成大在线免费视频,亚洲精品免费一级视频,日韩亚洲欧美大陆,又黄又爽免费国产视频

<style id="t465f"></style>
<legend id="t465f"><u id="t465f"><thead id="t465f"></thead></u></legend>

<acronym id="t465f"></acronym>

<sub id="t465f"><ol id="t465f"><nobr id="t465f"></nobr></ol></sub>
<sub id="t465f"></sub>

初中數(shù)學知識點總結

時間:2024-01-15 14:21:35 總結 投訴 投稿

初中數(shù)學知識點總結

  總結是對取得的成績、存在的問題及得到的經驗和教訓等方面情況進行評價與描述的一種書面材料,它可以促使我們思考,因此我們需要回頭歸納,寫一份總結了。那么總結應該包括什么內容呢?以下是小編為大家收集的初中數(shù)學知識點總結,歡迎閱讀與收藏。

初中數(shù)學知識點總結

初中數(shù)學知識點總結1

  一、基本知識

 、濉(shù)與代數(shù)A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):

 、僬麛(shù)→正整數(shù)/0/負整數(shù)

  ②分數(shù)→正分數(shù)/負分數(shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方

  向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。

  ④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的

  絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

 、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。

 、谌魏螖(shù)與0相乘得0。

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

  ②0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結果叫冪,A叫底數(shù),N叫次數(shù);旌享樞颍合人愠朔,再算乘除,最后算加減,有括號要先算括號里的。2、實數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

  ①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。

 、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。

 、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴。

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算:AM+AN=A(M+N)

 。ˋM)N=AMN

  (A/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作

  為積的因式。

  ②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則

  連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組

  一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程1)一元二次方程的二次函數(shù)的關系

  大家已經學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解(2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的

  形式去解(3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數(shù)根;II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△B,A+C>B+C在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C系內描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

 、墚擪〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

 、婵臻g與圖形A、圖形的認識1、點,線,面

  點,線,面:①圖形是由點,線,面構成的。

 、诿媾c面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相

  等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形; ⑸刃危孩儆梢粭l弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

  ②圓可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。

 、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。

 、趦牲c之間線段的長度,叫做這兩點之間的`距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

  ②一度的1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。

 、谝粭l射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。

 、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內,不相交的兩條直線叫做平行線。

 、诮涍^直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

  ③平面內,過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出

  現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形

  性質:正方形具有平行四邊形、菱形、矩形的一切性質判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線2、兩點之間線段最短

  3、同角或等角的補角相等4、同角或等角的余角相等

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理經過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內錯角相等,兩直線平行11、同旁內角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內錯角相等14、兩直線平行,同旁內角互補

  15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊

  17、三角形內角和定理三角形三個內角的和等于180°18、推論1直角三角形的兩個銳角互余

  19、推論2三角形的一個外角等于和它不相鄰的兩個內角的和20、推論3三角形的一個外角大于任何一個和它不相鄰的內角21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27、定理1在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個角都等于60°

  34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1三個角都相等的三角形是等邊三角形

  36、推論2有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半

  5

  39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1關于某條直線對稱的兩個圖形是全等形

  43、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形48、定理四邊形的內角和等于360°49、四邊形的外角和等于360°

  50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°

  52、平行四邊形性質定理1平行四邊形的對角相等53、平行四邊形性質定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等

  55、平行四邊形性質定理3平行四邊形的對角線互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質定理1矩形的四個角都是直角61、矩形性質定理2矩形的對角線相等

  62、矩形判定定理1有三個角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質定理1菱形的四條邊都相等

  65、菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69、正方形性質定理1正方形的四個角都是直角,四條邊都相等

  70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71、定理1關于中心對稱的兩個圖形是全等的

  72、定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

  73、逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱74、等腰梯形性質定理等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質:如果a/b=c/d==m/n(b+d++n≠0),

  那么(a+c++m)/(b+d++n)=a/b

  86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應成比例,兩三角形相似(SSS)95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

  96、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比97、性質定理2相似三角形周長的比等于相似比

  98、性質定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點的距離等于定長的點的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點的集合103、圓的外部可以看作是圓心的距離大于半徑的點的集合104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點確定一個圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120、定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  122、切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質定理圓的切線垂直于經過切點的半徑

