因數(shù)和倍數(shù)教學(xué)反思(通用11篇)
隨著社會(huì)一步步向前發(fā)展,教學(xué)是重要的工作之一,反思過去,是為了以后。如何把反思做到重點(diǎn)突出呢?以下是小編整理的因數(shù)和倍數(shù)教學(xué)反思,歡迎閱讀與收藏。
因數(shù)和倍數(shù)教學(xué)反思 1
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。本節(jié)課又是這一單元的的教學(xué)重點(diǎn)。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個(gè)數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時(shí)進(jìn)行。第一課時(shí)只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個(gè)數(shù)的因數(shù)的方法,效果不錯(cuò)。
一、設(shè)計(jì)情境,引起思考。
改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個(gè)小方塊,要求擺成一個(gè)長方體,你想怎么擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的'多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。
如何找一個(gè)數(shù)的因數(shù)是這節(jié)課的重點(diǎn),首先放手讓學(xué)生找出24的因數(shù),由于個(gè)人經(jīng)驗(yàn)和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個(gè)數(shù)的因數(shù)的方法,從而掌握了知識點(diǎn)。
根據(jù)學(xué)生的學(xué)習(xí)特點(diǎn),靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。
因數(shù)和倍數(shù)教學(xué)反思 2
一、教材與知識點(diǎn)的對比與區(qū)別。
1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。
有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容,但教材在傳承以往優(yōu)秀做法的同時(shí)也進(jìn)行了較大幅度的改動(dòng)。無論是從宏觀方面——內(nèi)容的劃分,還是從微觀方面——具體內(nèi)容的設(shè)計(jì)上都獨(dú)具匠心。“因數(shù)與倍數(shù)”的認(rèn)識與原教材有以下兩方面的區(qū)別:
。1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。
。2)“約數(shù)”一詞被“因數(shù)”所取代。
這樣的變化原因何在?教師必須要認(rèn)真研讀教材,深入了解編者意圖,才能夠正確、靈活駕馭教材。因此,我通過學(xué)習(xí)教參了解到以下信息:
學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法,對整除的含義有比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會(huì)對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本教材中刪去了“整除”的數(shù)學(xué)化定義。
2、相似概念的對比。
。1)彼“因數(shù)”非此“因數(shù)”。
在同一個(gè)乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù)。而后者是相對于“倍數(shù)”而言的,與以前所說的“約數(shù)”同義,說“X是X的因數(shù)”時(shí),兩者都只能是整數(shù)。
。2)“倍數(shù)”與“倍”的區(qū)別。
“倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”,但不能說”1.5是0.3的倍數(shù)”。我們在求一個(gè)數(shù)的倍數(shù)時(shí),運(yùn)用的方法與“求一個(gè)數(shù)的幾倍是多少”是相同的,只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運(yùn)用實(shí)踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對與本知識點(diǎn)的概念是人為規(guī)定的一個(gè)范圍,因此,對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求,而且給學(xué)生一個(gè)直觀的.感受!耙驍(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分?jǐn)?shù)無關(guān),與負(fù)數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。同時(shí)強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗(yàn)就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3x4=12,說明在這個(gè)算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。
2、在進(jìn)行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個(gè)數(shù)的因數(shù)和倍數(shù),在板書要講究一個(gè)格式與對稱性,這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個(gè)數(shù)的有限與無限的對比,再就是發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個(gè)數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時(shí)應(yīng)該要注意的細(xì)節(jié),這對于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的。
因數(shù)和倍數(shù)教學(xué)反思 3
