關(guān)方程、函數(shù)的內(nèi)容一樣,本章內(nèi)容分為3塊:

  (1)從生活到數(shù)學(xué):從問題到反比例函數(shù),即建構(gòu)實(shí)際問題的數(shù)學(xué)模型;

 。2)數(shù)學(xué)研究:反比例函數(shù)的圖象與性質(zhì);

 。3)用數(shù)學(xué)解決問題:反比例函數(shù)的應(yīng)用.

  2.可以設(shè)計(jì)一組問題,重點(diǎn)歸納、整理反比例函數(shù)的圖象與性質(zhì),進(jìn)一步感受形數(shù)結(jié)合的數(shù)學(xué)思想方法.例如:

 。1)由形到數(shù)——用待定系數(shù)法求反比例函數(shù)的關(guān)系式;由圖象的位置或圖象的部分確定函數(shù)的特征;

 。2)由數(shù)到形――根據(jù)反比例函數(shù)關(guān)系式或反比例函數(shù)的性質(zhì),確定圖形的.位置、趨勢(shì)等;

 。3)形數(shù)結(jié)合——函數(shù)的圖象與性質(zhì)的綜合應(yīng)用

  2例如:如圖,點(diǎn)P是反比例函數(shù)y?上的一點(diǎn),PD垂直x軸于點(diǎn)D,則△x

  POD的面積為________

  3. 設(shè)計(jì)一個(gè)實(shí)際問題,讓學(xué)生經(jīng)歷“問題情境一建立模型一求解一解釋與應(yīng)用”的基本過程.

  例如:為了預(yù)防“非典”,某學(xué)校對(duì)教室采用藥薰法進(jìn)行消毒.已知藥物燃燒時(shí).室內(nèi)每立方米空氣中的含藥量y(mg)與時(shí)間x(min)成正比例,藥物燃燒后,y與x成反比例(如圖).現(xiàn)測(cè)得藥物8min燃畢,此時(shí)室內(nèi)空氣中每立方米含藥量為6mg。

 。1)寫出藥物燃燒前、后y與x的函數(shù)關(guān)系式;

 。2)研究表明,當(dāng)空氣中每立方米的含藥量低于1。6mg時(shí),學(xué)生方可進(jìn)教室.那么從消毒開始,至少需要多少時(shí)間,學(xué)生方能進(jìn)入教室?

 。3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3mg且持續(xù)時(shí)間不少于10min時(shí),才能有效滅殺空氣中的病菌,那么這次消毒是否有效?

【反比例函數(shù)教學(xué)設(shè)計(jì)】相關(guān)文章:

反比例函數(shù)教學(xué)設(shè)計(jì)03-07

反比例函數(shù)教學(xué)設(shè)計(jì)11篇05-22

反比例函數(shù)的教學(xué)反思12-01

反比例函數(shù)教案01-15

反比例函數(shù)教案【精選】08-23

函數(shù)教學(xué)設(shè)計(jì)07-28

反比例函數(shù)的意義教案01-23

《反比例》教學(xué)設(shè)計(jì)05-11

《冪函數(shù)》教學(xué)設(shè)計(jì)11-22