  124、推論1經過圓心且垂直于切線的直線必經過切點125、推論2經過切點且垂直于切線的直線必經過圓心

  126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理弦切角等于它所夾的弧對的圓周角

  129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130、相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)

 、軆蓤A內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):

 、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形

 、平涍^各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓139、正n邊形的每個內角都等于(n-2)×180°/n

  140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線長=d-(R-r)外公切線長=d-(R+r)

  一、常用數(shù)學公式

  公式分類公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

  |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根

  b2-4ac歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數(shù)量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法

  在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱。10、客觀性題的解題方法

  選擇題是給出條件和結論,要求根據一定的關系找出正確答案的一類題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

 。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

 。2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

 。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。

  (4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據數(shù)學知識或推理、演算,把不正確的結論排除,余下的結論再經篩選,從而作出正確的結論的解法叫排除、篩選法。

  (5)圖解法:借助于符合題設條件的圖形或圖象的性質、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

  (6)分析法:直接通過對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。

初中數(shù)學知識點總結2

  中考沖刺數(shù)學知識點的幾個復習建議:

  1)所有的知識點自己先復習一遍,標記好那些掌握不扎實的知識,第二輪復習的重點!

  2)對于標記不扎實的知識,如果實在不理解,回到課本中查收相應的內容,特別是結合例題理解

  3)平常學校一定有很多練習,把做錯的題目和難題當成寶貝,因為我們要想進步就這是捷徑——理解消化錯題,所有保持積極的心態(tài)去面對那些錯題難題吧。

  4)對于學過思維導圖的同學,建議將這些知識點按章節(jié)梳理成知識體系,平常復習太好用了。

  以下是詳細的知識點:

  一、一元一次方程根的情況

  △=b2-4ac

  當△>0時,一元二次方程有2個不相等的實數(shù)根;

  當△=0時,一元二次方程有2個相同的實數(shù)根;

  當△<0時,一元二次方程沒有實數(shù)根

  2、平行四邊形的性質:

 、賰山M對邊分別平行的四邊形叫做平行四邊形。

 、谄叫兴倪呅尾幌噜彽膬蓚頂點連成的線段叫他的對角線。

 、燮叫兴倪呅蔚膶/對角相等。

  ④平行四邊形的對角線互相平分。

  菱形:

  ①一組鄰邊相等的平行四邊形是菱形

 、陬I心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。

  ③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。

  矩形與正方形:

 、儆幸粋內角是直角的平行四邊形叫做矩形。

  ②矩形的對角線相等,四個角都是直角。

  ③對角線相等的平行四邊形是矩形。

 、苷叫尉哂衅叫兴倪呅,矩形,菱形的一切性質。

  ⑤一組鄰邊相等的矩形是正方形。

  多邊形:

  ①N邊形的內角和等于(N-2)180度

 、诙噙呅膬冉堑囊贿吪c另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等于360度)

  平均數(shù):對于N個數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數(shù)的算術平均數(shù),記為X

  加權平均數(shù):一組數(shù)據里各個數(shù)據的重要程度未必相同,因而,在計算這組數(shù)據的平均數(shù)時往往給每個數(shù)據加一個權,這就是加權平均數(shù)。

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等

  4、同角或等角的余角相等

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理經過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內錯角相等,兩直線平行

  11、同旁內角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內錯角相等

  14、兩直線平行,同旁內角互補

  15、定理三角形兩邊的和大于第三邊

  16、推論三角形兩邊的差小于第三邊

  17、三角形內角和定理三角形三個內角的和等于180°

  18、推論1直角三角形的兩個銳角互余

  19、推論2三角形的一個外角等于和它不相鄰的兩個內角的和

  20、推論3三角形的一個外角大于任何一個和它不相鄰的內角

  21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的'兩個三角形全等

  23、角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

  24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等

  25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等

  27、定理1在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

  31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33、推論3等邊三角形的各角都相等,并且每一個角都等于60°

  34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35、推論1三個角都相等的三角形是等邊三角形

  36、推論2有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1關于某條直線對稱的兩個圖形是全等形

  43、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

  45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

  46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形

  48、定理四邊形的內角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°

  51、推論任意多邊的外角和等于360°

  52、平行四邊形性質定理1平行四邊形的對角相等

  53、平行四邊形性質定理2平行四邊形的對邊相等

  54、推論夾在兩條平行線間的平行線段相等

  55、平行四邊形性質定理3平行四邊形的對角線互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質定理1矩形的四個角都是直角