因數(shù)與倍數(shù)屬于數(shù)論中的知識,是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識經(jīng)驗(yàn)的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認(rèn)識了乘法各部分名稱,對“倍”葉有了初步的認(rèn)識,從而本課由此入手,讓學(xué)生由熟悉的知識經(jīng)驗(yàn)開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識結(jié)構(gòu),體會(huì)到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。
在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會(huì)出“要按照一定的順序去找”才不會(huì)遺漏和重復(fù),本課制作了動(dòng)態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動(dòng)),2、9(閃動(dòng)),3、6(閃動(dòng))學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的`縮小,到3至6時(shí)觀察區(qū)間,真正體會(huì)到了“找前了”這一學(xué)生難以真正理解的地方。
本課中還要注意到的就是學(xué)生在匯報(bào)找到了哪些數(shù)的因數(shù)時(shí),教師根據(jù)學(xué)生匯報(bào)所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時(shí)學(xué)生還不知道這些數(shù)的概念,但這時(shí)給學(xué)生一個(gè)全面的正面印象,有的數(shù)因數(shù)個(gè)數(shù)多,有的少,不是一個(gè)數(shù)越大因數(shù)的個(gè)數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。
因數(shù)和倍數(shù)教學(xué)反思 4
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識的基礎(chǔ)上進(jìn)行教學(xué)的。
課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的`含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
其次,厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。
本節(jié)課的不足之處:
1、練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。
2、對因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。
因數(shù)和倍數(shù)教學(xué)反思 5
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個(gè)除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這局部內(nèi)容同學(xué)初次接觸,對于同學(xué)來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。我通過捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個(gè)小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學(xué)對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說錯(cuò)了。對于這節(jié)課的教學(xué),我特別注意下面幾個(gè)細(xì)節(jié)來協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義動(dòng)身,而是通過一個(gè)乘法算式來引出因數(shù)和倍數(shù)的概念,但實(shí)質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時(shí)特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的.聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),協(xié)助小朋友們認(rèn)真理解辨析,所以同學(xué)一節(jié)課下來對這組概念就理解透徹了,不會(huì)模糊了。
因數(shù)和倍數(shù)教學(xué)反思 6
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了必須的整數(shù)知識的基礎(chǔ)上進(jìn)行教學(xué)的。
課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不一樣的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。經(jīng)過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情景得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對于因數(shù)和倍數(shù)的含義要貼合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的`因數(shù)。
其次,厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中能夠直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既能夠在整數(shù)范圍內(nèi),也能夠在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。
本節(jié)課的不足之處:
1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。
2.對因數(shù)和倍數(shù)的含義還應(yīng)當(dāng)進(jìn)行歸納總結(jié)上升到用字母來表示。
因數(shù)和倍數(shù)教學(xué)反思 7
通過今天的學(xué)習(xí),你有什么收獲?
課后作業(yè) :課后自已或與同學(xué)合作制作一個(gè)含有因數(shù)和倍數(shù)知識的轉(zhuǎn)盤。
教后反思:
40分鐘的時(shí)間一閃而過,輕松愉悅的課堂氣氛,讓學(xué)生的學(xué)習(xí)情緒空前高漲,學(xué)生的學(xué)習(xí)熱情,學(xué)習(xí)過程中數(shù)學(xué)思維的'提升,都在這短短的時(shí)間內(nèi)讓我感覺無盡的驚喜。
課堂導(dǎo)入,親切,有效,讓學(xué)生先在腦海中留下“關(guān)系”這種印象,學(xué)生通過自己閱讀明白誰是誰的因數(shù),誰是誰的倍數(shù),然后通過試一試、練習(xí)、特別是(8是倍數(shù),4是因數(shù)! ( ))的辨析,讓學(xué)生明白:在說倍數(shù)(或因數(shù))時(shí),必須說明誰是誰的倍數(shù)(或因數(shù))。不能單獨(dú)說誰是倍數(shù)(或因數(shù))。
因數(shù)和倍數(shù)不能單獨(dú)存在。
通過尋找一個(gè)數(shù)的因數(shù),和一個(gè)數(shù)的倍數(shù),讓學(xué)生通過多個(gè)實(shí)例找到規(guī)律。
在教學(xué)中由于過分依賴課件,致使有的環(huán)節(jié)沒有深入,沒有給學(xué)生時(shí)間進(jìn)行
因數(shù)和倍數(shù)教學(xué)反思 8
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是經(jīng)過除法算式來引出整除的概念,而此刻的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,經(jīng)過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的資料。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨(dú)存在,不是很好理解。我經(jīng)過生活與數(shù)學(xué)之間的聯(lián)系,幫忙學(xué)生理解因數(shù)倍數(shù)相互依存的`關(guān)系。所以在上課之前我特意舉一些生活中的實(shí)例來幫忙學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說錯(cuò)了。對于這節(jié)課的教學(xué),我特別注意下頭幾個(gè)細(xì)節(jié)來幫忙學(xué)生理解因數(shù)和倍數(shù)的概念。
1、是我上課時(shí)特別注意讓學(xué)生明白什么情景下才能討論因數(shù)和倍數(shù)的概念。
2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,能夠是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。
3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣。能夠說"15是3的倍數(shù)",也能夠說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0的倍數(shù)"。在課堂中反復(fù)強(qiáng)調(diào),幫忙學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會(huì)模糊了。
因數(shù)和倍數(shù)教學(xué)反思 9
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):
一、操作實(shí)踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動(dòng)手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
二、自主探究,意義建構(gòu),找倍數(shù)和因數(shù)
整個(gè)教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。
找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時(shí)間,最后就沒有很多的時(shí)間去練習(xí),我認(rèn)為雖然時(shí)間用的過多,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個(gè)感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時(shí)老師再給予有效的指導(dǎo)和總結(jié)。
三、變式拓展,實(shí)踐應(yīng)用---—促進(jìn)智能內(nèi)化
練習(xí)的設(shè)計(jì)不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動(dòng),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時(shí)讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,是比較抽象的,本冊教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。本節(jié)課是這一單元的的教學(xué)重點(diǎn)。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個(gè)數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時(shí)進(jìn)行。第一課時(shí)只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個(gè)數(shù)的因數(shù)的方法。
一、設(shè)計(jì)情境,引起思考。
創(chuàng)造性的使用教材,引起學(xué)生思考,板書15÷0.3=50,1.5÷3=0.5,1.5÷0.3=5,15÷3=5引出除盡和整除的含義,從而明確了因數(shù)倍數(shù)的研究范圍,進(jìn)而理解決因數(shù)與倍數(shù)的意義。對于因數(shù)與倍數(shù)的依存關(guān)系,學(xué)生在理解時(shí)比較抽象,我就放到具體算式里,算式由學(xué)生舉例,反復(fù)去說誰是誰的倍數(shù),誰是誰的因數(shù),在課堂中反復(fù)強(qiáng)調(diào),幫助學(xué)生認(rèn)真理解辨析,從而理解了因數(shù)與倍數(shù)之間的`相互依存關(guān)系。學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會(huì)模糊了。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法。