  61、矩形性質定理2矩形的對角線相等

  62、矩形判定定理1有三個角是直角的四邊形是矩形

  63、矩形判定定理2對角線相等的平行四邊形是矩形

  64、菱形性質定理1菱形的四條邊都相等

  65、菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69、正方形性質定理1正方形的四個角都是直角,四條邊都相等

  70、正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1關于中心對稱的兩個圖形是全等的

  72、定理2關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

  73、逆定理如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

  74、等腰梯形性質定理等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h

  83、(1)比例的基本性質:

  如果a:b=c:d,那么ad=bc

  如果ad=bc ,那么a:b=c:d

  84、(2)合比性質:

  如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質:

  如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

  87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

  90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

  91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3三邊對應成比例,兩三角形相似(SSS)

  95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

  96、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97、性質定理2相似三角形周長的比等于相似比

  98、性質定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101、圓是定點的距離等于定長的點的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理不在同一直線上的三點確定一個圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

初中數(shù)學知識點總結3

  一、數(shù)與代數(shù)

  1.有理數(shù)

  有理數(shù):

  ①整數(shù)→正整數(shù)/0/負整數(shù)

  ②分數(shù)→正分數(shù)/負分數(shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  2.實數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:如果一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根(或二次方跟);一個數(shù)有兩個平方根,他們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。

  算術平方根:正數(shù)的正的平方根和零的平方根統(tǒng)稱為主根,用符號“√a”表示,a為“被開方數(shù)”。

  立方根:如果一個數(shù)的立方等于a,那么這個數(shù)就叫做a的立方根(或a的三次方根);一個正數(shù)的立方根是正數(shù)、零的立方根是零、負數(shù)的立方根是負數(shù);

  二、方程

  1.代數(shù)式:單獨一個數(shù)字或一個字母也是代數(shù)式。

  2.一元一次方程:含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的所有整式方程是一元一次方程。

  3.一元二次方程:含有一個未知數(shù),并且未知數(shù)的次數(shù)是2的所有整式方程是一元二次方程。

  4.二元一次方程:含有兩個未知數(shù),并且含有一個未知數(shù)的次數(shù)是1的所有整式方程叫二元一次方程。

  5.二元二次方程:含有兩個未知數(shù),并且含有一個未知數(shù)的次數(shù)是2的所有整式方程叫二元二次方程。

  三、三角形

  1.幾何圖形:學過的立體圖形有圓柱、圓錐和球以及長方體、正方體、棱柱、棱錐、棱臺。

  2.圖形的三視圖:俯視圖、主視圖、左視圖。

  3.三角形的穩(wěn)定性。

  4.三角形的分類:銳角三角形、直角三角形、鈍角三角形。

  5.三角形的內角和定理:三角形三個內角的和等于180度。

  6.解直角三角形:解直角三角形需要運用勾股定理及銳角三角函數(shù)的定義。銳角三角函數(shù)的定義:在直角三角形中,一銳角的正切等于銳角A對邊與鄰邊的比值;一銳角的余切等于銳角A的鄰邊與對邊的比值;一銳角的正弦等于銳角A的對邊與斜邊的比值;一銳角的余弦等于銳角A的鄰邊與斜邊的比值。

  7.全等三角形:全等三角形的對應邊相等;全等三角形的對應角相等。

  8.等腰三角形的性質定理:等腰三角形的兩個底角相等;(簡稱:等邊對等角)以及等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合。(簡稱:三線合一)

  9.等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(簡稱:等角對等邊)

  10.等邊三角形:三條邊都相等的三角形是等腰三角形;三個角都相等的`三角形是等邊三角形。

  11.相似的三角形:相似三角形的對應邊成比例;對應角相等。

  12.反證法:在證明一個命題的論證中,假設命題的結論不成立,從這個假設出發(fā),經過推理論證,得出與定義、公理或已經證明過的命題或已經掌握的事實相矛盾,從而使這個假設成為一個不成立的命題,這種推證方法叫做反證法。證明兩條線段相等時常常用反證法。

  四、四邊形

  1.平行四邊形及特殊平行四邊形的重心:平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點。

  2.矩形、菱形、正方形的重心:矩形、菱形、正方形的重心是它們的對角線的交點。

  3.梯形問題

初中數(shù)學知識點總結4

  一、基本知識

  二、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分數(shù)→正分數(shù)/負分數(shù)

  數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:①在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。③一個數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。③乘積為1的兩個有理數(shù)互為倒數(shù)。

  除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。②0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結果叫冪,A叫底數(shù),N叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的

  2、實數(shù)無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:AM+AN=A(M+N)

 。ˋM)N=AMN

 。ˋ/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

  解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程

  1)一元二次方程的二次函數(shù)的關系

  大家已經學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

 。1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

 。2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

 。3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b2—4ac)]}/2a,X2={—b—√[b2—4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

 。2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

 。3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a

  也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△<0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)

  2、不等式與不等式組

  不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的'方向不變。③不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

  不等式的解集:①能使不等式成立的未知數(shù)的值,叫做不等式的解。②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。③求不等式解集的過程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

  一元一次不等式組:①關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。③求不等式組解集的過程,叫做解不等式組。

  一元一次不等式的符號方向:

  在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

  在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:A>B,A+C>B+C

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A—C>B—C

  在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)

  在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C如果不等式乘以0,那么不等號改為等號

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立;

  3、函數(shù)

  變量:因變量,自變量。

  在用圖象表示變量之間的關系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。②當B=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經過原點的一條直線。③在一次函數(shù)中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

  三、空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:①圖形是由點,線,面構成的②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

  角平分線:把一個角平分的射線叫該角的角平分線。

初中數(shù)學知識點總結5

  第一章有理數(shù)

  一、正數(shù)和負數(shù)

 、闭龜(shù)和負數(shù)的概念

  負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)

  注意:①字母a可以表示任意數(shù),當a表示正數(shù)時,—a是負數(shù);當a表示負數(shù)時,—a是正數(shù);當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

 、谡龜(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。

  2、具有相反意義的量

  若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:—8℃

  支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數(shù):比原先多了的數(shù),增加增長了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),減少降低了的數(shù)一般記為負數(shù)。 3.0表示的意義

 、0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

 、0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。

  二、有理數(shù)

  1、有理數(shù)的概念

 、耪麛(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))

 、普謹(shù)和負分數(shù)統(tǒng)稱為分數(shù)

 、钦麛(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。

  理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。

  注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像—2,—4,—6,—8?也是偶數(shù),—1,—3,—5?也是奇數(shù)。

  2、(1)凡能寫成q(p,q為整數(shù)且p?0)形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負p

  分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);?不是有理數(shù);

  學霸分享的數(shù)學復習技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的.“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數(shù)學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術,而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結經驗

  每次考試結束試卷發(fā)下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

  數(shù)學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

  5、待定系數(shù)法

  在解決數(shù)學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數(shù),然后根據問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關系。為了解決數(shù)學問題,這種問題解決方法被稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

  6、構造法

  在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數(shù)學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數(shù),三角形,幾何等數(shù)學知識相互滲透,有助于解決問題。

  數(shù)學經常遇到的問題解答

  1、要提高數(shù)學成績首先要做什么?

  這一點,是很多學生所關注的,要提高數(shù)學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現(xiàn),因此要提高數(shù)學成績先要把基礎夯實。

  2、基礎不好怎么學好數(shù)學?

  對于基礎差的同學來說,課本是就是學好數(shù)學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術?

  方法君曾不止一次提到了“題海戰(zhàn)術”,題海戰(zhàn)術究竟可不可取呢?“題海戰(zhàn)術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現(xiàn)不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數(shù)學沒有“粗心”只有“不用心”。

  為什么要學習數(shù)學

  作為一門普及度極廣的學科,數(shù)學在人類文明的發(fā)展史上一直占據著重要的地位。雖然很多人可能會對數(shù)學產生排斥,認為它枯燥無味,但事實上,數(shù)學是所有學科的基石之一,對我們日常生活以及未來的職業(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數(shù)學的重要性。

  首先,數(shù)學可以幫助我們提高邏輯思維能力。數(shù)學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。

  其次,數(shù)學在現(xiàn)代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數(shù)學可以幫助我們建立模型、分析數(shù)據、預測趨勢,并且可以在實際應用中優(yōu)化和改進。例如,在人工智能領域,深度學習技術所涉及的數(shù)學概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數(shù)學知識,因此學習數(shù)學可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學也是一種普遍使用的語言,許多學科和領域都使用數(shù)學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數(shù)學語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學和商科領域,經濟學和金融學運用的數(shù)學概念,如微積分、線性代數(shù)和統(tǒng)計學等,使得我們能夠更好地理解經濟和財務數(shù)據,并進行決策。因此,學習數(shù)學可以讓我們更好地理解、溝通和交流各個領域的知識。