如何找一個(gè)數(shù)的因數(shù)是這節(jié)課的又一個(gè)重點(diǎn),首先讓學(xué)生找出24的因數(shù),由于個(gè)人經(jīng)驗(yàn)和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個(gè)數(shù)的因數(shù)的方法,從而掌握了知識點(diǎn)。
根據(jù)學(xué)生的學(xué)習(xí)特點(diǎn),靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能達(dá)到教學(xué)的目的。在探索找一個(gè)數(shù)的因數(shù)的方法時(shí),為了讓學(xué)生更加形象地體會(huì)出“要按照一定的順序去找”才不會(huì)遺漏和重復(fù),充分運(yùn)用多媒體,通過演示18、24、77、1的因數(shù),讓學(xué)生直觀地看到了“順序”,學(xué)會(huì)有序思考,體會(huì)到了求一個(gè)數(shù)的因數(shù)的方法。與此同時(shí)學(xué)生直觀觀察發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)都有1和它本身,最小的因數(shù)是1,最大的因數(shù)是它本身,不是數(shù)字越大因數(shù)個(gè)數(shù)就越多,一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的等等重要相關(guān)知識,這些發(fā)現(xiàn)與課堂練習(xí)息息相關(guān),形成本節(jié)課完整的知識體系,還為后面的學(xué)習(xí)做好鋪墊。課堂練習(xí)完成的很好,起到學(xué)以致用的學(xué)習(xí)效果。培養(yǎng)學(xué)生的概括能力、歸納能力,抽象能力得以進(jìn)一步發(fā)展。
因數(shù)和倍數(shù)教學(xué)反思 10
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):
一、尊重教材,引導(dǎo)學(xué)生實(shí)現(xiàn)從形象向抽象的飛躍。
教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,
二、細(xì)化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。
倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會(huì)12也是4的倍數(shù),指名說后,再強(qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時(shí)你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時(shí)再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的`關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點(diǎn)特別的兩句。
整個(gè)過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時(shí)、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。
三、由點(diǎn)及面,巧架平臺,讓學(xué)生在師生互動(dòng)中建立完整的數(shù)學(xué)模型。
找一個(gè)數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個(gè)數(shù)的倍數(shù)或因數(shù)的方法時(shí),重點(diǎn)是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。
探索求一個(gè)數(shù)因數(shù)的方法是本課的難點(diǎn),例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個(gè)數(shù)的因數(shù)的方法。
教學(xué)4的倍數(shù)時(shí),學(xué)生在4×4=16的鋪墊下,很容易找到一個(gè)或幾個(gè)4的倍數(shù),但是想要“一個(gè)不漏且有序的找全,并體會(huì)出4的倍數(shù)的個(gè)數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點(diǎn)逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。
這樣搭建了有效的平臺、形成了師生互動(dòng)生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點(diǎn)及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。
因數(shù)和倍數(shù)教學(xué)反思 11
一、尊重經(jīng)驗(yàn),把握思維起點(diǎn)
把握學(xué)生的認(rèn)知起點(diǎn),根據(jù)教學(xué)內(nèi)容和學(xué)生實(shí)際設(shè)定科學(xué)合理的教學(xué)切入點(diǎn),是激活學(xué)生思維的關(guān)鍵一步。雖然受到學(xué)生心理年齡和生活經(jīng)驗(yàn)的制約,他們的已有知識經(jīng)驗(yàn)往往是瑣碎而凌亂的,但是這其中卻包含著學(xué)生個(gè)體的認(rèn)知傾向、情感需要以及更復(fù)雜的情境性因素。課堂教學(xué)貼合學(xué)生的經(jīng)驗(yàn)展開,會(huì)使得教學(xué)事半功倍。
學(xué)生的已有知識經(jīng)驗(yàn)在有些時(shí)候會(huì)對新知教學(xué)產(chǎn)生干擾,他們會(huì)被生活中的一些表象所迷惑而產(chǎn)生“習(xí)慣性錯(cuò)誤”,或者因?yàn)榕f知的過分強(qiáng)調(diào)產(chǎn)生負(fù)遷移。教師要理解這種錯(cuò)誤,不能簡單粗暴地進(jìn)行否定乃至批評,而應(yīng)當(dāng)引導(dǎo)學(xué)生通過反證的方法,在自我否定中讓他們重新認(rèn)識生活經(jīng)驗(yàn),從而獲得知識經(jīng)驗(yàn)的自然生長。
比如,在教學(xué)復(fù)習(xí)“統(tǒng)計(jì)”一課時(shí),為了讓學(xué)生正確認(rèn)識平均數(shù)、中位數(shù)以及眾數(shù)的不同特點(diǎn),特別是平均數(shù)的意義和適用范圍,教師可設(shè)計(jì)這樣一道題引發(fā)學(xué)生的思維矛盾:在一次短跑比賽中,七名選手的平均成績是41.3秒,張三的.成績是41.7秒,猜一猜張明可能是第幾名?