  最后,學習數(shù)學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領域,數(shù)學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數(shù)據科學、研究機構、教育等。數(shù)學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領域脫穎而出。

初中數(shù)學知識點總結6

  三角形的知識點

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類

  3、三角形的三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5、中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7、高線、中線、角平分線的意義和做法

  8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩(wěn)定性。

  9、三角形內角和定理:三角形三個內角的和等于180°

  推論1直角三角形的兩個銳角互余

  推論2三角形的一個外角等于和它不相鄰的兩個內角和

  推論3三角形的一個外角大于任何一個和它不相鄰的內角;三角形的內角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  11、三角形外角的性質

  (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

  (2)三角形的一個外角等于與它不相鄰的兩個內角和;

  (3)三角形的一個外角大于與它不相鄰的任一內角;

  (4)三角形的外角和是360°。

  四邊形(含多邊形)知識點、概念總結

  一、平行四邊形的定義、性質及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質:

  (1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補

  (3)平行四邊形的對角線互相平分

  3、判定:

  (1)兩組對邊分別平行的四邊形是平行四邊形

  (2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

  (4)兩組對角分別相等的四邊形是平行四邊形

  (5)對角線互相平分的四邊形是平行四邊形

  4、對稱性:平行四邊形是中心對稱圖形

  二、矩形的定義、性質及判定

  1、定義:有一個角是直角的平行四邊形叫做矩形

  2、性質:矩形的四個角都是直角,矩形的對角線相等

  3、判定:

  (1)有一個角是直角的平行四邊形叫做矩形

  (2)有三個角是直角的四邊形是矩形

  (3)兩條對角線相等的平行四邊形是矩形

  4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

  三、菱形的定義、性質及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

  (3)菱形被兩條對角線分成四個全等的直角三角形

  (4)菱形的面積等于兩條對角線長的積的一半

  2、s菱=爭6(n、6分別為對角線長)

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對角線互相垂直的平行四邊形是菱形

  4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

  四、正方形定義、性質及判定

  1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

  2、性質:

  (1)正方形四個角都是直角,四條邊都相等

  (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  (3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形

  (4)正方形的對角線與邊的夾角是45°

  (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形

  3、判定:

  (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個四邊形是菱形,再判定出有一個角是直角

  4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

  五、梯形的定義、等腰梯形的性質及判定

  1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的.梯形是等腰梯形

  4、對稱性:等腰梯形是軸對稱圖形

  六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

  七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。

  八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

  九、多邊形

  1、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

  5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。

  6、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質

  多邊形內角和公式:n邊形的內角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等于n·180°

  10、多邊形對角線的條數(shù):

  (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形

  (2)n邊形共有n(n-3)/2條對角線

  圓知識點、概念總結

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的點的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

  ③直線L和⊙O相離d>r

  13、切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質定理:圓的切線垂直于經過切點的半徑

  15、推論1經過圓心且垂直于切線的直線必經過切點

  16、推論2經過切點且垂直于切線的直線必經過圓心

  17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

  ③兩圓相交R-rr)

 、軆蓤A內切d=R-r(R>r)⑤兩圓內含dr)

  21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結各分點所得的多邊形是這個圓的內接正n邊形

  (2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  24、正n邊形的每個內角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  27、正三角形面積√3a/4a表示邊長

  28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內公切線長=d-(R-r)外公切線長=d-(R+r)

  32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35、弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

初中數(shù)學知識點總結7

  1、重心的定義:

  平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

  2、幾種幾何圖形的重心:

  ⑴線段的重心就是線段的中點;

 、破叫兴倪呅渭疤厥馄叫兴倪呅蔚闹匦氖撬膬蓷l對角線的交點;

 、侨切蔚娜龡l中線交于一點,這一點就是三角形的重心;

 、热我舛噙呅味加兄匦模远噙呅蔚娜我鈨蓚頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的'交點就是這個多邊形的重心。

  提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個;

 、茝奈锢韺W角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。

  3、常見圖形重心的性質:

 、啪段的重心把線段分為兩等份;

 、破叫兴倪呅蔚闹匦陌褜蔷分為兩等份;

 、侨切蔚闹匦陌阎芯分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

  上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數(shù)學知識。

 、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。

  ②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

  ③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

  平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的方程

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

  當x=-C/Ax2時,直線與圓相離;

初中數(shù)學知識點總結8

  一、平移變換:

  1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

  2。性質:(1)平移前后圖形全等;

  (2)對應點連線平行或在同一直線上且相等。

  3。平移的作圖步驟和方法:

 。1)分清題目要求,確定平移的方向和平移的距離;

  (2)分析所作的圖形,找出構成圖形的關健點;

 。3)沿一定的方向,按一定的距離平移各個關健點;

  (4)連接所作的各個關鍵點,并標上相應的字母;

 。5)寫出結論。

  二、旋轉變換:

  1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

  說明:

 。1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

  (2)旋轉過程中旋轉中心始終保持不動。

 。3)旋轉過程中旋轉的'方向是相同的。

 。4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

  2。性質:

  (1)對應點到旋轉中心的距離相等;

 。2)對應點與旋轉中心所連線段的夾角等于旋轉角;

 。3)旋轉前、后的圖形全等。

  3。旋轉作圖的步驟和方法:

 。1)確定旋轉中心及旋轉方向、旋轉角;

  (2)找出圖形的關鍵點;

 。3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數(shù),得到這些關鍵點的對應點;

 。4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。

  說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

  常見考法

 。1)把平移旋轉結合起來證明三角形全等;

 。2)利用平移變換與旋轉變換的性質,設計一些題目。

  誤區(qū)提醒

 。1)弄反了坐標平移的上加下減,左減右加的規(guī)律;

  (2)平移與旋轉的性質沒有掌握。

初中數(shù)學知識點總結9

  課題

  3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

  教學目標

  1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質2、會用待定系數(shù)法確定函數(shù)的解析式

  教學重點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質

  教學難點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質

  教學方法

  講練結合法

  教學過程

 。↖)知識要點(見下表:)

  第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的.漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數(shù),在,-單調性k0時,在,0,k0時為增函數(shù)0,上為減函數(shù)k0時,為增函數(shù)b上為減函數(shù)2ak0時為減函數(shù)k0時,在,0,k0時,為減函數(shù)0,上為增函數(shù)ba0時,在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時奇函數(shù)b=0時偶函數(shù)a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax

  第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)

  2a2a4a2拋物線與x軸交點坐標(m,0),(n,0)(II)例題講解

  例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的頂點為P(1,5)且過點Q(3,3)

 。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,

  解:(1)設yax2bxc(a0),將A、B、C三點坐標分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數(shù)為ya(x1)25,將Q點坐標代入,即a(31)253,得

  a2,故y2(x1)252x24x3

  (3)∵拋物線對稱軸為x2;

  ∴拋物線與x軸的兩個交點A、B應關于x2對稱;∴由題設條件可得兩個交點坐標分別為A(2∴可設函數(shù)解析式為:ya(x2代入方程可得a1

  ∴所求二次函數(shù)為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數(shù)的圖像過點(0,8),(1,(4,0)

 。1)求函數(shù)圖像的頂點坐標、對稱軸、最值及單調區(qū)間(2)當x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應的x值

  113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x

  224111]上是增函數(shù)!嘁李}設條件可得f(x)在[1,]上是減函數(shù),在[,22131]時,函數(shù)取得最小值,且ymin∴當x[1,24131又∵11

初中數(shù)學知識點總結10

  一元一次方程定義

  通過化簡,只含有一個未知數(shù),且含有未知數(shù)的最高次項的次數(shù)是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數(shù),且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

  一元指方程僅含有一個未知數(shù),一次指未知數(shù)的次數(shù)為1,且未知數(shù)的系數(shù)不為0。我們將ax+b=0(其中x是未知數(shù),a、b是已知數(shù),并且a≠0)叫一元一次方程的標準形式。這里a是未知數(shù)的系數(shù),b是常數(shù),x的次數(shù)必須是1。

  即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數(shù);⑶未知數(shù)最高次項為1;⑷含未知數(shù)的項的系數(shù)不為0。

  一元一次方程的五個核心問題

  一、什么是等式?1+1=1是等式嗎?