學(xué)生們理所當(dāng)然地認(rèn)為張三的成績比平均數(shù)要低,應(yīng)當(dāng)是中下水平。而當(dāng)教師亮出七名選手的全部成績時(shí),學(xué)生們驚訝地發(fā)現(xiàn),原來張三竟然是第三名。通過組織學(xué)生分析比較,他們認(rèn)識到“平均數(shù)是會(huì)騙人的”,因?yàn)榍皟擅某煽兲,拉高了平均?shù),從而幫助學(xué)生全面地認(rèn)識了平均數(shù)的意義。
二、思考為本,激發(fā)思維動(dòng)力
數(shù)學(xué)教學(xué)中的情境創(chuàng)設(shè),如果過分地注重情境的趣味性,而忽視提供有價(jià)值的問題,學(xué)生的興趣非但不會(huì)持久,而且會(huì)讓學(xué)生的思維形成惰性。因此,用數(shù)學(xué)自身的魅力――即思考的價(jià)值去打動(dòng)學(xué)生,喚起學(xué)生深層次的表現(xiàn)欲望,讓他們享受思考的樂趣,從而培養(yǎng)長期穩(wěn)定的數(shù)學(xué)學(xué)習(xí)興趣。
比如在教學(xué)“倍數(shù)”這一概念時(shí),筆者引領(lǐng)學(xué)生充分地體驗(yàn)了知識發(fā)生、發(fā)展的過程,讓思考伴隨著整個(gè)過程,從而幫助學(xué)生建立全面、細(xì)致的知識結(jié)構(gòu)。
、倌隳芟氲侥男3的倍數(shù),請你按照從小到大的順序把3的倍數(shù)寫出來。
、谀隳馨3的倍數(shù)一個(gè)一個(gè)全部都寫出來嗎?為什么?那么可以用什么符號表示?
、勰闶菑哪膫(gè)數(shù)開始寫3的倍數(shù)的?
、艽蠹沂窃趺凑业3的所有倍數(shù)的?
、菀粋(gè)數(shù)的倍數(shù)有什么特點(diǎn)?
這幾個(gè)環(huán)節(jié)中,讓學(xué)生感受到3的倍數(shù)根本寫不完,用省略號表示,顯示了數(shù)學(xué)簡潔性的魅力;再通過觀察、比較、歸納,引導(dǎo)學(xué)生發(fā)現(xiàn)并概括一個(gè)數(shù)的倍數(shù)的特點(diǎn),使得學(xué)生的觀察能力和概括能力得到有效提升。
三、關(guān)注差異,利用思維彈性
學(xué)生的個(gè)體差異客觀存在,比如有的學(xué)生善于動(dòng)手操作,有的學(xué)生表達(dá)能力較強(qiáng),有的學(xué)生能夠長時(shí)間反復(fù)嘗試解決某一個(gè)問題……這些差異是教師必須予以關(guān)注的重要教學(xué)資源,積極面對并合理運(yùn)用這些差異,能激發(fā)學(xué)生思維之間的碰撞,讓學(xué)生的思維充滿彈性和張力。
在課堂教學(xué)中,根據(jù)學(xué)生的不同思維傾向,他們會(huì)產(chǎn)生各種解決問題的策略,也會(huì)有層次不同的解決問題的方法,所產(chǎn)生的解決思路有的比較繁瑣,有的則簡潔明快。教師要引導(dǎo)學(xué)生進(jìn)行討論比較,在多樣化和最優(yōu)化之間找到平衡。
四、敢于標(biāo)新,呵護(hù)思維自由
學(xué)生總喜歡與眾不同,他們往往不滿足于教師和同伴的已有經(jīng)驗(yàn)和想法,在提出獨(dú)特見解并獲得肯定后會(huì)得到極大的心理滿足。教師要呵護(hù)這種思維傾向,因?yàn)檫@其實(shí)是創(chuàng)新意識發(fā)展的契機(jī),是發(fā)展學(xué)生思維、提升學(xué)生能力的原始驅(qū)動(dòng)力。
【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:
《因數(shù)和倍數(shù)》教學(xué)反思02-06
《倍數(shù)和因數(shù)》教學(xué)反思04-11
《因數(shù)和倍數(shù)》數(shù)學(xué)教學(xué)反思02-08
因數(shù)和倍數(shù)教學(xué)反思(精選10篇)03-28
因數(shù)和倍數(shù)教學(xué)反思15篇02-10
《因數(shù)和倍數(shù)》教學(xué)設(shè)計(jì)11-20