  表示相等關系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數(shù)值代替等式中的字母,等式的兩邊總是相等,由數(shù)字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數(shù)值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

  一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

  等式與代數(shù)式不同,等式中含有等號,代數(shù)式中不含等號。

  等式有兩個重要性質1)等式的兩邊都加上或減去同一個數(shù)或同一個整式,所得結果仍然是一個等式;(2)等式的'兩邊都乘以或除以同一個數(shù)除數(shù)不為零,所得結果仍然是一個等式。

  二、什么是方程,什么是一元一次方程?

  含有未知數(shù)的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數(shù),兩者缺一不可。

  只含有一個未知數(shù),并且含未知數(shù)的式子都是整式,未知數(shù)的次數(shù)是1,系數(shù)不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數(shù)),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數(shù)。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數(shù)x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。

  凡是談到次數(shù)的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數(shù)最少且次數(shù)最低的方程。

  三、等式有什么牛掰的基本性質嗎?

  將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質1。

  移項時不一定要把含未知數(shù)的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數(shù)的項移到右邊,而把常數(shù)項移到左邊,這樣會顯得簡便些。

  去分母,將未知數(shù)的系數(shù)化為1,則是依據等式的基本性質2進行的。

  四、等式一定是方程嗎?方程一定是等式嗎?

  等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數(shù)式,但它們還是有區(qū)別的。方程僅是含有未知數(shù)的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

  五、"解方程"與"方程的解"是一回事兒嗎?

  方程的解是使方程左、右兩邊相等的未知數(shù)的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

初中數(shù)學知識點總結11

  一、角的定義

  “靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。

  “動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉到另一個位置所形成的圖形。

  如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補角的概念和性質:

  概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。

  如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

  說明:互補、互余是指兩個角的數(shù)量關系,沒有位置關系。

  性質:同角(或等角)的.余角相等;

  同角(或等角)的補角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。

  常見考法

  (1)考查與時鐘有關的問題;(2)角的計算與度量。

  誤區(qū)提醒

  角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。

  【典型例題】(20xx云南曲靖)從3時到6時,鐘表的時針旋轉角的度數(shù)是( )

  【答案】3時到6時,時針旋轉的是一個周角的1/4,故是90度 ,本題選C.

初中數(shù)學知識點總結12

  知識點總結

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質

 。1)平行四邊形的對邊平行且相等;

 。2)平行四邊形的鄰角互補,對角相等;

 。3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個重要內容,如何根據平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:

  第一類:與四邊形的對邊有關

 。1)兩組對邊分別平行的四邊形是平行四邊形;

 。2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的'對角有關

 。4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對角線有關

 。5)對角線互相平分的四邊形是平行四邊形

  常見考法

 。1)利用平行四邊形的性質,求角度、線段長、周長;

 。2)求平行四邊形某邊的取值范圍;

 。3)考查一些綜合計算問題;

 。4)利用平行四邊形性質證明角相等、線段相等和直線平行;

  (5)利用判定定理證明四邊形是平行四邊形。

  誤區(qū)提醒

  (1)平行四邊形的性質較多,易把對角線互相平分,錯記成對角線相等;

  (2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。

初中數(shù)學知識點總結13

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數(shù)特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數(shù)記憶順口溜

  1三角函數(shù)記憶口訣

  “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。

  2符號判斷口訣

  全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的'四種三角函數(shù)值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數(shù)為正值的名稱?谠E中未提及的都是負值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數(shù)為正值。

  3三角函數(shù)順口溜

  三角函數(shù)是函數(shù),象限符號坐標注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

  同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數(shù)字一,連結頂點三角形。向下三角平方和,倒數(shù)關系是對角,

  頂點任意一函數(shù),等于后面兩根除。誘導公式就是好,負化正后大化小,

  變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

  將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結構函數(shù)名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實質就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

初中數(shù)學知識點總結14

  一、特殊的平行四邊形:

  1.矩形:

 。1)定義:有一個角是直角的平行四邊形。

 。2)性質:矩形的四個角都是直角;矩形的對角線平分且相等。

 。3)判定定理:

 、儆幸粋角是直角的平行四邊形叫做矩形。

 、趯蔷相等的平行四邊形是矩形。

 、塾腥齻角是直角的四邊形是矩形。

  直角三角形的性質:直角三角形中所對的直角邊等于斜邊的一半。

  2.菱形:

 。1)定義:鄰邊相等的平行四邊形。

 。2)性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

  (3)判定定理:

 、僖唤M鄰邊相等的平行四邊形是菱形。

 、趯蔷互相垂直的`平行四邊形是菱形。

  ③四條邊相等的四邊形是菱形。

  (4)面積:

  3.正方形:

  (1)定義:一個角是直角的菱形或鄰邊相等的矩形。

 。2)性質:四條邊都相等,四個角都是直角,對角線互相垂直平分。正方形既是矩形,又是菱形。

 。3)正方形判定定理:

 、賹蔷互相垂直平分且相等的四邊形是正方形;

  ②一組鄰邊相等,一個角為直角的平行四邊形是正方形;

  ③對角線互相垂直的矩形是正方形;

 、茑忂呄嗟鹊木匦问钦叫

  ⑤有一個角是直角的菱形是正方形;

 、迣蔷相等的菱形是正方形。

  二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:

  1.矩形、菱形和正方形都是特殊的平行四邊形,其性質都是在平行四邊形的基礎上擴充來的。矩形是由平行四邊形增加“一個角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個角為90°”兩個條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的特性。

  2.矩形、菱形的判定可以根據出發(fā)點不同而分成兩類:一類是以四邊形為出發(fā)點進行判定,另一類是以平行四邊形為出發(fā)點進行判定。而正方形除了上述兩個出發(fā)點外,還可以從矩形和菱形出發(fā)進行判定。

  三、判定一個四邊形是特殊四邊形的步驟:

  常見考法

 。1)利用菱形、矩形、正方形的性質進行邊、角以及面積等計算;

 。2)靈活運用判定定理證明一個四邊形(或平行四邊形)是菱形、矩形、正方形;

 。3)一些折疊問題;

 。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設置許多考題。

  誤區(qū)提醒

  (1)平行四邊形的所有性質矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質平行四邊形不一定具有,這點易出現(xiàn)混淆;

 。2)矩形、菱形具有的性質正方形都具有,而正方形具有的性質,矩形不一定具有,菱形也不一定具有,這點也易出現(xiàn)混淆;

 。3)不能正確的理解和運用判定定理進行證明,(如在證明菱形時,把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);

  (4)再利用對角線長度求菱形的面積時,忘記乘;

 。5)判定一個四邊形是特殊的平行四邊形的條件不充分。

初中數(shù)學知識點總結15

  一、數(shù)與代數(shù)

  1.有理數(shù)

  有理數(shù):包括正整數(shù)、0和負整數(shù)。

  數(shù)軸:包括原點、正方向和單位長度。

  相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。

  絕對值:正數(shù)的絕對值是其本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。

  2.整式與分式

  整式:包括單項式和多項式。

  分式:包括一般形式和特殊形式。

  代數(shù)式:包括單字母、單項式和多項式。

  二、空間與圖形

  1.點、線、面

  點:沒有大小,沒有長度。

  線:沒有寬度,只有長度。

  面:有長度和寬度,沒有高度。

  2.基本圖形

  直線:包括直線、射線、線段。

  角:包括平角、周角和一般的角。

  三角形:包括等邊三角形、等腰三角形和一般三角形。

  四邊形:包括矩形、正方形、梯形和平行四邊形。

  圓:包括圓的性質和圓的定理。

  三、統(tǒng)計與概率

  1.統(tǒng)計

  統(tǒng)計圖:包括扇形統(tǒng)計圖、折線統(tǒng)計圖和條形統(tǒng)計圖。

  統(tǒng)計表:包括簡單統(tǒng)計表和復合統(tǒng)計表。

  數(shù)據的收集與整理:包括抽樣調查、全面調查和自主調查。

  2.概率

  隨機事件:包括必然事件、不可能事件和隨機事件。

  概率:包括計算事件發(fā)生的.概率和隨機事件的概率。

  以上是初中數(shù)學知識點總結的主要內容,這些知識點是數(shù)學學習的基礎,需要學生熟練掌握和應用。

【初中數(shù)學知識點總結】相關文章:

初中數(shù)學的知識點總結01-12

初中數(shù)學知識點總結12-13

初中數(shù)學知識點總結06-25

初中數(shù)學知識點總結01-02

初中數(shù)學圓的知識點總結08-30

初中數(shù)學幾何知識點總結03-01

人教版初中數(shù)學知識點總結07-31

初中數(shù)學知識點總結歸納12-04

初中數(shù)學圓的知識點總結歸納05-28